电磁场例题

合集下载

电磁场练习题

电磁场练习题

电磁场练习题电磁场是物理学中重要的概念,广泛应用于电力工程、通信技术等领域。

为了更好地理解和掌握电磁场的相关知识,以下是一些练习题,帮助读者巩固对电磁场的理解。

练习题1:电场1. 有一电荷+Q1位于坐标原点,另有一电荷+Q2位于坐标(2a, 0, 0)处。

求整个空间内的电势分布。

2. 两个无限大平行带电板,分别带有电荷密度+σ和-σ。

求两个带电板之间的电场强度。

3. 一个圆环上均匀分布有总电荷+Q,圆环的半径为R。

求圆环轴线上离圆环中心距离为x处的电场强度。

练习题2:磁场1. 一个无限长直导线通过点A,导线中电流方向由点A指向B。

求点A处的磁场强度。

2. 一个长直导线以λ的线密度均匀分布电流。

求距离导线距离为r处的磁场强度。

3. 一半径为R、载有电流I的螺线管,求其轴线上离螺线管中心的距离为x处的磁场强度。

练习题3:电磁场的相互作用1. 在一均匀磁场中,一电子从初始速度为v0的方向垂直进入磁场。

求电子做曲线运动的轨迹。

2. 有两个无限长平行导线,分别通过电流I1和I2。

求两个导线之间的相互作用力。

3. 一个电荷为q的粒子以速度v从初始位置x0进入一个电场和磁场同时存在的区域。

求电荷受到的合力。

练习题4:电磁场的应用1. 描述电磁波的基本特性。

2. 电磁感应现象的原理是什么?列举几个常见的电磁感应现象。

3. 解释电磁场与电路中感应电动势和自感现象的关系。

根据上述练习题,我们可以更好地理解和掌握电磁场的基本原理和应用。

通过解答这些练习题,我们能够加深对电场、磁场以及电磁场相互作用的理解,并掌握其在实际应用中的运用。

希望读者能够认真思考每道练习题,尽量自行解答。

如果遇到困难,可以参考电磁场相关的教材、课件等资料,或者向老师、同学寻求帮助。

通过不断练习和思考,相信读者可以彻底掌握电磁场的相关知识,为今后的学习和应用奠定坚实的基础。

高考物理电磁场经典练习题(含答案详解)

高考物理电磁场经典练习题(含答案详解)

高三物理第一轮专题复习——电磁场在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图所示。

一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,恰好从磁场边界与y轴的交点C处沿+y方向飞出。

(1)请判断该粒子带何种电荷,并求出其比荷q/m;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B’,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B’多大?此次粒子在磁场中运动所用时间t是多少?电子自静止开始经M、N板间(两板间的电压A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图所示.求匀强磁场的磁感应强度.(已知电子的质量为m,电量为e)高考)如图所示,abcd为一正方形区域,正离子束从a点沿ad方向以=80m/s 的初速度射入,若在该区域中加上一个沿ab方向的匀强电场,电场强度为E,则离子束刚好从c点射出;若撒去电场,在该区域中加上一个垂直于abcd平面的匀强磁砀,磁感应强度为B,则离子束刚好从bc的中点e射出,忽略离子束中离子间的相互作用,不计离子的重力,试判断和计算:(1)所加磁场的方向如何?(2)E与B的比值BE/为多少?制D 型金属扁盒组成,两个D 形盒正中间开有一条窄缝。

两个D 型盒处在匀强磁场中并接有高频交变电压。

图乙为俯视图,在D 型盒上半面中心S 处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D 型盒中。

在磁场力的作用下运动半周,再经狭缝电压加速。

如此周而复始,最后到达D 型盒的边缘,获得最大速度,由导出装置导出。

已知正离子的电荷量为q ,质量为m ,加速时电极间电压大小为U ,磁场的磁感应强度为B ,D 型盒的半径为R 。

每次加速的时间很短,可以忽略不计。

正离子从离子源出发时的初速度为零。

电磁学典型例题

电磁学典型例题

a
A
b
B
(a) 静电平衡条件:导体平板 A和B内部的场强应为零.
A 板内 :
1
2 0 1
2 0


2
2 0 2
2 0


3
2 0 3
2 0


4
2 0 4
2 0
0
0
a
d
a
B 板内 :
QA 1 2
QB
3 4
A 板:
B 板:
1
2 0


2
2 0


3
Q' A Q' B Q A Q B
a
d
a
(c) 新增条件:整个大导体为等势体
V ' AB

B A
E ' d l E'd 0
E'
σ' 1 2ε0

σ' 2 2ε0

σ' 3 2ε0

σ' 4 2ε0

σ' 2 ε0
0
意义: 静电平衡时, A、B连线上的电场也要处处为零.
'1 ' 2
Q'A
Q'B
'3 ' 4
A 板:
B 板:
பைடு நூலகம்
σ' 1 2ε0
'1
2 0


σ' 2 2ε0
'2
2 0


σ' 3 2ε0
'3
2 0


σ' 4 2ε0

电磁场典型例题

电磁场典型例题
U ln b ln a
例 同轴线内外导体半径分别为a,b,导体间部分填充介质
,介质介电常数为 ,如图所示。已知内外导体间电压为U。
求:导体间单位长度内的电场能量。
解:设同轴线内导体单位长度带电量为 l
由边界条件知在边界两边E 连续。
S
D dS E
Q 1rl E

l
[1 (2
Wel

1 2
U 2l (ln b ln
a) [1

(2
1)0 ]
或应用导体系统能量求解公式
We

1 2
i
qiUi Wel

1 2
lU
l

[1
(2 1)0 ]U
ln b ln a

1 2
(ln
U2 b ln
a)
[1

(2
1)0 ]
例 已知同轴线内外导体半径分别为a,b,导体间填充介质,介质
典型例题
例 求无限长线电荷在真空中产生的电场。
分析:电场方向垂直圆柱面。
电场大小只与r有关。
解:取如图所示高斯面。
由高斯定律,有
Q
E(r ) dS

S
0
E(r ) (2 rl er )
E

l 2 0 r
er
l l 0
r E
例 半径为a的球形带电体,电荷总量Q均匀分布在球体内。
212U
2
ln
c a

1
ln
b c
dr

l ln c 21 a
l 2 2
ln b c
D
1 2U

电磁场理论习题及答案

电磁场理论习题及答案

电磁场理论习题及答案电磁场理论是电磁学的基础,它描述了电荷和电流产生的电磁场在空间中的分布和演化规律。

在学习电磁场理论时,习题是巩固和深化理解的重要方式。

本文将介绍一些电磁场理论的习题及其答案,帮助读者更好地掌握这一理论。

一、电场和电势1. 问题:一个均匀带电球体,半径为R,总电荷为Q。

求球心处的电场强度。

答案:根据库仑定律,电场强度E与电荷Q和距离r的关系为E = kQ/r^2,其中k为库仑常数。

对于球体内部的点,距离球心的距离r小于半径R,所以电场强度为E = kQ/r^2。

对于球体外部的点,距离球心的距离r大于半径R,所以电场强度为E = kQ/R^3 * r。

2. 问题:一个无限长的均匀带电线,线密度为λ。

求距离线上一点距离为r处的电势。

答案:根据电势公式V = kλ/r,其中k为库仑常数。

所以距离线上一点距离为r处的电势为V = kλ/r。

二、磁场和磁感应强度1. 问题:一根无限长的直导线,电流为I。

求距离导线距离为r处的磁感应强度。

答案:根据安培环路定理,磁感应强度B与电流I和距离r的关系为B =μ0I/2πr,其中μ0为真空中的磁导率。

所以距离导线距离为r处的磁感应强度为B = μ0I/2πr。

2. 问题:一根长为L的直导线,电流为I。

求距离导线距离为r处的磁场强度。

答案:根据比奥萨伐尔定律,磁场强度H与电流I和距离r的关系为H = I/2πr。

所以距离导线距离为r处的磁场强度为H = I/2πr。

三、电磁场的相互作用1. 问题:一个半径为R的导体球,带电量为Q。

求导体球表面的电荷密度。

答案:导体球表面的电荷密度σ等于导体球上的电荷总量Q除以导体球表面的面积A。

导体球表面的面积A等于球的表面积4πR^2。

所以导体球表面的电荷密度为σ = Q/4πR^2。

2. 问题:一个平行板电容器,两个平行金属板之间的距离为d,电介质的介电常数为ε。

一块电介质板插入到电容器中间,使得电容器的电容增加了n倍。

电磁场计算题

电磁场计算题

重要习题例题归纳第二章 静电场和恒定电场一、例题:1、例2.2.4(38P )半径为0r 的无限长导体柱面,单位长度上均匀分布的电荷密度为l ρ。

试计算空间中各点的电场强度。

解:作一与导体柱面同轴、半径为r 、长为l 的闭合面S ,应用高斯定律计算电场强度的通量。

当0r r <时,由于导体内无电荷,因此有0=⋅⎰→→SS d E ,故有0=→E ,导体内无电场。

当0r r>时,由于电场只在r 方向有分量,电场在两个底面无通量,因此2ερπl rl E dS E dS a a E S d E l r Sr r Sr r r r S=⋅=⋅=⋅=⋅⎰⎰⎰→→→→则有:r E l r 02περ=2、例2.2.6(39P )圆柱坐标系中,在m r2=与m r 4=之间的体积内均匀分布有电荷,其电荷密度为3/-⋅m C ρ。

利用高斯定律求各区域的电场强度。

解:由于电荷分布具有轴对称性,因此电场分布也关于z 轴对称,即电场强度在半径为r 的同轴圆柱面上,其值相等,方向在r 方向上。

现作一半径为r ,长度为L 的同轴圆柱面。

当m r20≤≤时,有02=⋅=⋅⎰→→rL E S d E r Sπ,即0=r E ;当m rm 42≤≤时,有)4(1220-=⋅=⋅⎰→→r L rL E S d E r Sπρεπ,因此,)4(220-=r rE r ερ;当m r 4≥时,有L rL E S d E r Sπρεπ0122=⋅=⋅⎰→→,即r E r 06ερ=。

3、例2.3.1(41P )真空中,电荷按体密度)1(220ar -=ρρ分布在半径为a 的球形区域内,其中0ρ为常数。

试计算球内、外的电场强度和电位函数。

解:(1)求场强:当a r >时,由高斯定律得2224επQ E r S d E S==⋅⎰→→而Q 为球面S 包围的总电荷,即球形区域内的总电荷。

300242002158)(44)(a dr a r r dr r r Q aaπρπρπρ=-==⎰⎰因此20302152r a a E rερ→→=当a r <时)53(44)(1425300020121a r r dr r r E r S d E rS -===⋅⎰⎰→→επρπρεπ因此)33(23001a r r a E r-=→→ερ (2)球电位;当a r >时,取无穷远的电位为零,得球外的电位分布为ra r d E r r03022152)(ερ=⋅=Φ⎰∞→→当a r =时,即球面上的电位为20152ερa S =Φ 当a r <时)1032(2)(24220011a r r a r d E r a rS +-=⋅+Φ=Φ⎰→→ερ4、例2.4.1(48P )圆心在原点,半径为R 的介质球,其极化强度)0(≥=→→m r a P m r 。

第十三章电磁感应电磁场习题

第十三章电磁感应电磁场习题

第十三章电磁感应电磁场习题(一)教材外习题电磁感应习题一、选择题:1.一块铜板放在磁感应强度正在增大的磁场中时,铜板中出现涡流(感应电流),则涡流将(A)加速铜板中磁场的增加(B)减缓铜板中磁场的增加(C)对磁场不起作用(D)使铜板中磁场反向()2.在如图所示的装置中,当把原来静止的条形磁铁从螺线管中按图示情况抽出时,(A)螺线管线圈中感生电流方向如A点处箭头所示。

(B)螺线管右端感应呈S极。

(C)线框EFGH从图下方粗箭头方向看去将逆时针旋转。

(D)线框EFGH从图下方粗箭头方向看去将顺时针旋转。

()3.在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流(A)以情况Ⅰ中为最大(B)以情况Ⅱ中为最大(C)以情况Ⅲ中为最大(D)在情况Ⅰ和Ⅱ中相同()4.如图所示,一矩形金属线框,以速度v 从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中。

不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)5.如图,一矩形线框(其长边与磁场边界平行)以匀速v 自左侧无场区进入均匀磁场又穿出,进入右侧无场区,试问图(A )—(E )中哪一图象能最合适地表示线框中电流i 随时间t 的变化关系?(不计线框自感)( )6.在一个塑料圆筒上紧密地绕有两个完全相同的线圈aa '和bb ',当线圈aa '和bb '如图(1)绕制时其互感系数为M 1,如图(2)绕制时其互感系数为M 2,M 1与M 2的关系是(A )M 1 = M 2 ≠ 0 (B )M 1 = M 2 = 0(C )M 1 ≠ M 2,M 2=0(D )M 1≠M 2,M 2≠0( )7.真空中两根很长的相距为2a 的平行直导线与电源组成闭合回路如图。

(完整版)大学物理电磁场练习题含答案

(完整版)大学物理电磁场练习题含答案

前面是答案和后面是题目,大家认真对对. 三、稳恒磁场答案1-5 CADBC 6-8 CBC 三、稳恒磁场习题1. 有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00.(C) 1.11. (D) 1.22. [ ]2.边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为(A) l I π420μ. (B) l Iπ220μ.(C)l Iπ02μ. (D) 以上均不对. [ ]3.通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:(A) B P > B Q > B O . (B) B Q > B P > B O .(C) B Q > B O > B P . (D) B O > B Q > B P .[ ]4.无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B ϖ的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 [ ]5.电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B ϖ、2B ϖ和3Bϖ表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ϖϖ,B 3 = 0.(C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0.(D) B ≠ 0,因为虽然021≠+B B ϖϖ,但B 3≠ 0. [ ]6.电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 与圆心O 三点在同一直线上.设直电流1、2及圆环电流分别在O 点产生的磁感强度为1B ϖ、2B ϖ及3Bϖ,则O 点的磁感强度的大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为021=+B B ϖϖ,B 3= 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0. (D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ ] v7.电流由长直导线1沿切向经a 点流入一个电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上.设长直载流导线1、2和圆环中的电流分别在O 点产生的磁感强度为1B ϖ、2B ϖ、3Bϖ,则圆心处磁感强度的大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ϖϖ,B 3 = 0.(C) B ≠ 0,因为B 1≠ 0、B 2≠ 0,B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B ϖϖ. [ ]8.a R r OO ′I在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a ,如图.今在此导体上通以电流I ,电流在截面上均匀分布,则空心部分轴线上O ′点的磁感强度的大小为(A) 2202R a a I ⋅πμ (B)22202R r a a I -⋅πμ(C) 22202r R a a I-⋅πμ (D) )(222220a r Ra a I -πμ [ ]参考解:导体中电流密度)(/22r R I J -π=.设想在导体的挖空部分同时有电流密度为J 和-J 的流向相反的电流.这样,空心部分轴线上的磁感强度可以看成是电流密度为J 的实心圆柱体在挖空部分轴线上的磁感强度1B ϖ和占据挖空部分的电流密度-J 的实心圆柱在轴线上的磁感强度2B ϖ的矢量和.由安培环路定理可以求得02=B , )(222201r R a Ia B -π=μ 所以挖空部分轴线上一点的磁感强度的大小就等于)(22201r R IaB -π=μ 9. πR 2c3分10.221R B π-3分11. 6.67×10-7 T 3分7.20×10-7 A ·m 2 2分12. 减小 2分在2/R x <区域减小;在2/R x >区域增大.(x 为离圆心的距离) 3分13. 0 1分I 0μ- 2分14. 4×10-6 T 2分 5 A 2分15. I0μ 1分 0 2分2I0μ 2分16. 解:①电子绕原子核运动的向心力是库仑力提供的.即∶ 02202041a m a e v =πε,由此得 002a m e επ=v 2分②电子单位时间绕原子核的周数即频率000142a m a e a ενππ=π=v 2分 由于电子的运动所形成的圆电流00214a m a e e i ενππ== 因为电子带负电,电流i 的流向与 v ϖ方向相反 2分 ③i 在圆心处产生的磁感强度002a i B μ=00202018a m a eεμππ= 其方向垂直纸面向外 2分17.1 234 R ROI a β2解:将导线分成1、2、3、4四部份,各部分在O 点产生的磁感强度设为B 1、B 2、B 3、B 4.根据叠加原理O 点的磁感强度为:4321B B B B B ϖϖϖϖϖ+++= ∵ 1B ϖ、4B ϖ均为0,故32B B B ϖϖϖ+= 2分)2(4102R I B μ= 方向⊗ 2分 242)sin (sin 401203R I a I B π=-π=μββμ)2/(0R I π=μ 方向 ⊗ 2分其中 2/R a =, 2/2)4/sin(sin 2=π=β 2/2)4/sin(sin 1-=π-=β∴ R I R I B π+=2800μμ)141(20π+=R I μ 方向 ⊗ 2分 18. 解:电流元1d l I ϖ在O 点产生1d B ϖ的方向为↓(-z 方向) 电流元2d l I ϖ在O 点产生2d B ϖ的方向为⊗(-x 方向) 电流元3d l I ϖ在O 点产生3d B ϖ的方向为⊗ (-x 方向) 3分kR I i R IB ϖϖϖπ-+ππ-=4)1(400μμ 2分 19. 解:设x 为假想平面里面的一边与对称中心轴线距离,⎰⎰⎰++==Rx RRxrl B r l B S B d d d 21Φ, 2分d S = l d r2012R IrB π=μ (导线内) 2分r I B π=202μ (导线外) 2分)(42220x R R Il -π=μΦR R x Il +π+ln20μ 2分 令 d Φ / d x = 0, 得Φ 最大时 Rx )15(21-= 2分20. 解:洛伦兹力的大小 B q f v = 1分对质子:1211/R m B q v v = 1分 对电子: 2222/R m B q v v = 1分∵ 21q q = 1分 ∴ 2121//m m R R = 1分21.解:电子在磁场中作半径为)/(eB m R v =的圆周运动. 2分连接入射和出射点的线段将是圆周的一条弦,如图所示.所以入射和出射点间的距离为:)/(3360sin 2eB m R R l v ==︒= 3分2解:在任一根导线上(例如导线2)取一线元d l ,该线元距O 点为l .该处的磁感强度为θμsin 20l I B π=2分 方向垂直于纸面向里. 1分电流元I d l 受到的磁力为 B l I F ϖϖϖ⨯=d d 2分其大小θμsin 2d d d 20l lI l IB F π== 2分 方向垂直于导线2,如图所示.该力对O 点的力矩为 1分θμsin 2d d d 20π==lI F l M 2分 任一段单位长度导线所受磁力对O 点的力矩⎰⎰+π==120d sin 2d l l l I M M θμθμsin 220π=I 2分 导线2所受力矩方向垂直图面向上,导线1所受力矩方向与此相反.23. (C) 24. (B)25. 解: ===l NI nI H /200 A/m3分===H H B r μμμ0 1.06 T 2分26. 解: B = Φ /S=2.0×10-2 T 2分===l NI nI H /32 A/m 2分 ==H B /μ 6.25×10-4 T ·m/A 2分=-=1/0μμχm 496 2分9. 一磁场的磁感强度为k c j b i a B ϖϖϖϖ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为____________Wb .10.任意曲面在匀强磁场B ϖ中,取一半径为R 的圆,圆面的法线n ϖ与B ϖ成60°角,如图所示,则通过以该圆周为边线的如图所示的任意曲面S 的磁通量==⎰⎰⋅Sm S B ϖϖd Φ_______________________.11. 一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =__________________,该带电质点轨道运动的磁矩p m =___________________.(μ0 =4π×10-7 H ·m -1)12. 载有一定电流的圆线圈在周围空间产生的磁场与圆线圈半径R 有关,当圆线圈半径增大时,(1) 圆线圈中心点(即圆心)的磁场__________________________.(2) 圆线圈轴线上各点的磁场________如图,平行的无限长直载流导线A 和B ,电流强度均为I ,垂直纸面向外,两根载流导线之间相距为a ,则(1) AB 中点(P 点)的磁感强度=p B ϖ_____________.(2) 磁感强度B ϖ沿图中环路L 的线积分 =⎰⋅L l B ϖϖd ______________________.14. 一条无限长直导线载有10 A 的电流.在离它 0.5 m 远的地方它产生的磁感强度B 为______________________.一条长直载流导线,在离它 1 cm 处产生的磁感强度是10-4 T ,它所载的电流为__________________________.两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅lB ϖϖd 等于:____________________________________(对环路a ).____________________________________(对环路b ).____________________________________(对环路c ).设氢原子基态的电子轨道半径为a 0,求由于电子的轨道运动(如图)在原子核处(圆心处)产生的磁感强度的大小和方向.17.一根无限长导线弯成如图形状,设各线段都在同一平面内(纸面内),其中第二段是半径为R 的四分之一圆弧,其余为直线.导线中通有电流I ,求图中O 点处的磁感强度.18.z y xR 1 321d l I ϖ2d l I ϖ3d l I ϖO如图,1、3为半无限长直载流导线,它们与半圆形载流导线2相连.导线1在xOy平面内,导线2、3在Oyz 平面内.试指出电流元1d l I ϖ、2d l I ϖ、3d l I ϖ在O 点产生的Bϖd 的方向,并写出此载流导线在O 点总磁感强度(包括大小与方向).19.一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)验证 H1(z,t) 和 H2 (z, t) 满足边界条件。
解:(1)这是两种电介质的分界面,在分界面z = 0处,有
区域的媒质参数为 2 50、2 200、2 0 。若媒质1中的电场
强度为
E1(z,t) ex[60cos(15108t 5z) 20cos(15108t 5z)] V/m
媒质2中的电场强度为
E2
(
z,
t
)

ex
A
cos(15
108
t

50

z
)
V/m

(1)试确定 常数A的值;(2)求磁场强度 H1(z, t) 和 H2 (z, t) ;
)ez
]
0
旋无散
任意矢量场旋度的散度等于零,“旋无散” 。
证明:左边=(
x
ex
+
y
ey

z
ez
)
[( Fz y

Fy z
)ex
( Fx z

Fz x
)ey
( Fy x

Fx y
)ez ]
[( 2Fz 2Fy ) ( 2Fx 2Fz ) ( 2Fy 2Fx )] xy xz yz xy xz yz
麦克斯韦第三方程表明磁场是 无源场,磁力线总是闭合曲线
麦克斯韦第四方程, 表明电荷产生电场
媒质的本构关系
例 2.6.1 正弦交流电压源 uuUUm sminsint t 连接到平行板电容
器的两个极板上,如图所示。(1) 证明电容器两极板间的位移电流
与连接导线中的传导电流相等;(2)求导线附近距离连接导线为r
(1) 该函数 在点 P(1,1,1) 处的梯度,以及表示该梯度方向
的单位矢量。
(2)
求该函数
沿单位矢量
el

ex
cos 60o
ey
cos 45o
ez
cos 60o
方向的方向导数,并以点 P(1,1,1) 处的方向导数值与该点的梯度
值作以比较,得出相应结论。
解 (1)由梯度计算公式,可求得P点的梯度为
Az A cos
z
Az

A

Ay
Ax O
y
x

A

A(ex
cos
ey
cos
ez
cos )
eA ex cos ey cos ez cos
例2
u 而 x

2x z
,
u y

2y
z
,
u z

(x 2 y 2 ) z2

l
x
2
y

1 2
1 2 2 2
P
(1,1,1)
例1
而该点的梯度值为
(2x)2 (2y)2 (1)2 3
P
(1,1,1)
显然,梯度 描述了P点处标量函数 的最大变化率, P
即最大的方向导数,故
l
恒成立。 P
P
矢量线例 1
矢量线例 2
数量场在l方向的方向导数为
u u cos u cos u cos
l x
y
z

1 3
2x z

2 3
2y z

2 3
x2
y2 z2
在点M处沿l方向的方向导数
1 1 2 1 2 2 2
l M 3
3
34 3
梯度的性质
• 标量场的梯度是矢量场,它在空间某 点的方向表示该点场变化最大(增大) 的方向,其数值表示变化最大方向上 场的空间变化率。
2 (R2 2R cos )d 0
2R2
例3
例:求矢量场A=x(z-y)ax+y(x-z)ay+z(y-x)az在点M(1,0,1)处 的旋度以及沿n=2ax+6ay+3az方向的环量面密度。
解: 矢量场A的旋度
ax
ay
az
rotA A x


y
z
x(z y) y(x z) z(y x)
求矢量场A=xy2ax+x2yay+zy2az的矢量线方程。 解: 矢量线应满足的微分方程为
dx dy dz xy2 x2 y y2z
从而有
dx

xy
2

dx
xy2

dy x2 y
dz y2z
z c1x 解之即得矢量方程
x2 y2
c2
c1和c2是积分常数。
• 标量场在某个方向上的方向导数,是 梯度在该方向上的投影。
C 0
梯度运算的基本公式:
((uCu)
Cu v ) u

v
(fu(vu))

uv f (u
vu )u
例1
设一标量函数 ( x, y, z ) = x2+y2-z 描述了空间标量场。试求:
(1) 该矢量场的旋度;
(2) 该矢量沿半径为3的 四分之一圆盘的线积分, 如图所示, 验证斯托克 斯定理。
y B
r= 3
O
Ax
四分之一圆盘
例1
例1
例2
例: 求矢量A=-yax+xay+caz(c是常数)沿曲线(x-2)2+y2=R2, z=0 的环量(见图 1-6)。
例2
解: 由于在曲线l上z=0,所以dz=0。
梯无旋
u 0
标量场的梯度恒等于零,“梯无旋”。
证明:
左边=(
x
ex
+
y
ey

z
ez
) [ u x
ex

u y
ey

u z
ez
]

[( 2u yz

2u zy
)ex

( 2u zx

2u xz
)ey

( 2u xy

2u yx



A
M

n

2 7

6 7

2

3 7

17 7
位移电流
海水的电导率为4S/m,相对介电常数为81,求频率为1MHz时, 位移电流振幅与传导电流振幅的比值。
解:设电场随时间作正弦变化,表示为
则位移电流密度为 其振幅值为

E exEm cost
Jd

D t

ex0 r Em
(z y)ax (x z)ay ( y x)az
例3
在点M(1,0,1)处的旋度
A M ax 2ay az
n方向的单位矢量
n
22
1 62
32
(2ax
6a y
3az )

2 7
ax

6 7
ay

3 7
az
在点M(1,0,1)处沿n方向的环量面密度
散度的表达
直角坐标系

F

Fx x

Fy y

Fz z
圆柱坐标系

F

(F )
F

Fz z
球坐标系

F

1 r2
r
(r
2Fr
)

1 r sin

(sin
F
)

1 r sin

(F
)



C C 0 (C为常矢量)
H
c
dl
2 rH
与闭合线铰链的只有导线中的传导电流 ic CUm cost ,故得
2 rH CUm cost
H
e H
e
CU m 2 r
cos t
两种情况
例2.7.1 z < 0的区域的媒质参数为 1 0、1 0、1 0 , z > 0
P
[(ex

x
ey

y

ez
)(x 2 z

y2

z )]P
(ex 2x ey 2y ez )(1,1,1) ex 2 ey 2 ez
例1
表征其方向的单位矢量
el P


P
ex 2x ey 2 y ez (2x)2 (2 y)2 (1)2

Jd


D
t
位移电流密度
i
S Jd
dS
S
D t
dS

U m
d
cos t
S0

CU m
cos t

ic
式中的S0为极板的面积,而
S0
d
C 为平行板电容器的电容。
( 2 ) 以 r 为半径作闭合曲线JdC,Dt 由于连接导线本身的轴对称
性,使得沿闭合线的磁场相等,故
向的方向导数。
解:l方向的方向余弦为
cos
1
1
12 22 22 3
cos
2
2
12 22 22 3
cos
2
2
12 22 22 3
直角坐标系
矢量用坐标分量表示

A
exAx
相关文档
最新文档