电磁场习题解答
高考物理电磁场经典练习题(含答案详解)

高三物理第一轮专题复习——电磁场在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图所示。
一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,恰好从磁场边界与y轴的交点C处沿+y方向飞出。
(1)请判断该粒子带何种电荷,并求出其比荷q/m;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B’,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B’多大?此次粒子在磁场中运动所用时间t是多少?电子自静止开始经M、N板间(两板间的电压A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图所示.求匀强磁场的磁感应强度.(已知电子的质量为m,电量为e)高考)如图所示,abcd为一正方形区域,正离子束从a点沿ad方向以=80m/s 的初速度射入,若在该区域中加上一个沿ab方向的匀强电场,电场强度为E,则离子束刚好从c点射出;若撒去电场,在该区域中加上一个垂直于abcd平面的匀强磁砀,磁感应强度为B,则离子束刚好从bc的中点e射出,忽略离子束中离子间的相互作用,不计离子的重力,试判断和计算:(1)所加磁场的方向如何?(2)E与B的比值BE/为多少?制D 型金属扁盒组成,两个D 形盒正中间开有一条窄缝。
两个D 型盒处在匀强磁场中并接有高频交变电压。
图乙为俯视图,在D 型盒上半面中心S 处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D 型盒中。
在磁场力的作用下运动半周,再经狭缝电压加速。
如此周而复始,最后到达D 型盒的边缘,获得最大速度,由导出装置导出。
已知正离子的电荷量为q ,质量为m ,加速时电极间电压大小为U ,磁场的磁感应强度为B ,D 型盒的半径为R 。
每次加速的时间很短,可以忽略不计。
正离子从离子源出发时的初速度为零。
高等电磁场理论课后习题答案

由于是远场,
e 1 e 2 e 3 e 4 e e 1 e 2 e 3 e 4 e
2
I ka sin jkr jk r1 jk r2 E E 1 E 2 E 3 E 4 e e jk r3 e jk r4 e e 4r 1 H e k E
2.7
解:
H j E E j H E k 2 E 0 H 0 E 0
比如 E e z e 2.11
jkz
(1)
2 E ( E) ( E) k 2 E 2 E k 2 E 0 (2)
代入公式,可得,
I ka sin1 jkr1 H e e x cos 1 cos 1 e y cos 1 sin 1 e z sin 1 4r1
2
I ka sin 2 jkr2 e e x cos 2 cos 2 e y cos 2 sin 2 e z sin 2 4r2
推导1 1 1 R ˆ 4 lim 2 dV lim dS lim 3 4 R 2 R V 0 R 0 R 0 R R R V S 1 1 又知道 2 在R 0处值为零,符合 (r r ')函数的定义。 4 R 推导2 点电荷q (r r ')产生的电场强度为 q 1 4 0 R 4 R q (r r ') 1 E 2 4 (r r ') 0 R E q
所以有
H 2 E1 H1 E2 E1 J 2 E2 J1 H 2 M1 H1 M 2
高等电磁场理论习题解答(作业)

⾼等电磁场理论习题解答(作业)第⼀章基本电磁理论1-1 利⽤Fourier 变换, 由时域形式的Maxwell ⽅程导出其频域形式。
(作1-2—1-3)解:付⽒变换和付⽒逆变换分别为:dt e t f F t j ?∞∞-=ωω)()(ωωπωd e F t f tj ?∞∞--=)(21)( 麦⽒⽅程:t D J H ??+=??ρρρtB E ??-=??ρρ0=??B ρρ=??D ρ对第⼀个⽅程进⾏付⽒变换:),(),(),ωωωr H dt e t r H dt e t r H t j tj ρρρρρρ??=??=??=∞∞-∞∞-(左端),(),(),(),(]),(),[ωωωωωωωr D j r J dte t r D j r J dt e t t r D t r J t j tj ρρρρρρρρρρρρ+=+=??+=??∞∞-∞∞-(右端(时谐电磁场) =??∴),(ωr H ρρ),(),(ωωωr D j r J ρρρρ+同理可得:()()ωωω,,r B j r H ??ρρ-=??()0,=??ωr B ρ()()ωρω,,r r D ?ρ?=??上⾯四式即为麦式⽅程的频域形式。
1-2 设各向异性介质的介电常数为=300420270εε当外加电场强度为 (1) 01E x e E =;(2)02E y e E =;(3) 03E z e E =;(4) )2(04y x E e e E +=;(5))2(05y x E e e E +=求出产⽣的电通密度。
(作1-6)解:()),(,t r E t r D ?Θ?=ε=333231232221131211εεεεεεεεεz y x D D D 即z y x E E E 将E 分别代⼊,得:=??=??????????027003000420270000111E E D D D z y x εε )?2?7(001y x E D +=ε?=??=??????????042003000420270000322E E D D D z y x εε )?4?2(002y x E D +=ε? ????=??=??????????300003000420270000333E E D D D z y x εε z E D ?3003ε=? ??==010110230004202700000444E E E D D D z y x εε )?10?11(004y x E D +=ε? ==08160230004202700000555E E E D D D z y x εε )?8?16(005y x E D +=ε? 1-3 设各向异性介质的介电常数为=4222422240εε试求:(1) 当外加电场强度)(0z y x E e e e E ++=时,产⽣的电通密度D ;(2) 若要求产⽣的电通密度004E x εe D =,需要的外加电场强度E 。
重庆大学电磁场习题答案(第2章)

第二章习题答案2-2 真空中有一长度为l 的细直线,均匀带电,电荷线密度为τ。
试计算P 点的电场强度: (1)P 点位于细直线的中垂线上,距离细直线中点l 远处; (2)P 点位于细直线的延长线上,距离细直线中点l 远处。
解:(1)可以看出,线电荷的场以直线的几何轴线为对称轴,产生的场为轴对称场,因此采用圆柱坐标系,令z 轴与线电荷重合,线电荷外一点的电场与方位角φ无关,这样z '处取的元电荷z q 'd d τ=,它产生的电场与点电荷产生的场相同,为:R20e R4z E πετ'=d d 其两个分量:θπετρρcos 20R4z e E d dE '=•=d (1) ()θπετsin 20z z R4e E d dE z d '-=-•=(2) 又θρθρtan ',cos ==z R所以:θθρd dz 2sec '= (3)式(3)别离代入式(1)(2)得:θρπεθτρd 04dE cos =; θρπεθτd sin 0z 4dE -= 'sin 'sin cos θρπετθθρπετθρπεθτθρ000004E 22d 2=⎰∴==‘ (4)又 2l 42l 2l +='θsin (5)式(5)代入式(4)得:l55E 00πετρπετρ22=∴=图2-2长直线电荷周围的电由于对称性,在z 方向 z E 分量彼此抵消,故有0=z Eρρρπετe l5e E e E 0z z 2E =+=∴(2)成立如图所示的坐标系在x 处取元电荷dx dq τ=则它在P 点产生的电场强度为R20e R4x d E d πετ'=其在x 方向的分量为:20x R 4x d dE πετ'=又 x l R -=2020x x l 4x d R4x d dE )-(''='=∴πετπετ()l 3x l 4x l 4x d E 02l 2l 2l 2l 020x πετπετπετ='-⨯=''=--⎰∴∴∴////1)-( x 0x x x e l3e E Eπετ==∴2-3 真空中有一密度为m C n /2π的无穷长线电荷沿y 轴放置,还有密度别离为2/1.0m C n 和2/1.0m C n -的无穷大带电平面别离位于z=3m 和z=-4m 处。
电磁场课后习题答案

电磁场课后习题答案电磁场课后习题答案电磁场是物理学中一个重要的概念,涉及到电荷、电流和磁场的相互作用。
在学习电磁场的过程中,我们经常会遇到一些习题,这些习题旨在帮助我们更好地理解电磁场的基本原理和应用。
本文将给出一些电磁场课后习题的答案,希望能够对大家的学习有所帮助。
1. 一个带电粒子在匀强磁场中作圆周运动,其运动半径与速度之间的关系是什么?答:带电粒子在匀强磁场中作圆周运动时,受到的洛伦兹力与向心力相等。
洛伦兹力的大小为F = qvB,向心力的大小为F = mv²/R,其中q为电荷量,v为速度,B为磁感应强度,m为质量,R为运动半径。
将这两个力相等,可以得到qvB = mv²/R,整理得到v = qBR/m。
因此,速度与运动半径之间的关系是v 与R成正比。
2. 一个长直导线中有一电流I,求其所产生的磁场强度B与距离导线距离r之间的关系。
答:根据安培定律,长直导线所产生的磁场强度与电流和距离的关系为B =μ₀I/2πr,其中B为磁场强度,I为电流,r为距离,μ₀为真空中的磁导率。
可以看出,磁场强度与距离的关系是B与1/r成反比。
3. 一个平面电磁波的电场强度和磁场强度的振幅分别为E₀和B₀,求其能量密度u与E₀和B₀之间的关系。
答:平面电磁波的能量密度与电场强度和磁场强度的关系为u = ε₀E₀²/2 +B₀²/2μ₀,其中u为能量密度,ε₀为真空中的介电常数,μ₀为真空中的磁导率。
可以看出,能量密度与电场强度的振幅的平方和磁场强度的振幅的平方之间存在关系。
4. 一个平行板电容器的电容为C,两板间的距离为d,若电容器中充满了介电常数为ε的介质,请问在电容器中存储的电能与电容、电压和介电常数之间的关系是什么?答:平行板电容器存储的电能与电容、电压和介电常数之间的关系为W =1/2CV²,其中W为存储的电能,C为电容,V为电压。
当电容器中充满了介质后,介质的存在会使电容增加为C' = εC,因此存储的电能也会增加为W' =1/2C'V² = 1/2εCV²。
电磁场理论习题及答案

电磁场理论习题及答案电磁场理论是电磁学的基础,它描述了电荷和电流产生的电磁场在空间中的分布和演化规律。
在学习电磁场理论时,习题是巩固和深化理解的重要方式。
本文将介绍一些电磁场理论的习题及其答案,帮助读者更好地掌握这一理论。
一、电场和电势1. 问题:一个均匀带电球体,半径为R,总电荷为Q。
求球心处的电场强度。
答案:根据库仑定律,电场强度E与电荷Q和距离r的关系为E = kQ/r^2,其中k为库仑常数。
对于球体内部的点,距离球心的距离r小于半径R,所以电场强度为E = kQ/r^2。
对于球体外部的点,距离球心的距离r大于半径R,所以电场强度为E = kQ/R^3 * r。
2. 问题:一个无限长的均匀带电线,线密度为λ。
求距离线上一点距离为r处的电势。
答案:根据电势公式V = kλ/r,其中k为库仑常数。
所以距离线上一点距离为r处的电势为V = kλ/r。
二、磁场和磁感应强度1. 问题:一根无限长的直导线,电流为I。
求距离导线距离为r处的磁感应强度。
答案:根据安培环路定理,磁感应强度B与电流I和距离r的关系为B =μ0I/2πr,其中μ0为真空中的磁导率。
所以距离导线距离为r处的磁感应强度为B = μ0I/2πr。
2. 问题:一根长为L的直导线,电流为I。
求距离导线距离为r处的磁场强度。
答案:根据比奥萨伐尔定律,磁场强度H与电流I和距离r的关系为H = I/2πr。
所以距离导线距离为r处的磁场强度为H = I/2πr。
三、电磁场的相互作用1. 问题:一个半径为R的导体球,带电量为Q。
求导体球表面的电荷密度。
答案:导体球表面的电荷密度σ等于导体球上的电荷总量Q除以导体球表面的面积A。
导体球表面的面积A等于球的表面积4πR^2。
所以导体球表面的电荷密度为σ = Q/4πR^2。
2. 问题:一个平行板电容器,两个平行金属板之间的距离为d,电介质的介电常数为ε。
一块电介质板插入到电容器中间,使得电容器的电容增加了n倍。
电磁场与电磁波第二版课后练习题含答案

电磁场与电磁波第二版课后练习题含答案一、选择题1. 一物体悬挂静止于匀强磁场所在平面内的位置,则这个磁场方向?A. 垂直于所在平面B. 并行于所在平面C. 倾斜于所在平面D. 无法确定答案:B2. 在运动着的带电粒子所在区域内,由于其存在着磁场,因此在该粒子所处位置引入一个另外的磁场,引入后,运动着的电荷将会加速么?A. 会加速B. 不会加速C. 无法确定答案:B3. 一台电视有线播出系统, 将信号源之中所传输的压缩图像和声音还原出来,要利用的是下列过程中哪一个?A. 光速传输B. 超声波传输C. 磁场作用D. 空气振动答案:C4. 一根充足长的长直电导体内有恒定电流I通过,则令曼培尔定律最适宜描述下列哪一项观察?A. 两个直平面电流之间的相互作用B. 当一个直平面电流遇到一个平行于它的磁场时, 会发生什么C. 当两个平行电流直线之间的相互作用D. 当电磁波穿过磁场时会发生什么答案:C5. 电磁波的一个特点是什么?A. 电磁波是一种无质量的相互作用的粒子B. 电磁波的速度跟频率成反比C. 不同波长的电磁波拥有的能量不同D. 电磁波不会穿透物质答案:C二、填空题1. 一个悬挂静止的电子放在一个以5000 G磁场中,它会受到的磁力是____________N. 假设电子的电荷是 -1.6×10^-19 C.答案:-8.0×10^-142. 在一个无磁场的区域内,放置一个全等的圆形和正方形输电线, 则这两个输电线产生的射界是_____________.答案:相同的3. 一个点电荷1.0×10^-6 C均匀带电一个闪电球,当位于该点电荷5.0 cm处时, 该牛顿计的弦向上斜,该牛顿计的尺度读数是4.0N. 该电荷所处场强的大小约为_____________弧度.答案:1.1×10^4三、简答题1. 解释什么是麦克斯韦方程式?麦克斯韦方程式是一组描述经典电磁场的4个偏微分方程式,包括关于电场的高斯定律、关于磁场的高斯定律、安培环路定理和法拉第电磁感应定律。
大学物理第9章 电磁感应和电磁场 课后习题及答案

第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。
求2t s =时,回路中感应电动势的大小和方向。
解:310)62(-⨯+-=Φ-=t dtd ε当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。
已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角,如图所示,B 的大小为B =kt (k 为正常数)。
设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。
解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。
3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。
求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。
解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0 ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。
设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υ垂直离开导线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1—2—2、求下列情况下,真空中带电面之间的电压。
(2)、无限长同轴圆柱面,半径分别为a 和b (a b >),每单位长度上电荷:内柱为τ而外柱为τ-。
解:同轴圆柱面的横截面如图所示,做一长为l 半径为r (b r a <<)且与同轴圆柱面共轴的圆柱体。
对此圆柱体的外表面应用高斯通量定理,得l S D sτ=⋅⎰ρρd考虑到此问题中的电通量均为r e ρ即半径方向,所以电通量对圆柱体前后两个端面的积分为0,并且在圆柱侧面上电通量的大小相等,于是l rD l τπ=2即 r e r D ρρπτ2=, r e rE ρρ02πετ= 由此可得 a b r e e r r E U b a r r b aln 2d 2d 00⎰⎰επτ=⋅επτ=⋅=ρρρρ1—2—3、高压同轴线的最佳尺寸设计——高压同轴圆柱电缆,外导体的内半径为cm 2,内外导体间电介质的击穿场强为kV/cm 200。
内导体的半径为a ,其值可以自由选定但有一最佳值。
因为a 太大,内外导体的间隙就变得很小,以至在给定的电压下,最大的E 会超过介质的击穿场强。
另一方面,由于E 的最大值m E 总是在内导体的表面上,当a 很小时,其表面的E 必定很大。
试问a 为何值时,该电缆能承受最大电压?并求此最大电压。
(击穿场强:当电场增大达到某一数值时,使得电介质中的束缚电荷能够脱离它的分子 而自由移动,这时电介质就丧失了它的绝缘性能,称为击穿。
某种材料能安全地承受的最大电场强度就称为该材料的击穿强度)。
解:同轴电缆的横截面如图,设同轴电缆内导体每单位长度所带电荷的电量为τ,则内外导体之间及内导表面上的电场强度分别为r E πετ2=, aE πετ2max = 而内外导体之间的电压为abr r r E U ba ba ln 2d 2d πετπετ⎰⎰===或 )ln(max ab aE U =0]1)[ln(a d d max =-+=abE U即 01ln =-a b , cm 736.0e==ba V)(1047.1102736.0ln 55max max ⨯=⨯⨯==ab aE U1—3—3、两种介质分界面为平面,已知014εε=,022εε=,且分界面一侧的电场强度V /m 1001=E ,其方向与分界面的法线成045的角,求分界面另一侧的电场强度2E 的值。
解:25045sin 10001==t E ,25045cos 10001==n E220040101εε==n n E D 根据 t t E E 21=,n n D D 21=得2502=t E ,220002ε=n D , 21002022==εnn D E 于是: V/m)(1050)2100()250(2222222=+=+=n t E E E1—8、对于空气中下列各种电位函数分布,分别求电场强度和电荷体密度: (1)、2Ax =ϕ (2)、Axyz =ϕ (3)、Brz Ar +=φϕsin 2 (4)、φθϕcos sin 2Ar =解:求解该题目时注意梯度、散度在不同坐标中的表达式不同。
(1)、i Ax i x Ax k z j y i x E ρρρρρρ2)()(2-=∂∂-=∂∂+∂∂+∂∂-=-∇=ϕϕϕϕ00002)2()(εεεερA Ax xx E z E y E x E D x z y x -=-∂∂=∂∂=∂∂+∂∂+∂∂=⋅∇=ρ(2)、)(k zj y i x E ρρρρ∂∂+∂∂+∂∂-=-∇=ϕϕϕϕ )(k zAxyz j y Axyz i x Axyz ρρρ∂∂+∂∂+∂∂-= )(k xy j xz i yz A ρρρ++-=0)]()()([0=-∂∂+-∂∂+-∂∂=⋅∇=Axy z Axz y Ayz x D ερρ(3)、)1[k ze r e r E r ρρρρ∂∂+∂∂+∂∂-=-∇=ϕφϕϕϕφ φφφφe Brz Ar r e Brz Ar r r ρρ)sin (1)sin ([22+∂∂++∂∂-=)])sin (2k Brz Ar z ρ+∂∂+φ)]cos )sin 2[(k Br e Ar e Bz Ar r ρρρ+++-=φφφ)cos (1)sin 2(1[0φφφερAr r Bz Ar r r r D ∂∂++∂∂-=⋅∇=ρ)](Br z∂∂+]sin )sin 4(1[0φφεA Bz Ar r-+-=]sin )sin 4[0φφεA rBzA -+-= (4)、]sin 11[φϕθθϕϕϕφθ∂∂+∂∂+∂∂-=-∇=r e r e r e E rρρρρ )cos sin (1)cos sin ([22φθθφθθAr r e Ar r e r ∂∂+∂∂-=ρρ)]cos sin (sin 12φθφθφAr r e ∂∂+ρθφθφθe Ar r e Ar r ρρ)cos cos (1)cos sin 2[(2+-=])sin sin (sin 12φφθθe Ar r ρ-])sin ()cos cos ()cos sin 2[(φθφφθφθe Ar e Ar e Ar r ρρρ-+-=)](sin 1)sin (sin 1)(1[220φθφθθθθερE r E r E r r r D r ∂∂+∂∂+∂∂=⋅∇=ρ)sin cos cos (sin 1)cos sin 2(1[320θφθθθφθεAr r Ar rr -∂∂+-∂∂= )]sin (sin 1φφθAr r ∂∂+]sin cos )sin (cos sin cos cos sin 6[220θφθθθφφθεA A A +---=1—4—2、两平行导体平板,相距为d ,板的尺寸远大于d ,一板的电位为0,另一板的电位为0V ,两板间充满电荷,电荷体密度与距离成正比,即x x 0)(ρρ=。
试求两极板之间的电位分布(注:0=x 处板的电位为0)。
解:电位满足的微分方程为x x0022d d ερϕ-= 其通解为: 21306C x C x ++-=ερϕ 定解条件为:00==x ϕ; 0V ==d x ϕ 由00==x ϕ得 02=C由0V ==d x ϕ得 01300V 6=+-d C d ερ,即 200016d V d C ερ+= 于是 x d d x )6V (6200300ερερϕ++-= 1—4—3、写出下列静电场的边值问题:(1)、电荷体密度为1ρ和2ρ(注:1ρ和2ρ为常数),半径分别为a 与b 的双层同心带电球体(如题1—4—3图(a ));(2)、在两同心导体球壳间,左半部分和右半部分分别填充介电常数为1ε与2ε的均匀介质,内球壳带总电量为Q ,外球壳接地(题1—4—3图b ));(3)、半径分别为a 与b 的两无限长空心同轴圆柱面导体,内圆柱表面上单位长度的电量为τ,外圆柱面导体接地(题1—4—3图(c ))。
解:(1)、设内球中的电位函数为1ϕ,介质的介电常数为1ε,两球表面之间的电位函数为2ϕ,介质的介电常数为2ε,则1ϕ,2ϕ所满足的微分方程分别为1112ερϕ-=∇, 2222ερϕ-=∇ 选球坐标系,则11212212122sin 1)(sin sin 1)(1ερφϕθθϕθθθϕ-=∂∂+∂∂∂∂+∂∂∂∂r r r r r r 22222222222sin 1)(sin sin 1)(1ερφϕθθϕθθθϕ-=∂∂+∂∂∂∂+∂∂∂∂r r r r r r 由于电荷对称,所以1ϕ和2ϕ均与θ、φ无关,即1ϕ和2ϕ只是r 的函数,所以11122)(1ερϕ-=∂∂∂∂r r rr , 22222)(1ερϕ-=∂∂∂∂r r r r定解条件为:分界面条件: ar a r ===21ϕϕ; ar ar rr==∂∂=∂∂2211ϕεϕε电位参考点: 02==br ϕ;附加条件:01=r ϕ为有限值(2)、设介电常数为1ε的介质中的电位函数为1ϕ,介电常数为2ε的介质中的电位函数为2ϕ,则1ϕ、2ϕ所满足的微分方程分别为1112ερϕ-=∇, 2222ερϕ-=∇ 选球坐标系,则0sin 1)(sin sin 1)(1212212122=∂∂+∂∂∂∂+∂∂∂∂φϕθθϕθθθϕr r r r r r 0sin 1)(sin sin 1)(1222222222=∂∂+∂∂∂∂+∂∂∂∂φϕθθϕθθθϕr r r r r r由于外球壳为一个等电位面,内球壳也为一个等电位面,所以1ϕ和2ϕ均与θ、φ无关,即1ϕ和2ϕ只是r 的函数,所以0)(1122=∂∂∂∂r r r r ϕ,0)(1222=∂∂∂∂r r rr ϕ 分界面条件: 2221πθπθϕϕ===由分解面条件可知21ϕϕ= 。
令 ϕϕϕ==21,则在两导体球壳之间电位满足的微分方程为0)(122=∂∂∂∂r r rr ϕ电位参考点: 0==b r ϕ;边界条件:Q E E a a r r r =+=)(2212εεπ,即 Q r a ar =∂∂-+=)()(2212ϕεεπ (3)、设内外导体之间介质的介电常数为ε,介质中的电位函数为ϕ,则ϕ所满足的微分方程分别为02=∇ϕ, 选球柱坐标系,则01)(122222=∂∂+∂∂+∂∂∂∂z r r r r r ϕφϕϕ由于对称并假定同轴圆柱面很长,因此介质中的电位ϕ和φ及z 无关,即ϕ只是r 的函数,所以0)(1=∂∂∂∂rr r r ϕ电位参考点: 0==b r ϕ; 边界条件:τεπ==ar rE a 2,即τϕεπ=∂∂-=ar r a )(21-7-3、在无限大接地导体平板两侧各有一个点电荷1q 和2q ,与导体平板的距离均为d ,求空间的电位分布。
解:设接地平板及1q 和2q 如图(a )所示。
选一直角坐标系,使得z 轴经过1q 和2q 且正z 轴方向由2q 指向1q ,而x ,y 轴的方向与z 轴的方向符合右手螺旋关系且导体平板的表面在x ,y 平面内。
计算0>z 处的电场时,在(d -,0,0)处放一镜像电荷1q -,如图(b )所示,用其等效1q 在导体平板上的感应电荷,因此))(1)(1(4222222011d z y x d z y x q +++--++πε=ϕ计算0<z 处的电场时,在(d ,0,0)处放一镜像电荷2q -如图(c )所示,用其等效2q 在导体平板上的感应电荷,因此))(1)(1(4222222022d z y x d z y x q -++-+++πε=ϕ1-7-5、空气中平行地放置两根长直导线,半径都是2厘米,轴线间距离为12厘米。