高中数学必修五公式
高中数学必修五-等差数列

等差数列知识集结知识元等差数列的性质知识讲解1.等差数列的性质【等差数列】如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差常用字母d表示.等差数列的通项公式为:a n=a1+(n﹣1)d;前n项和公式为:S n=na1+n(n﹣1)或S n=(n∈N+),另一重要特征是若p+q=2m,则有2a m=a p+a q(p,q,m都为自然数)例:已知等差数列{a n}中,a1<a2<a3<…<a n且a3,a6为方程x2﹣10x+16=0的两个实根.(1)求此数列{a n}的通项公式;(2)268是不是此数列中的项?若是,是第多少项?若不是,说明理由.解:(1)由已知条件得a3=2,a6=8.又∵{a n}为等差数列,设首项为a1,公差为d,∴a1+2d=2,a1+5d=8,解得a1=﹣2,d=2.∴a n=﹣2+(n﹣1)×2=2n﹣4(n∈N*).∴数列{a n}的通项公式为a n=2n﹣4.(2)令268=2n﹣4(n∈N*),解得n=136.∴268是此数列的第136项.这是一个很典型的等差数列题,第一问告诉你第几项和第几项是多少,然后套用等差数列的通项公式a n=a1+(n﹣1)d,求出首项和公差d,这样等差数列就求出来了.第二问判断某个数是不是等差数列的某一项,其实就是要你检验看符不符合通项公式,带进去检验一下就是的.【等差数列的性质】(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;(3)m,n∈N+,则a m=a n+(m﹣n)d;(4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p;(5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数.(6)a n,a n﹣1,a n﹣2,…,a2,a1仍为等差数列,公差为﹣d.(7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即2a n+1=a n+a n+2,2a n=a n﹣m+a n+m,(n≥m+1,n,m∈N+)(8)a m,a m+k,a m+2k,a m+3k,…仍为等差数列,公差为kd(首项不一定选a1).例题精讲等差数列的性质例1.设等差数列{a n}的前n项和为S n,若a2+a8=15-a5,则S9等于()A.18B.36C.45D.60例2.记等差数列{a n}的前n项和为S n.若a5=3,S13=91,则a1+a11=()A.7B.8C.9D.10例3.在等差数列{a n}中,a3+a9=24-a5-a7,则a6=()A.3B.6C.9D.12等差数列的通项公式知识讲解1.等差数列的通项公式【知识点的认识】等差数列是常见数列的一种,数列从第二项起,每一项与它的前一项的差等于同一个常数,已知等差数列的首项a1,公差d,那么第n项为a n=a1+(n﹣1)d,或者已知第m项为a m,则第n项为a n=a m+(n﹣m)d.【例题解析】eg1:已知数列{a n}的前n项和为S n=n2+1,求数列{a n}的通项公式,并判断{a n}是不是等差数列解:当n=1时,a1=S1=12+1=2,当n≥2时,a n=S n﹣S n﹣1=n2+1﹣(n﹣1)2﹣1=2n﹣1,∴a n=,把n=1代入2n﹣1可得1≠2,∴{a n}不是等差数列考察了对概念的理解,除掉第一项这个数列是等差数列,但如果把首项放进去的话就不是等差数列,题中a n的求法是数列当中常用到的方式,大家可以熟记一下.eg2:已知等差数列{a n}的前三项分别为a﹣1,2a+1,a+7则这个数列的通项公式为解:∵等差数列{a n}的前三项分别为a﹣1,2a+1,a+7,∴2(2a+1)=a﹣1+a+7,解得a=2.∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9,∴数列a n是以1为首项,4为公差的等差数列,∴a n=1+(n﹣1)×4=4n﹣3.故答案:4n﹣3.这个题很好的考察了的呢公差数列的一个重要性质,即等差中项的特点,通过这个性质然后解方程一样求出首项和公差即可.【考点点评】求等差数列的通项公式是一种很常见的题型,这里面往往用的最多的就是等差中项的性质,这也是学习或者复习时应重点掌握的知识点.例题精讲等差数列的通项公式例1.在等差数列{a n}中,a4,a12是方程x2+3x+1=0的两根,则a8=()A.B.C.D.不能确定例2.在等差数列{a n}中,a2+a10=0,a6+a8=-4,a100=()A.212B.188C.-212D.-188例3.在等差数列{a n}中,若a2=5,a4=3,则a6=()A.-1B.0C.1D.6当堂练习单选题练习1.在等差数列{a n}中,a3+a9=24-a5-a7,则a6=()A.3B.6C.9D.12练习2.等差数列{a n}中,已知a2+a6=4,则a4=()A.1B.2C.3D.4练习3.在等差数列{a n}中,若a3+a9=17,a7=9,则a5=()A.6B.7C.8D.9练习4.《孙子算经》是中国古代重要的数学著作,上面记载了一道有名的“孙子问题”(又称“物不知数题”),后来我国南宋数学家秦九韶在《数书九章∙大衍求一术》中将此问题系统解决.“大衍求一术”是中国古算中最有独创性的成就之一,属现代数论中的一次同余式组问题.后传入西方,被称为“中国剩余定理”.现有一道一次同余式组问题:将正整数中,被3除余2且被5除余1的数,按由小到大的顺序排成一列,则此列数中第10项为()A.116B.131C.146D.161练习5.已知2,b的等差中项为5,则b为()A.B.6C.8D.10练习6.数列{a n}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A.B.C.D.练习7.等差数列{a n}中,S n是它的前n项和,a2+a3=10,S6=54,则该数列的公差d为()A.2B.3C.4D.6练习8.等差数列{a n}中,a1+a8=10,a2+a9=18,则数列{a n}的公差为()A.1B.2C.3D.4练习9.在等差数列{a n}中,已知a2+a6=18,则a4=()A.9B.8C.81D.63。
高中数学必修五第一章《解三角形》知识点知识讲解

高中数学必修五第一章《解三角形》知识点收集于网络,如有侵权请联系管理员删除高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
高中数学必修5优质课件:数列的通项公式与递推公式

[类题通法] 根据递推公式写出数列的前几项,要弄清楚公式中各部 分的关系,依次代入计算即可.另外,解答这类问题时还需 注意:若知道的是首项,通常将所给公式整理成用前面的项 表示后面的项的形式;若知道的是末项,通常将所给公式整 理成用后面的项表示前面的项的形式.
第十二页,编辑于星期日:二十三点 三十九分。
[类题通法] 根据递推公式写出数列的前几项,然后由前几项分析其 特点、规律,归纳总结出数列的一个通项公式.
第十三页,编辑于星期日:二十三点 三十九分。
[对点训练] 3.已知数列{an}满足 a1=1,an=an-1+nn1-1(n≥2), 写出该数列前 5 项,并归纳出它的一个通项公式. 解:a1=1, a2=a1+2×1 1=1+12=32, a3=a2+3×1 2=32+16=53, a4=a3+4×1 3=53+112=74,
[类题通法] 通项公式法、列表法与图象法表示数列优点
(1)用通项公式表示数列,简洁明了,便于计算.公 式法是常用的数学方法.
(2)列表法的优点是不经过计算,就可以直接看出项 数与项的对应关系.
(3)图象能直观形象地表示出随着序号的变化,相应 项变化的趋势.
第四页,编辑于星期日:二十三点 三十九分。
第十七页,编辑于星期日:二十三点 三十九分。
3.已知 a1=1,an=1+an1-1(n≥2),则 a5=________. 解析:由 a1=1,an=1+an1-1得 a2=2,a3=32,a4=53, a5=85. 答案:85
第十八页,编辑于星期日:二十三点 三十九分。
4.已知数列{an}满足 a1>0,aan+n 1=13(n∈N*),则数列{an}是 ________数列(填“递增”或“递减”).
高中数学必修五知识点归纳总结

《必修五知识点总结》第一章:解三角形知识要点一、正弦定理和余弦定理1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有2sin sin sin a b cR C===A B(R 为C ∆AB 的外接圆的半径) 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2bRB =,sin 2cC R =;③::sin :sin :sin a b c C =A B ; 3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B . 4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,推论:bca cb A 2cos 222-+=B ac c a b cos 2222-+=,推论:C ab b a c cos 2222-+=,推论:abc b a C 2cos 222-+=二、解三角形处理三角形问题,必须结合三角形全等的判定定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种情况,根据已知条件判断解的情况,并能正确求解1、三角形中的边角关系(1)三角形内角和等于180°;(2)三角形中任意两边之和大于第三边,任意两边之差小于第三边; (3)三角形中大边对大角,小边对小角;(4)正弦定理中,a =2R ·sin A ,b =2R ·sin B ,c =2R ·sin C ,其中R 是△ABC 外接圆半径. (5)在余弦定理中:2bc cos A =.222a c b -+acb c a B 2cos 222-+=(6)三角形的面积公式有:S =ah ,S =ab sin C=bc sin A=ac sinB ,S =其中,h 是BC 边上高,P 是半周长.2、利用正、余弦定理及三角形面积公式等解任意三角形(1)已知两角及一边,求其它边角,常选用正弦定理.(2)已知两边及其中一边的对角,求另一边的对角,常选用正弦定理. (3)已知三边,求三个角,常选用余弦定理.(4)已知两边和它们的夹角,求第三边和其他两个角,常选用余弦定理. (5)已知两边和其中一边的对角,求第三边和其他两个角,常选用正弦定理.3、利用正、余弦定理判断三角形的形状常用方法是:①化边为角;②化角为边.4、三角形中的三角变换(1)角的变换因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。
人教版高中数学必修1至必修5公式

必修二:
直线与方程
1)直线的倾斜角
3
人教版高中数学必修一至必修五公式(必会)
定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与 x 轴平行或重合时,我们规定它的倾
斜角为 0 度。因此,倾斜角的取值范围是 0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是 90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用 k 表示。即 k tan 。斜
log a m n log am b n
n log a m
n m
log a
b
(a、b、m
0,n
R, 且a
1)
,
log a
b
log c log c
b a
(a、b、c
0, 且a、c
1)
(换底公式)
函数图像(必须熟)
表1
y ax a 0, a 1
指数函数
定义域 值域
xR
y 0,
对数数函数 y log a x a 0, a 1
○1 在任一直线上任取一点,再转化为点到直线的距离进行求解。
d C1 C2 ( A、B都相等)
○2 设直线 l1 Ax By C1 0, l2 Ax By C2 ; 则两点间的距离为
A2 B2
二、圆的方程
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
(a b c)2 a 2 b2 c 2 2ab 2bc 2ac ; (a b c)2 a 2 b2 c 2 2ab 2bc 2ac (a b c)2 a 2 b2 c 2 2ab 2bc 2ac ; (a b c)2 a 2 b2 c 2 2ab 2bc 2ac
高中数学必修五公式整理

高中数学必修五公式声明:本文非原创,由于界面阅读感不好而本人进行重新排版。
第一章 三角函数一.正弦定理:2(sin sin sin a b cR R A B C===为三角形外接圆半径) 变形:2sin (sin )22sin (sin )22sin (sin )2a a R A A R b b R B B R c c R C C R ⎧==⎪⎪⎪==⎨⎪⎪==⎪⎩推论:::sin :sin :sin a b c A B C =二.余弦定理:三.三角形面积公式:111sin sin sin ,222ABC S bc A ac B ab C ∆===第二章 数列一.等差数列: 1.定义:a n+1-a n =d (常数)2.通项公式:()d n a a n ∙-+=11或()d m n a a m n ∙-+=3.求和公式:()()d n n n n a a a S n n 21211-+=+=4.重要性质(1)a a a a q p n m q p n m +=+⇒+=+(2) m,2m,32m m m S S S S S --仍成等差数列二.等比数列:1.定义:)0(1≠=+q q a a nn 2.通项公式:q a a n n 11-∙=或q a a mn m n -∙=3.求和公式: )(1q ,1==na S n )(1q 11)1(11≠--=--=qqa a q q a S n n n2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C =+-=+-=+-222222222cos 2cos 2cos 2b c a A bca cb B aca b c C ab+-=+-=+-=4.重要性质(1)a a a a q p n m q p n m =⇒+=+(2)()m,2m,32q 1m m m m S S S S S --≠-仍成等比数列或为奇数三.数列求和方法总结:1.等差等比数列求和可采用求和公式(公式法).2.非等差等比数列可考虑(分组求和法) ,(错位相减法)等转化为等差或等比数列再求和, 若不能转化为等差或等比数列则采用(拆项相消法)求和.注意(1):若数列的通项可分成两项之和(或三项之和)则可用(分组求和法)。
高中数学必修五等比数列前n项和公式的推导和应用

1 1 27 q 8 ( 2) 由 a1 27 , a 9 , 可得 : 243 243
又由 q 0, 可得:
q
Sn
于是当 n 8时
8 1 27 1 3 1640 1 81 1 ( ) 3
1 3
例 2、在等比数列 a n 中,求满足下列条件的 量 :
由于每个格子里的麦粒数都是前一个格子 里的麦粒数的2倍,且共有64个格子,各个 格子里的麦粒数依次是
1,2,2 , 2, 2
1 2 22 23
2
3
63
因此,发明者要求的麦粒总数就是
263,
如果把各格所放的麦粒数看成一个数列, 我们可以得到一个首项为1,公比为2的等比 数列,而发明者要求的麦粒总数就可以看成 这个等比数列的前64项的和。
1 n
n· a1
1-q
例1、求下列等比数列前8项的和
(1) 1 1 1 , , , 2 4 8
(2)a1 27, a9
1 ,q 0 243
1 1 ,q (1) 因为 a1 解: 2 2
Sn 1 2
所以当 n 8时
8 1 1 2 255 1 256 1 2
由公式得: 30000
整理得 1.1n 1.6
5000 (11.1n ) 11.1
两边取对数,得 n lg1.1 lg1.6,
用计算器算得n
lg1.1 lg1.6
0.2 0.041
5
答:从今年起,大约 5年可使总销售量达到 30000 台。
1、 求 等 比 数 列 1, x , x , x , 的 前n 项 和s n .
高中数学必修五第一章数列等差数列的通项公式

1 / 4高一年级下数学必修五课题:第一章 数列--第2节 等差数列的通项公式(第二课时)◆课前导学(一)学习目标:1.理解等差中项的概念,会求两个数的等差中项;2.掌握等差数列的特殊性质及应用.(二)重点难点:1.重点:等差中项的概念及等差数列性质的应用;2.难点:等差中项的概念及等差数列性质的应用.(三)预习提纲:1.在等差数列{}n a 中,已知103=a ,289=a ,求12a .2.等差数列{}n a 中,已知33,4,31521==+=n a a a a ,试求n 的值. ◆课堂导学一、等差中项定义:等差中项:如果b A a ,,这三个数成等差数列,那么=A ,A 叫做b a ,的等差中项.若c a b +=2,则c b a ,,成等差数列.例题1:(1)12741=++a a a ,则=4a _ ___(2)48242332=+++a a a a ,则=13a (3)已知等差数列{a n }中,39741=++a a a ,33852=++a a a ,则=++963a a a2 / 4变式训练1:(1)14812152,a a a a a ---+=则313__________a a +=(2)已知等差数列{a n }中,a 3,a 15是方程x 2-6x -1=0的两实数根,7891011___________.a a a a a +++++=二、等差数列的有关性质:(1)若()+∈ +=+N q p n m q p n m ,,,,则q p n m a a a a +=+;(2)下标为等差数列的项()Λ,,,2m k m k k a a a ++,仍组成等差数列;(3)数{}b a n +λ(b ,λ为常数)仍为等差数列;(4){}n a 和{}n b 均为等差数列,则{}n n b a ±也为等差数列;(5){}n a 的公差为d ,则:①⇔>0d {}n a 为递增数列;②⇔<0d {}n a 为递减数列;③⇔=0d {}n a 为常数列;例题2: (1)三个数成等差数列,和为15,积是45,求三个数(2)成等差数列的四个数之和是26,中间两个数的积是40,求这四个数(3)在等差数列{}n a 中,d 为公差,若+∈N l k n m ,,,且l k n m +=+求证:①d m n a a m n )(-+=; ②l k n m a a a a +=+.变式训练2:(1)已知{}n a ,{}n b 均为等差数列,且31=a ,71=b ,482020=+b a ,则3 / 4数列{}n n b a + 的第30项为___________________________(2)已知正数列{}n a 和{}n b 对任意n N *∈,1,,n n n a b a +成等差数列,且1n a +=是否为等差数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修五公式
第一章 三角函数
一.正弦定理:2(sin sin sin a b c
R R A B C
===为三角形外接圆半径) 变形:2sin (sin )22sin (sin )22sin (sin )2a a R A A R b b R B B R c c R C C R ⎧
==⎪⎪
⎪
==⎨⎪
⎪==⎪⎩
推论:::sin :sin :sin a b c A B C = 二.余弦定理:
三.三角形面积公式:111
sin sin sin ,222
ABC S bc A ac B ab C ∆===
第二章 数列
一.等差数列: 1.定义:a n+1-a n =d (常数)
2.通项公式:()d n a a n ∙-+=11或()d m n a a m n ∙-+=
3.求和公式:()
()d n n n n a a a S n n 2
1211-+
=+=
4.重要性质(1)a a a a q p n m q p n m +=+⇒+=+
(2) m,2m,32m m m S S S S S --仍成等差数列
二.等比数列:1.定义:
)0(1
≠=+q q a a n
n 2.通项公式:q a a n n 1
1-∙=或q a a m
n m n -∙=
3.求和公式: )
(1q ,1==na S n )
(1q 11)1(11≠--=--=q
q
a a q q a S n n n 4.重要性质(1)a a a a q p n m q p n m =⇒+=
+
(2)()m,2m,32q 1m m m m S S S S S --≠-仍成等比数列或为奇数
三.数列求和方法总结:
1.等差等比数列求和可采用求和公式(公式法).
2.非等差等比数列可考虑(分组求和法) ,(错位相减法)等转化为等差或等比数列再求和, 若不能转化为等差或等比数列则采用(拆项相消法)求和.
注意(1):若数列的通项可分成两项之和(或三项之和)则可用(分组求和法)。
(2)若一个等差数列与一个等比数列的对应相乘构成的新数列求和,采用(错位相减法). 过程:乘公比再两式错位相减
(3)若数列的通项可拆成两项之差,通过正负相消后剩有限项再求和的方法为(拆项相消法).
2222222222cos 2cos 2cos a b c bc A
b a
c ac B c a b ab C =+-=+-=+-222
222
222cos 2cos 2cos 2b c a A bc
a c
b B ac
a b c C ab
+-=+-=+-=
常见的拆项公式:11
1)1(1.
1+-=+n n n n
四.数列求通项公式方法总结:
1..找规律(观察法).
2..若为等差等比(公式法)
3.已知Sn,用(Sn 法)即用公式()()⎩⎨⎧≥-==-2111
n S S n S a n n
n
4. 叠加法
5.叠乘法等
第三章:不等式
一.
解一元二次不等式三部曲:1.化不等式为标准式ax 2
+bx+c>0或 ax 2
+bx+c<O (a>0)。
22.0ax bx c ++=计算△的值,确定方程的根。
3.根据图象写出不等式的解集.
特别的:若二次项系数a 为正且有两根时写解集用口决:(不等号)大于0取两边,小于0取中间
二.分式不等式的求解通法:
(1)标准化:①右边化零,②系数化正.
(2)转 换:化为一元二次不等式(依据:两数的商与积同号)
三.二元一次不等式Ax+B y+C >0(A 、B 不同时为0),确定其所表示的平面区域用口诀:同上异下 (注意:包含边界直线用实线,否则用虚线)
四.线性规划问题求解步骤:画(可行域)移(平行线)求(交点坐标,最优解,最值)答.
五.基本不等式:
0,0)a b
a b +≥≥≥(当且仅当a=b 时,等号成立)
利用基本不等式求最值应用条件:一正数 二定值 三相等
旧知识回顾:1.2
0ax bx c ++=求方程的根方法:
(1)十字相乘法:左列分解二次项系数a ,右列分解常数项c ,交叉相乘再相加凑成一次项系数b 。
12
2b x a
-±=
,(2)求根公式: 2.韦达定理:2
121212,00),b c
x ax bx c x x a a
++=≠+=-∙=若x 是方程(
a 的两根,则有x x 3.对数类:log a M+log a N=log a MN log a M-log a N=log a N M
log a M N =Nlog a M (M.>0,N>0)
)11(1)(1.2k
n n k k n n +-=+)121121(21)12)(12(1.3+--=+-n n n n ]
)
2)(1(1
)1(1[21)2)(1(1.
4++-+=++n n n n n n n )1(1n 1.5n n n -+=++()10()()0()
()(2)0()()0()0
()
()()
30()()f x f x g x g x f x f x g x g x g x f x f x a a g x g x >⇔∙>≥⇔∙≥≠≥⇔-≥常用的解分式不等式的同解变形法则为
()且(),再通分。