11.1.3三角形的稳定性 2
11.1.3三角形的稳定性 说课稿2022-2023学年人教版八年级上册数学

11.1.3 三角形的稳定性说课稿一、教材分析本节课是八年级上册数学课程中的第11章“三角形”的第1节“三角形的性质”的第3个知识点——“三角形的稳定性”。
这个知识点主要是让学生通过分析和探究三角形的边长关系,了解在何种情况下可以构成一个三角形,并且了解稳定性的概念。
同学们已经学习过直角三角形和等腰三角形,因此他们对三角形的一些性质已经有了一定的了解。
二、教学目标1. 知识目标•了解什么样的边长可以构成一个三角形;•掌握判断三条边能否构成三角形的方法和技巧。
2. 技能目标•能够根据给定的三条边长,判断是否能够构成一个三角形;•能够运用所掌握的方法和技巧判断特殊情况下的三角形稳定性。
3. 情感目标•培养学生观察问题、分析问题和解决问题的能力;•培养学生合作学习、分享学习经验的意识。
三、教学重难点1. 教学重点•掌握判断三角形稳定性的方法和技巧;•运用所学知识判断特殊情况下的三角形稳定性。
2. 教学难点•围绕特殊情况进行问题的探究和讨论;•帮助学生理解三角形稳定性的概念。
四、教学过程1. 导入与热身(5分钟)通过引入一个有趣的问题来引起学生的兴趣,激发思考:一根棍子长10厘米,你能将它折成一个三角形吗?2. 新课讲解(25分钟)(1) 三角形的稳定性概念介绍讲解三角形的稳定性概念,即什么样的边长可以构成一个三角形。
通过比较边长关系,引导学生发现三角形的稳定性规律。
同时,向学生提出一个问题,如果给定三条边长,如何判断是否能够构成一个三角形。
(2) 判断三角形稳定性的方法•两边之和大于第三边:如果一个三角形的两边之和大于第三边的长度,则这三条边能够构成一个三角形;•两边之和等于第三边:如果一个三角形的两边之和等于第三边的长度,则这三条边组成一个退化的三角形,也叫作一条直线;•两边之和小于第三边:如果一个三角形的两边之和小于第三边的长度,则这三条边无法构成一个三角形。
(3) 深入探究特殊情况通过几个具体的例子,进一步让学生理解三角形的稳定性。
人教版数学八年级上册《11.1.3三角形的稳定性》教学设计

人教版数学八年级上册《11.1.3三角形的稳定性》教学设计一. 教材分析人教版数学八年级上册《11.1.3三角形的稳定性》是初中数学的重要内容,主要让学生了解三角形的稳定性,理解三角形的性质,能够运用三角形的稳定性解决实际问题。
本节课的内容是学生对几何知识进一步深入学习的开始,也是对学生空间想象能力和逻辑思维能力的培养。
二. 学情分析学生在学习本节课之前,已经学习了平面几何的基本概念,对图形的性质和判定有一定的了解。
但学生的几何知识水平和空间想象能力参差不齐,因此,在教学过程中,要注重引导学生通过实际操作来感知三角形的稳定性,提高学生的空间想象能力和逻辑思维能力。
三. 教学目标1.让学生了解三角形的稳定性,理解三角形的性质,能够运用三角形的稳定性解决实际问题。
2.培养学生的空间想象能力和逻辑思维能力。
3.提高学生的数学应用能力和解决问题的能力。
四. 教学重难点1.重点:了解三角形的稳定性,理解三角形的性质。
2.难点:运用三角形的稳定性解决实际问题,培养学生的空间想象能力和逻辑思维能力。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过实际操作来感知三角形的稳定性。
2.利用多媒体辅助教学,展示三角形稳定性的实际应用,提高学生的空间想象能力。
3.通过小组合作学习,培养学生的团队协作能力和解决问题的能力。
4.采用归纳总结的教学方法,引导学生自主总结三角形的稳定性及其应用。
六. 教学准备1.多媒体教学设备。
2.三角形模型或教具。
3.练习题和实际问题案例。
七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾平面几何的基本概念,为新课的学习做好铺垫。
例如:“同学们,我们已经学习了哪些平面几何的基本概念?请大家回忆一下。
”呈现(10分钟)教师利用多媒体展示三角形的稳定性实例,如:自行车三角架、桥梁结构等,引导学生观察并思考:“请大家观察这些实例,它们为什么采用三角形结构?三角形有什么特殊性质使其具有稳定性?”操练(10分钟)教师分发三角形模型或教具,让学生亲自操作,观察三角形的稳定性。
八年级数学上册11.1.3 三角形的稳定性 (2)

作品编号:578912354698310.2567学校:星宿市龟卜镇殷商小学*教师:大鹏金翅鸟*班级:螭吻玖班*11.1.3 三角形的稳定性【知识与技能】1.通知过观察、实践、想象、推理、交流等活动,让学生了解三角形具有稳定性,四边形没有稳定性,稳定性与没有稳定性在生产、生活中广泛应用.2.培养实事求是的学习作风和学习习惯.【过程与方法】1.通过提问、合作讨论以及小组交流方式探究三角形的稳定性.2.实物演示,激发学习兴趣,活跃课堂气氛.3.探究质疑,总结结果.和学生共同探究三角形稳定性的实例,回答课前提出的疑惑.【情感态度】1.引导学生通过实验探究三角形的稳定性,培养其独立思考的学习习惯和动手能力.2.通过合作交流,养成学生互助合作意识,提高数学交流表达能力.【教学重点】了解三角形稳定性在生产、生活中的实际应用.【教学难点】准确使用三角形稳定性于生产生活之中.一、情境导入,初步认识课前准备:木条(用硬纸条代替)若干、小钉若干、小黑板.问题1 工程建筑中经常采用三角形的结构,如屋顶钢架,钢架桥,其中道理是什么?问题 2 盖房子时,在窗框未安装好之前.木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢? 活动挂架为什么做成四边形?【教学说明】问题设立要让学生体会三角形在生产和生活中的应用,并引导思考为什么要在这些地方用三角形,另一些地方又要用到四边形.注意接纳学生其他不同的思路.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知老师演示P6探究内容,也可叫学生亲手实验,通过实际操作加深学生印象,完后请学生们交流讨论后回答得出了什么?教师根据学生们的回答进行简要归纳.【归纳结论】三角形木架形状不会改变,四边形木架形状会改变,这就是说,三角形具有稳定性,四边形没有稳定性.还可以发现,斜钉一根木条的四边形木架的形状不会改变.这是因为斜钉一根木条后,四边形变成了两个三角形,由于三角形有稳定性,窗框在未安装好之前也不会变形.三、运用新知,深化理解1.如图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是 .2.下列图形中哪些具有稳定性?【教学说明】本节课的内容较少,题目比较简单,在学生独立完成后,要求学生说明理由.【答案】1.三角形具有稳定性.2.(1)(4)(6)中的图形具有稳定性.四、师生互动,课堂小结三角形具有稳定性,四边形没有稳定性.1.布置作业:从教材“习题11.1”中选取.2.完成练习册中本课时的练习.本节课学习三角形稳定性,并板书课题.完成的教学目标是通过观察、实践、想象、推理、小组交流合作,使同学们了解三角形具有稳定性,四边形没有稳定性,稳定性与没有稳定性在生产、生活中广泛应用,培养同学们实事求是的学习作风和学习习惯,以及自主学习和独立思考的能力.。
《11.1.3 三角形的稳定性》作业设计方案-初中数学人教版12八年级上册

《三角形的稳定性》作业设计方案(第一课时)一、作业目标1. 帮助学生理解和掌握三角形的稳定性原理;2. 通过实践操作,提高学生的动手能力和观察能力;3. 引导学生将所学知识应用到实际问题中,培养解决问题的能力。
二、作业内容1. 基础理论知识作业:完成课后习题及教师提供的相关练习题,巩固三角形的稳定性原理及其应用。
2. 实践操作作业:制作三角形稳定性的实际应用模型。
学生可以选择以下任一场景或情况,制作三角形稳定性的模型:(1) 房屋结构稳定:利用木条、钉子等材料,制作一个简易房屋结构模型,展示三角形稳定性在结构中的应用;(2) 风筝制作:利用纸、剪刀、胶水等材料,制作一个三角形稳定性的风筝,解释为什么风筝的骨架要使用三角形设计;(3) 自行车车架:利用废旧自行车钢架或模拟材料,制作一个自行车车架模型,说明三角形稳定性在机械制造中的应用。
3. 探究性作业:寻找生活中的三角形稳定性的实际应用案例,拍照或录像并记录下来,提交作业时分享给大家。
鼓励学生创新思考,尝试用不同的方式解释三角形的稳定性原理。
三、作业要求1. 理论作业需独立完成,并通过检查答案自我纠正错误;2. 实践操作作业需家长或监护人协助完成,并拍照或录像提交;3. 探究性作业鼓励学生自由发挥,强调实际应用和创新思考,不设统一标准答案。
四、作业评价1. 理论作业:根据对答案的批改,了解学生对三角形的稳定性原理及其应用的理解程度;2. 实践操作作业:根据提交的作品,评价学生的动手能力和观察能力;3. 探究性作业:鼓励学生创新思考,对寻找的实际应用案例进行分析和讨论,增强学生的问题解决能力。
五、作业反馈1. 对于普遍存在的问题,教师将在下次上课时进行集中讲解;2. 对于个别学生的特殊问题,教师将给予单独指导;3. 学生可随时通过作业反馈系统与教师沟通交流,解决问题。
通过本次作业,我们希望学生能够深入理解和掌握三角形的稳定性原理,并将其应用到实际生活中,培养解决问题的能力。
11.1.3三角形的稳定性-人教版八年级数学上册说课稿

11.1.3 三角形的稳定性-人教版八年级数学上册说课稿一、教材分析本节课是人教版八年级数学上册中的第11章《三角形与多边形》的第1节,通过本节课的学习,可以使学生了解到三角形的稳定性及其判定方法。
本节课的内容是基础且重要的数学概念,是后续学习几何相关知识的基础。
本课时对应教材“教学设计”上的知识点1,要求学生能够判断三边长度是否可以构成一个三角形,并能够运用三角形的稳定性进行解决实际问题。
本节课的教学内容紧密结合学生的实际生活,便于学生理解和掌握。
通过举例和实例的讲解,让学生能够灵活运用所学知识,提高解决问题的能力。
二、教学目标1.掌握判断三边是否可以构成三角形的方法;2.了解三角形的稳定性及其判定方法;3.能够灵活运用所学知识判断和解决实际问题。
三、教学重点和难点教学重点:1.判断三边是否可以构成三角形的方法;2.三角形的稳定性及其判定方法。
教学难点:1.运用三角形的稳定性判断三边是否可以构成三角形;2.运用所学知识解决实际问题。
四、教学过程与方法4.1 情境引入通过一个简单的问题引入本节课的内容。
让学生思考:当我们只知道三条边的长度时,我们如何判断这三条边能否构成一个三角形呢?4.2 新课呈现Step 1:三角形的定义首先,通过书本上的定义引入三角形的基本概念。
让学生根据教材上的内容,理解三角形的定义:“三角形是由三条线段组成的图形。
”Step 2:判定三边是否构成一个三角形接下来,引导学生思考如何判断三边是否可以构成一个三角形。
让学生根据教材上的相关内容,提出他们的想法和解决方法。
教师进行点拨和引导,引导学生探究出判断三边是否能构成三角形的方法。
示范一个具体的思路:我们先来探究一下三边构成三角形的基本条件。
我们发现,最短的两条边之和一定大于第三条边,同时最长的一条边小于其余两边之和。
根据这个条件,我们就可以判断三边是否能构成一个三角形。
Step 3:举例讲解通过几个具体的例子,让学生进一步理解并且掌握判断三边是否可以构成一个三角形的方法。
人教版数学八年级上册《11.1.3三角形的稳定性》教案

人教版数学八年级上册《11.1.3三角形的稳定性》教案一. 教材分析《11.1.3三角形的稳定性》是人教版数学八年级上册的一章,主要介绍三角形的稳定性原理。
本节内容是在学生已经掌握了三角形的基本概念和性质的基础上进行教学的,旨在让学生通过观察和操作,理解三角形的稳定性,并能运用这一原理解决实际问题。
二. 学情分析八年级的学生已经具备了一定的几何知识,对三角形有一定的了解。
但是,他们可能对抽象的稳定性概念难以理解,需要通过具体的操作和实践来加深理解。
同时,学生可能对实际问题的解决能力有待提高,需要教师通过实例进行引导和培养。
三. 教学目标1.理解三角形的稳定性原理。
2.能够运用三角形的稳定性原理解决实际问题。
3.培养学生的观察能力、操作能力和解决实际问题的能力。
四. 教学重难点1.重点:三角形的稳定性原理。
2.难点:如何运用三角形的稳定性原理解决实际问题。
五. 教学方法采用问题驱动法、操作实践法和实例教学法,引导学生通过观察、操作和思考,理解三角形的稳定性原理,并能运用到实际问题中。
六. 教学准备1.教具:三角板、直尺、圆规。
2.课件:相关的图片和实例。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾三角形的基本概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)讲解三角形的稳定性原理,让学生通过观察和思考,理解三角形的稳定性。
3.操练(10分钟)让学生分组进行操作实践,用三角板、直尺和圆规画出不同形状的三角形,并观察它们的稳定性。
4.巩固(10分钟)让学生通过解决实际问题,运用三角形的稳定性原理。
如:为什么三角形的结构更稳定?在实际生活中有哪些应用?5.拓展(10分钟)引导学生思考:除了三角形,还有哪些形状具有稳定性?它们在实际生活中有哪些应用?6.小结(5分钟)对本节课的主要内容进行总结,强调三角形的稳定性原理及其在实际问题中的应用。
7.家庭作业(5分钟)布置一道关于三角形稳定性原理的应用题,让学生课后思考和解答。
课时检测卷2 三角形的稳定性

11.1.2 三角形的高、中线与角平分线11.1.3 三角形的稳定性测试时间:30分钟一、选择题1.一定在三角形内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、两条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线答案A A.锐角三角形的三条高、三条角平分线、三条中线一定在三角形内部,故本选项正确;B.钝角三角形的三条高有两条在三角形的外部,故本选项错误;C.任意三角形的三条中线、三条角平分线都在三角形内部,但三条高不一定都在三角形内部,故本选项错误;D.直角三角形的三条高中有两条是直角边,不在三角形内部,故本选项错误.故选A.2.如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点E作垂线交BC于点F,已知BC=10,△ABD的面积为12,则EF的长为()A.1.2B.2.4C.3.6D.4.8答案 B ∵AD 是BC 边上的中线,△ABD 的面积为12,∴△ADC 的面积=12,∵点E 是AD 的中点,∴△CDE 的面积=6,∵BC=10,AD 是BC 边上的中线, ∴DC=5,∴EF==2.4,故选B.3.如图,△ABC 中,点E 是BC 上一点,EC=2BE,点D 是AC 的中点,若△ABC 的面积S △ABC =12,则 S △ADF -S △BEF = ( )A.1B.2C.3D.4答案 B ∵S △ABC =12,EC=2BE,点D 是AC 的中点,S △ABC =4,S △ABD =S △ABC =6,∴S △ADF -S △BEF =S △ABD -S △ABE =6-4=2.故选B.二、填空题4.小龙平时爱观察也喜欢动脑,他看到路边的建筑和电线架等,发现了一个现象:一切需要稳固的物品都是由三角形这个图形构成的,当时他就思考,数学王国中不仅只有三角形,为何偏偏用三角形稳固它们呢?请你用所学的数学知识解释这一现象,其依据为 .答案 三角形具有稳定性= 2 × 6 5解析用三角形稳固它们是因为三角形具有稳定性,故答案为三角形具有稳定性.5.如图所示,∠BAD=45°,AE=4 cm.(1)如果AD是△ABC的角平分线,那么∠DAC=;(2)如果AE=CE,那么线段BE是△ABC的,AC的长为; (3)如果AF是△ABC的高,那么图中以AF为高的三角形有个.答案(1)45°(2)中线;8 cm(3)6解析(1)∵AD是△ABC的角平分线,∴∠DAC=∠BAD=45°.(2)∵AE=CE,∴线段BE是△ABC的中线,AC=2AE=2×4=8 cm.(3)以AF为高的三角形有△ABD、△ABF、△ABC、△ADF、△ADC、△AFC,共6个.6.如图,在△ABC中,点D、E、F分别为BC、AD、CE的中点.若S△BFC=1,则S△ABC=.答案 4解析如图,连接BE.∵点D、E分别为BC、AD的中点,∴S△ABD=S△ACD=S△ABC,S△BDE=S△ABD=S△ABC,S△CDE=S△ACD=S△ABC,∴S△BCE=S△BDE+S△CDE=S△ABC+S△ABC=S△ABC,∵F是CE的中点,∴S△BEF=S△BFC=S△BCE=S△ABC,∴S△BFC∶S△ABC=1∶4.∵S△BFC=1,∴S△ABC=4.三、解答题7.如图,已知AD、AE分别是△ABC的高和中线,AB=9 cm,AC=12 cm,BC=15 cm,∠BAC=90°.试求:(1)△ABE的面积;(2)AD的长度;(3)△ACE和△ABE的周长的差.解析(1)∵△ABC是直角三角形,∠BAC=90°,AB=9 cm,AC=12 cm,×9×12=54(cm2).又∵AE是边BC上的中线,∴BE=EC,AD,即S△ABE=S△AEC S△ABC=27(cm2),即△ABE的面积是27 cm2.(2)∵∠BAC=90°,AD是边BC上的高,∴AD,(cm),即AD的长度为 cm.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长-△ABE的周长=AC+AE+CE-(AB+BE+AE)=AC-AB=12-9=3(cm),即△ACE和△ABE的周长的差是3 cm.8.在△ABC中,AB=AC,AC上的中线BD把△ABC的周长分为24和18两部分,求三角形三边的长.{1 1+ a = 24, + a = 18,2a + b = 18, 2a + b = 24,有1 2 或{1 2 解析如图,设AB=AC=a,BC=b,则解得{= 10,或{= 18,则三角形的三边长分别为16,16,10或12,12,18,它们都能构成三角 = 16, = 12,形.所以三角形的三边长分别为16,16,10或12,12,18.。
八年级数学上册 11.1.3 三角形的稳定性2 优质教案

八年级数学上册 11.1.3 三角形的稳定性2 优质教案
[教学目标] 1、知道三角形具有稳定性,四边形没有稳定性;2、了解三角形的稳定性在生产、生活中
的应用。
[重点难点] 三角形稳定性及应用。
[教学过程]
一、情景导入
盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢?
二、三角形的稳定性
〔实验〕1、把三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?
不会改变。
2、把四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?
会改变。
3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗? 不会改变。
从上页的实验中,你能得出什么结论?
三角形具有稳定性,而四边形不具有稳定性。
三、三角形稳定性和四边形不稳定的应用
三角形具有稳定性固然好,四边形不具有稳定性也未必不好,它们在生产和生活中都有广泛的应用。
如:
钢架桥、屋顶钢架和起重机都是利用三角形的稳定性,活动挂架则是利用四边形的不稳定性。
你还能举出一些例子吗?
四、课堂练习
1、下列图形中具有稳定性的是( )
A 正方形
B 长方形
C 直角三角形
D 平行四边形
2、要使下列木架稳定各至少需要多少根木棍?
(2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用三根木棒钉一个三角形,你会发现再也无法改变这个 三角形的形状和大小,也就是说,如果一个三角形的 三条边固定了,那么三角形的形状和大小就完全确定了. 在数学上把三角形的这个性质叫做三角形的稳定性.
三角形的稳定性在生活中 有广泛的应用 ,你能举 出一些例子吗?
四边形的不稳定性有广泛的应用
7.如图, ABC 中,AB= 2cm,BC=4cm. ABC的高AD与CE 的比是多少?
A 解:∵
SABC
1 1 E = = AB × CE BC × AD 2 2 B D C
∴BC×AD=AB×CE ∴4AD=2CE ∴ AD与CE 的比是
1 2
解:∵DE∥AC ∴∠1=∠DAC ∵DF∥AB ∴∠2=∠BAD ∵AD是ABC 的角平分线 ∴ ∠BAD= ∠DAC ∴ ∠1= ∠2
四边形不具有稳定性,人们往往通过改造, 将其变成三角形从而增强其稳定性
做一做:P74
议一议:P76
n边形呢?
ห้องสมุดไป่ตู้
9.解:要使四边形木架不变形,至少要再钉上1根木条;
要使五边形木架不变形,至少要再钉上2根木条; 要使六边形木架不变形,至少要再钉上3根木条; 要使n边形木架不变形,至少要再钉上(n-3)根木条;
小结:
这一节课你最大的收获是什么?
轻轻的, 我走了, 正如我轻轻的来, 我轻轻地点击鼠标,
解:有6个三角形,它们是ABD, ABE, ABC , ADE, ADC, AEC
CE
BC
∠CAD ∠AFC
1 BC•AF 2
∠CAB
6.一个三角形有两条边相等,周长为18cm,三 角形的一边长4cm,求其他两边长.
解:此题有两种情形: (1)三角形的三边长分别为4cm, 4cm, x cm. 则X+2×4=18 解得 X=10 因为4+4<10,所以长度为4cm,4cm,10cm的 三条线段不能组成三角形. (2)三角形的三边长分别为4cm, x cm, x cm. 则2X+4=18 解得 X=7. 长度为4cm,7cm,7cm的三条线段能组成三角形. 所以这个三角形其他两边长都是7cm.