高中数学必修五全套教案

合集下载

高中数学 人教A版必修五全册电子教案(含课程纲要))

高中数学   人教A版必修五全册电子教案(含课程纲要))

(1)课内即时评价:对学生个体与群体的课堂纪律、学习态度、 参与程度、方法效果等方面的表现随堂作出及时评价,学段末综合每 个学生的表现,按等级 A、B、C 作出定性评价。 (2)课后自主学习与作业评价:对学生个体课后学习的主动自觉 性、完成学习任务的程度、书面作业的数量和质量、单元达标测试等 及时反馈评价,学段末综合每个学生的表现,按等级 A、B、C 作出定 性评价。 3、 研究性学习评价:按学校评价办法执行。 (四) 学分授予: 1、 原则:有以下三种情况之一者,不授予学分 (1) 出勤率不足百分之九十; (2) 学习状态评定等级为 C; (3) 学段末达标测试成绩达不到合格线。 2、学段末学科成绩以定性与定量两种方式告知本人和家长。 (五) 学段末教学达标测评 1、 量标测试重点: (1) 实际问题的建模与求解能力; (2) 推理运算能力; (3) 方程与数形结合的思想方法; (4) 正弦定理、余弦定理、等差数列、等比数列、一元二次不等 式的解法,二元一次不等式组表示平面区域的画法、线形规划的基本 思想方法。 2、 量标测试命题双向细目表
第 4 页,共 10 页 郑州市第二中学
11
简单线形规划
理解(操作、会、初步应 用)
6
12
基本不等式
理解(探索、会、初步应 用)
5
13 14
学段末复习
理解、掌握、应用 课时合计
6 54
(二)重点、难点分析 1、 解三角形 (1) 重点: (a) 正弦定理、余弦定理及三角形的度量; (b) 测量和计算实际问题。 (2) 难点: (a) 探索正弦定理、余弦定理; (b) 正弦定理、余弦定理的灵活应用和实际应用。 2、 数列 (1) 重点: (a) 等差、等比数列的概念、通项公式、求和公式; (b) 概念、公式、性质的应用。 (2) 难点: (a) 探求等差、等比数列前 n 项和公式; (b) 有关知识的灵活应用; (c) 数列建摸。 3、 不等式

人教版高中数学必修五教案(全册)

人教版高中数学必修五教案(全册)

人教版高中数学必修五教案(全册)
本教案共包括必修五全部章节,共计 xx 课时,主要涵盖以下
内容:
第一章函数的概念
本章主要介绍函数的概念、性质、分类以及函数图像的绘制等
方面的知识点。

通过本章的研究,学生将能够掌握函数的基本概念,理解函数的重要性以及掌握函数图像的绘制方法。

第二章三角函数
本章主要介绍正弦函数、余弦函数、正切函数等三角函数的定义、图像及其性质等方面的知识点,并针对不同类型的三角函数进
行了详细的讲解。

通过本章的研究,学生将能够深入理解三角函数
的概念,掌握三角函数的性质,运用三角函数解决实际问题。

第三章数学归纳法与递推数列
本章主要介绍数学归纳法的基本原理及其在数学证明中的运用,同时通过递推数列的研究,进一步巩固对数学归纳法的理解和应用。

通过本章的研究,学生将能够掌握数学归纳法的基本原理及其在数
学证明中的应用,同时掌握递推数列的推导与实际应用技巧。

第四章极坐标系与参数方程
本章主要介绍极坐标系的定义、性质,以及参数方程的基本概
念与运用等方面的知识点。

通过本章的研究,学生将能够理解极坐
标系的概念与性质,掌握参数方程的推导与实际应用技巧。

第五章一元函数微积分学初步
本章主要介绍导数与微分、不定积分、定积分等知识点。

通过
本章的学习,学生将能够掌握导数与微分的基本概念与计算方法,
掌握不定积分与定积分的计算方法,以及这些知识在实际问题中的
应用。

高中数学必修五课件整书全套

高中数学必修五课件整书全套
双曲线的标准方程和一般方程
掌握双曲线的标准方程和一般方程,能够根据不同的条件选择合适的方程形式解决问题。
抛物线及其性质
抛物线的定义和方程
通过平面内与一个定点和一条定直线距离相 等的点的轨迹定义抛物线,并推导其标准方 程。
抛物线的几何性质
探讨抛物线的对称性、顶点、焦点、准线等几何性 质,并理解其在实际问题中的应用。
回顾三角函数的定义、性质、图像和 变换,以及三角函数在实际问题中的
应用。
不等式与线性规划
总结不等式的性质、解法和应用,以 及线性规划问题的建模和求解方法。
数列与数学归纳法
复习数列的概念、通项公式、求和公 式,以及数学归纳法在证明数列问题 中的应用。
概率与统计
回顾概率的基本概念、事件的概率计 算、随机变量的分布和期望,以及统 计中的数据处理和分析方法。
07
概率统计初步
随机事件与概率
随机事件的定义与性质
了解随机事件的概念,掌握随机事件 的基本性质,如互斥事件、对立事件 等。
概率的定义与性质
古典概型与几何概型
掌握古典概型和几何概型的定义和计 算方法,能够运用古典概型和几何概 型解决简单的实际问题。
理解概率的定义,掌握概率的基本性 质,如非负性、规范性、可加性等。
高中数学必修五课件 整书全套
目录
• 绪论 • 数列与数学归纳法 • 不等式与不等式组 • 圆锥曲线与方程 • 空间向量与立体几何 • 导数与微分初步 • 概率统计初步 • 复习与总结
01
绪论
教材简介
本教材是高中数学必修五课程的配套课件,涵盖 01 了课程的所有知识点和教学要求。
课件内容以章节为单位,包括教学目标、知识点 02 讲解、例题分析、练习题等多个部分。

高中数学必修五教案(8篇)

高中数学必修五教案(8篇)

高中数学必修五教案(8篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高中数学必修五教案(8篇)作为一名为他人授业解惑的教育工作者,时常要开展教案准备工作,借助教案可以更好地组织教学活动。

高中数学必修五教案全集

高中数学必修五教案全集

高中数学必修五教案全集
教学目标:
1. 理解一次函数的定义及其特点;
2. 掌握一次函数的求解方法;
3. 能够应用一次函数解决实际问题。

教学重点难点:
1. 了解一次函数的定义和特点;
2. 掌握一次函数的求解方法;
3. 能够灵活应用一次函数解决实际问题。

教学内容:
1. 一次函数的定义和表示形式;
2. 一次函数的性质及图像特点;
3. 一次函数的求解方法;
4. 一次函数在实际生活中的应用。

教学过程:
1. 讲解一次函数的定义及表示形式,引导学生理解一次函数的概念;
2. 分析一次函数的性质及图像特点,帮助学生掌握一次函数的基本特点;
3. 演示一次函数的求解方法,让学生掌握如何求解一次函数;
4. 结合实际问题,引导学生应用一次函数解决实际问题。

教学方法:
1. 示范教学法;
2. 课堂讨论法;
3. 问题解决法;
4. 案例分析法;
教学工具:
1. 教学课件;
2. 教学板书;
3. 教学练习题;
4. 实际应用案例;
教学评价:
1. 课堂作业评价;
2. 学生课堂表现评价;
3. 实际应用案例成果评价。

高中数学必修五全套教案

高中数学必修五全套教案
如何将代数方程与几何图形相结合,通过代数方法解决几何问题,以及如何利用几何性质简化代数方程。
难点
重点
已知直线经过点(2,3)且与x轴、y轴分别交于A、B两点,如果|AB| = 10,求直线的方程。
例题1
已知圆心在原点且与直线x + 2y - 4 = 0相切,求圆的方程。
例题2
已知椭圆经过点(2,3)和(4,6),求椭圆的标准方程。
CHAPTER
第三章 不等式
03
总结词:巩固基础
详细描述:回顾不等式的基本性质和解题方法,包括比较法、综合法和分析法等。
总结词:知识串联
详细描述:将不等式与其他数学知识进行串联,如函数、数列和解析几何等,加深对不等式的理解和应用。
总结词:概念辨析
详细描述:对不等式中的一些易混淆概念进行辨析,如“大于”、“小于”、“不小于”、“不大于”等,帮助学生准确把握概念。
空间几何图形的分类
空间几何图形具有许多性质,如对称性、平行性、垂直性等,这些性质在解决实际问题中有着广泛的应用。
空间几何图形的性质
理解空间几何图形的性质和特点,掌握三维图形的表示方法。
重点
难点
解决方法
如何将平面几何的知识迁移到立体几何中,理解三维空间的概念。
通过实例和图形的演示,帮助学生建立空间想象能力,理解三维图形的结构和特点。
01
02
03
04
CHAPTER
第五章 解析几何初步
05
直线方程
回顾直线的点斜式、斜截式、两点式和截距式方程,理解各种方程的适用场景和优缺点。
圆的标准方程
掌握圆的标准方程,理解圆心和半径对圆的影响。
椭圆、双曲线和抛物线的标准方程与几何性质

高中数学必修五教案全

高中数学必修五教案全

高中数学必修五教案全
授课对象:高中生
教学内容:数学必修五
教学目标:通过本课程的学习,学生能够掌握平面向量的概念及运算,能够解决与平面向量相关的数学问题
教学时长:2课时
教学步骤:
第一课时:
1. 引入平面向量的概念,讲解平面向量的定义及性质
2. 介绍平面向量的加法和减法,进行相关例题的讲解
3. 练习平面向量的加法和减法,让学生掌握运算方法
第二课时:
1. 讲解平面向量的数量积和向量积的定义及性质
2. 介绍平面向量的数量积和向量积的计算方法,进行相关例题的讲解
3. 练习平面向量的数量积和向量积,让学生掌握运算方法
4. 总结本节课的内容,强化学生对平面向量的理解
教学评估:
1. 在课堂上解答学生提出的问题,检查学生对平面向量的理解程度
2. 布置相关练习题,让学生独立完成并交作业
3. 下节课前进行解答和讲解,检查学生的学习情况
教学反思:
通过本节课的教学,学生应该能够初步掌握平面向量的相关概念及运算方法,为以后更深入的学习打下基础。

在教学中要注重实际应用,让学生了解平面向量在生活中的作用,激发学生学习的兴趣,提高学生的学习积极性。

高中数学必修5整套教案

高中数学必修5整套教案

高中数学必修5整套教案教学目标:学生能够区分和应用直线和平面的基本概念,理解直线和平面之间的关系。

教学重点:直线与平面的定义、性质和关系。

教学难点:平面的方程和直线与平面的交点问题。

教学过程:一、导入讨论:通过展示一些实际生活中的直线和平面的例子,引出直线和平面的概念。

二、概念讲解:介绍直线和平面的定义、特点和性质,并让学生做一些相关的练习。

三、直线与平面的关系:讲解直线和平面之间的关系,并通过实际例子辅助理解。

四、实例分析:解决一些直线与平面的交点问题,让学生能够灵活应用所学知识。

五、练习训练:设计一些练习题让学生巩固所学知识,提高解题能力。

六、总结反思:总结本课内容,让学生自主总结所学知识,并提出问题和思考。

第二课:圆的基本概念教学目标:学生能够掌握圆的相关概念和性质,理解圆的作图和计算方法。

教学重点:圆的定义、圆周率及相关概念。

教学难点:圆的作图及相关计算题目。

教学过程:一、导入讨论:通过展示圆的相关图片,引入圆的概念。

二、概念讲解:介绍圆的定义、性质和相关概念,并让学生做一些相关的练习。

三、圆的作图:讲解圆的作图方法和相关计算技巧,让学生能够灵活运用。

四、圆周率的应用:介绍圆周率的概念和计算方法,通过实例计算巩固所学知识。

五、练习训练:设计一些练习题让学生巩固所学知识,提高解题能力。

六、总结反思:总结本课内容,让学生自主总结所学知识,并提出问题和思考。

第三课:三角形的基本概念教学目标:学生能够掌握三角形的相关概念和性质,理解三角形的分类和计算方法。

教学重点:三角形的定义、分类及性质。

教学难点:三角形的作图及相关计算题目。

教学过程:一、导入讨论:通过展示三角形的相关图片,引入三角形的概念。

二、概念讲解:介绍三角形的定义、性质和分类,并让学生做一些相关的练习。

三、三角形的作图:讲解三角形的作图方法和相关计算技巧,让学生能够灵活运用。

四、三角形的应用:介绍三角形的应用知识和计算方法,通过实例计算巩固所学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin aA c=,sin b B c =,又sin 1cC c==, 则sin sin sin a b c c A B C=== b c 从而在直角三角形ABC 中,sin sin sin a b cA B C==C a B (图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin a b A B=sin cC=A cB (图1.1-3)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abAB=sin cC=[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2)sin sin abAB=sin cC=等价于sin sin abAB=,sin sin cbCB=,sin aA=sin cC从而知正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=。

一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。

[例题分析]例1.在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形。

解:根据三角形内角和定理,0180()=-+C A B000180(32.081.8)=-+066.2=; 根据正弦定理,00sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ;根据正弦定理,00sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A评述:对于解三角形中的复杂运算可使用计算器。

例2.在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。

解:根据正弦定理,sin 28sin40sin 0.8999.20==≈b A B a因为00<B <0180,所以064≈B ,或0116.≈B ⑴ 当064≈B 时,00000180()180(4064)76=-+≈-+=C A B ,00sin 20sin7630().sin sin40==≈a C c cm A⑵ 当0116≈B 时,00000180()180(40116)24=-+≈-+=C A B ,00sin 20sin2413().sin sin40==≈a C c cm A [补充练习]已知∆ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c (答案:1:2:3)(2)正弦定理的应用范围:①已知两角和任一边,求其它两边及一角; ②已知两边和其中一边对角,求另一边的对角。

联系已经学过的知识和方法,可用什么途径来解决这个问题? 用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。

由于涉及边长问题,从而可以考虑用向量来研究这个问题。

A如图1.1-5,设CB a =,CA b =,AB c =,那么c a b =-,则 b c()()2222 2c c c a b a ba ab b a b a b a b=⋅=--=⋅+⋅-⋅=+-⋅ C a B从而 2222cos c a b ab C =+- (图1.1-5) 同理可证 2222cos a b c bc A =+-2222cos b a c ac B =+-于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。

即 2222cos a b c bc A =+-2222cos b a c ac B =+- 2222cos c a b ab C =+-思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?(由学生推出)从余弦定理,又可得到以下推论:222cos 2+-=b c a A bc222cos 2+-=a cb B ac 222cos 2+-=b ac C ba[理解定理]从而知余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边; ②已知三角形的三条边就可以求出其它角。

思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?(由学生总结)若∆ABC 中,C=090,则cos 0=C ,这时222=+c a b 由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。

[例题分析]例1.在∆ABC 中,已知=a c 060=B ,求b 及A ⑴解:∵2222cos =+-b a c ac B=222+-⋅cos 045=2121)+- =8∴=b求A 可以利用余弦定理,也可以利用正弦定理:⑵解法一:∵cos 2221,22+-=b c a A bc ∴060.=A例2.在∆ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形 解:由余弦定理的推论得:cos 2222+-=b c a A bc22287.8161.7134.6287.8161.7+-=⨯⨯0.5543,≈ 05620'≈A ; cos 2222+-=c a b B ca222134.6161.787.82134.6161.7+-=⨯⨯0.8398,≈ 03253'≈B ;0000180()180(56203253)''=-+≈-+C A B [补充练习]在∆ABC 中,若222a b c bc =++,求角A (答案:A=1200)Ⅳ.课时小结(1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;(2)余弦定理的应用范围:①.已知三边求三角;②.已知两边及它们的夹角,求第三边。

[随堂练习1](1)在∆ABC 中,已知80a =,100b =,045A ∠=,试判断此三角形的解的情况。

(2)在∆ABC 中,若1a =,12c =,040C ∠=,则符合题意的b 的值有_____个。

(3)在∆ABC 中,a xcm =,2b cm =,045B ∠=,如果利用正弦定理解三角形有两解,求x 的取值范围。

(答案:(1)有两解;(2)0;(3)2x <<)2.在∆ABC 中,已知7a =,5b =,3c =,判断∆ABC 的类型。

分析:由余弦定理可知222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆ (注意:是锐角A ⇔ABC 是锐角三角形∆)解:222753>+,即222a b c >+, ∴ABC 是钝角三角形∆。

[随堂练习2](1)在∆ABC 中,已知sin :sin :sin 1:2:3A B C =,判断∆ABC 的类型。

(2)已知∆ABC 满足条件cos cos a A b B =,判断∆ABC 的类型。

(答案:(1)ABC 是钝角三角形∆;(2)∆ABC 是等腰或直角三角形) 2.在∆ABC 中,060A =,1b =,面积为2,求sin sin sin a b c A B C ++++的值 分析:可利用三角形面积定理111sin sin sin 222S ab C ac B bc A ===以及正弦定理sin sin abAB=sin cC==sin sin sin a b cA B C++++解:由1sin 2Sbc A ==得2c =,则2222cos a b c bc A =+-=3,即a = 从而sin sin sin a b c A B C ++++2sin aA==Ⅲ.课堂练习(1)在∆ABC 中,若55a =,16b =,且此三角形的面积S = C (2)在∆ABC 中,其三边分别为a 、b 、c ,且三角形的面积2224a b c S +-=,求角C(答案:(1)060或0120;(2)045)Ⅳ.课时小结(1)在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形; (2)三角形各种类型的判定方法; (3)三角形面积定理的应用。

Ⅴ.课后作业(1)在∆ABC 中,已知4b =,10c =,030B =,试判断此三角形的解的情况。

(2)设x 、x+1、x+2是钝角三角形的三边长,求实数x 的取值范围。

(3)在∆ABC 中,060A =,1a =,2b c +=,判断∆ABC 的形状。

(4)三角形的两边分别为3cm ,5cm,它们所夹的角的余弦为方程25760x x --=的根, 求这个三角形的面积。

例1、如图,一艘海轮从A 出发,沿北偏东75︒的方向航行67.5 n mile 后到达海岛B,然后从B 出发,沿北偏东32︒的方向航行54.0 n mile 后达到海岛C.如果下次航行直接从A 出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1︒,距离精确到0.01n mile)解:在∆ABC 中,∠ABC=180︒- 75︒+ 32︒=137︒,根据余弦定理,AC=ABC BC AB BC AB ∠⨯⨯-+cos 222 =︒⨯⨯⨯-+137cos 0.545.6720.545.6722 ≈113.15 根据正弦定理,CAB BC ∠sin = ABCAC ∠sin sin ∠CAB = ACABC BC ∠sin =15.113137sin 0.54︒≈0.3255, 所以 ∠CAB =19.0︒, 75︒- ∠CAB =56.0︒答:此船应该沿北偏东56.1︒的方向航行,需要航行113.15n mile补充例2、某巡逻艇在A 处发现北偏东45︒相距9海里的C 处有一艘走私船,正沿南偏东75︒的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?解:如图,设该巡逻艇沿AB 方向经过x 小时后在B 处追上走私船,则CB=10x, AB=14x,AC=9,∠ACB=︒75+︒45=︒120∴(14x) 2= 92+ (10x) 2 -2⨯9⨯10xcos ︒120∴化简得32x 2-30x-27=0,即x=23,或x=-169(舍去) 所以BC = 10x =15,AB =14x =21,又因为sin ∠BAC =AB BC ︒120sin =2115⨯23=1435 ∴∠BAC =3831'︒,或∠BAC =14174'︒(钝角不合题意,舍去), ∴3831'︒+︒45=8331'︒答:巡逻艇应该沿北偏东8331'︒方向去追,经过1.4小时才追赶上该走私船.评注:在求解三角形中,我们可以根据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必须检验上述所求的解是否符合实际意义,从而得出实际问题的解 Ⅳ.课时小结解三角形的应用题时,通常会遇到两种情况:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之。

相关文档
最新文档