华南理工大学数据挖掘第五章

合集下载

《数据挖掘教学课件》数据挖掘期末考题(答案)

《数据挖掘教学课件》数据挖掘期末考题(答案)

华南理工大学计算机科学与工程学院2012—2013学年度第二学期期末考试《数据仓库与数据挖掘技术》试卷(假的)专业:计算机科学与技术年级:2010 姓名:学号:注意事项:1. 本试卷共四大题,满分100分,考试时间120分钟;2. 所有答案请直接答在试卷上;题号一二三四总分得分一.填空题(每空1分,共20分)1.数据仓库的特征包括_面向主题________、___集成_________、__时变_________和非易失性。

2.数据仓库的三种数据模式包括_星形模式_、__雪花形模式__________、___事实星座形模式________。

3.仓库数据库服务器、_LOAP服务器________、__前端客户__________为数据仓库的多层结构。

4. OLAP技术多维分析过程中,多维分析操作包括 __上卷___、__下钻____、___切片____、__切块__________、__转轴_________等。

5. 知识发现过程的主要步骤有:数据清理、__数据集成__________、__数据选择___、数据交换、_数据挖掘________、___模式评估_________、__知识表示_______。

6. 数据仓库的视图的分类有:自顶向下视图、_数据源视图________、数据仓库视图、_商务视图_________。

二.简答题(每题6分,共42分)1.简述处理空缺值的方法。

1、忽略该记录2、手工填写空缺值3、使用默认值4、使用属性平均值5、使用同类样本平均值6、使用最可能的值2.挖掘的知识类型。

1、概念/类描述:特征化和区分2、挖掘频繁模式、关联和相关3、分类和预测4、聚类分析5、离群点分析6、演变分析3.何为OLTP与OLAP及他们的主要区别。

联机事务处理OLTP (on-line transaction processing);联机分析处理OLAP (on-line analytical processing);OLTP和OLAP的区别:用户和系统的面向性:OLTP面向顾客,而OLAP面向市场;数据内容:OLTP系统管理当前数据,而OLAP管理历史的数据;数据库设计:OLTP系统采用实体-联系(ER)模型和面向应用的数据库设计,而OLAP系统通常采用星形和雪花模型;视图:OLTP系统主要关注一个企业或部门内部的当前数据,而OLAP 系统主要关注汇总的统一的数据;访问模式:OLTP访问主要有短的原子事务组成,而OLAP系统的访问大部分是只读操作,尽管许多可能是复杂的查询。

华南理工大学数据挖掘第一章

华南理工大学数据挖掘第一章

第一章为什么要提出数据挖掘?面临的挑战:●数据太多,信息太少●难以发掘潜在的规则●难以交互分析了解各种组合●难以追溯历史数据成为孤岛●随着数据量的增大,难度越来越大解决的问题:●数据挖掘找出潜在规则,辅助决策●OLAP、数据分析提供了更及时、更丰富的信息●报表系统提供了最基本的信息应用:●市场分析与管理●风险分析与管理●欺诈检测与异常模式检测●文本挖掘(news group, email, documents),Web 挖掘●流数据挖掘●生物信息学与生物数据分析什么是数据挖掘?从数据集中识别出有效的、新颖的、潜在有用的,以及最终可理解的模式的非平凡过程。

⏹非平凡(的过程):有一定的智能性、自动性(仅仅给出所有数据之和不能算做一个发现过程)。

⏹有效性:所发现的模式对新的数据仍保持一定的可信度。

⏹潜在有用性:所发现的模式将来有实际的效用。

⏹新颖性:所发现的模式应该是新的。

⏹最终可理解性:能被用户理解,如:简洁性⏹有趣性:有效性、新颖性、潜在有用性、最终可理解性的综合数据挖掘过程:数据清洗:消除噪音和不一致数据数据集成:多种数据源可以组合在一起数据选择:从数据库中提取与分析任务相关的数据数据变换:数据变换或统一成适合挖掘的形式,如通过汇总或聚集操作数据挖掘:基本步骤,使用智能方法提取数据模式模式评估:根据某种兴趣度度量,识别表示知识的真正有趣的知识知识表示:使用可视化和知识表示技术,向用户提供挖掘的知识数据挖掘: 哪些数据类型?关系数据库、数据仓库、事务数据库、空间数据、工程设计数据、超文本或多媒体数据、时间相关的数据、流数据和万维网数据挖掘的功能一般功能●描述性的数据挖掘●预测性的数据挖掘数据挖掘可以挖掘哪些模式?⏹概念/类描述: 特性化和区分(定性与对比)概念描述(concept description):对含有大量数据的数据集合进行概述性的总结并获得简明、准确的描述。

特征化:目标类数据的一般特征或特征的汇总。

数据挖掘教学大纲

数据挖掘教学大纲

数据挖掘教学大纲引言概述:数据挖掘是一门涉及数据分析和模式识别的学科,它通过挖掘数据中的隐藏模式和关联性,帮助我们从大量的数据中提取有价值的信息。

因此,设计一份合理的数据挖掘教学大纲是非常重要的。

本文将从五个大点出发,详细阐述数据挖掘教学大纲的内容。

正文内容:1. 数据挖掘基础知识1.1 数据挖掘概述:介绍数据挖掘的定义、目标和应用领域。

1.2 数据挖掘过程:详细阐述数据挖掘的步骤和流程,包括数据预处理、特征选择、模型建立和评估等。

1.3 数据挖掘算法:介绍常用的数据挖掘算法,如分类、聚类、关联规则等,并分析它们的原理和适用场景。

2. 数据预处理2.1 数据清洗:讲解如何处理缺失值、异常值和重复值等数据问题。

2.2 数据集成:介绍如何将来自不同数据源的数据整合到一个数据集中。

2.3 数据变换:讲解如何对数据进行规范化、离散化和归一化等处理。

2.4 特征选择:详细介绍如何选择对数据挖掘任务有用的特征。

3. 数据挖掘算法3.1 分类算法:介绍常用的分类算法,如决策树、朴素贝叶斯和支持向量机等,并分析它们的原理和应用场景。

3.2 聚类算法:讲解聚类算法的原理和常用方法,如K-means和层次聚类等。

3.3 关联规则挖掘:详细介绍关联规则挖掘的原理和算法,如Apriori和FP-Growth等。

3.4 预测算法:介绍常用的预测算法,如线性回归和时间序列分析等。

4. 模型评估与选择4.1 模型评估指标:讲解常用的模型评估指标,如准确率、召回率和F1值等。

4.2 交叉验证:介绍交叉验证的原理和方法,如K折交叉验证和留一法等。

4.3 模型选择:详细阐述如何选择适合的模型,包括根据数据特点和任务需求进行选择。

5. 数据挖掘应用5.1 金融领域:介绍数据挖掘在风险评估、信用评分和欺诈检测等方面的应用。

5.2 健康领域:讲解数据挖掘在疾病预测、医疗决策和基因分析等方面的应用。

5.3 社交媒体:详细阐述数据挖掘在用户推荐、情感分析和舆情监测等方面的应用。

最优化设计:第5章 一维最优化方法

最优化设计:第5章 一维最优化方法

华南理工大学机械与汽车工程学院
1
5.1 搜索区间的确定
➢搜索区间应当包含有目标函数的极小值点, 而且应当是单峰区间,即在该区间内目标 函数只有一个极小值点。
➢下凸单峰函数的性质:在极小值点左边, 函数值应严格下降。在极小值点右边,函 数值应严格上升。
华南理工大学机械与汽车工程学院
2
华南理工大学机械与汽车工程学院
华南理工大学机械与汽车工程学院
13
华南理工大学机械与汽车工程学院
14
f1
( 2 ) d1 d2 2 d3 22 f 2
(3 ) d1
d23
d 3
2 3
f3
f1 1 12
f2 2 22
f3 3 32
d1 1 1
2 1
1 2 22
1 3 32
1
f1
2 1
1 f2 22
1 f3 32
d2 1
1
2 1
1 2 22
1 3 32
1 1 f1
1 2 f2
1 d3
1
3 1
f3
12
1 2 22
1 3 32
华南理工大学机械与汽车工程学院
15
华南理工大学机械与汽车工程学院
16
华南理工大学机械与汽车工程学院
17
华南理工大学机械与汽车工程学院
18
5.4 切线法
第5章 一维最优化方法
min f ( xk1 ) f ( xk sk )
✓一维搜索是多维搜索的基础。 ✓求解一维优化问题首先要确定初始的搜索区 间,然后再求极小值点。 ✓一维优化方法可分为两类: 直接法:按某种规律取若干点计算其目标函 数值,并通过直接比较目标函数值来确定最 优解; 间接法:即解析法,需要利用导数。

华南理工大学数据挖掘第二章

华南理工大学数据挖掘第二章

第二章数据预处理⏹为什么要预处理数据?现实世界中的数据是脏的:不完整、声、不一致不完整原因:收集和分析面对的不同情况人为/机器等原因有噪声原因:人为/机器输入的错误数据转换的错误不一致原因:不同的数据源没有高质量的数据,就没有高质量的挖掘结果!⏹数据预处理的主要任务数据清理:通过填写缺失的值、光滑噪声数据、识别或删除离群点并解决不一致性带来“清理”数据。

数据集成:涉及集成多个数据库,数据立方体或文件数据变换:规范化和集聚数据归约:得到数据集的简化表示,它小得多但是产生同样的结果数据离散化:数据规约形式,对于从数值数据自动地产生概念分成是非常有用⏹描述性数据汇总动机:更好的理解数据:中心趋势和离中趋势特征数据离散特征:(中心趋势)均值、中位数、众数、中列数(离中趋势)四分位数、四分位数极差、方差度量数据的离散程度:极差、四分位数、离群点和盒图⏹数据清洗重要性:试图填充缺失的值,光滑噪声并识别离群点,并纠正数据中的不一致数据清理的任务:填充缺失值:忽略元组、人工填写缺失值、使用一个全局变量填充缺失值、使用属性的均值填充缺失值、使用与给定元组属同一类的所有样本的属性均值,使用最可能的值填充缺失值噪声数据:分箱:通过考察数据的紧邻来光滑有序数据的值(用箱均值光滑、用箱边界光滑、用箱中位数光滑)等宽分箱:每个分箱之间的数据值区间一致等深度分箱:每个分箱的数据量一致回归:回归函数拟合数据来光滑数据聚类:将类似的值组织成为群或“簇”校正不一致数据:清楚数据集成带来的冗余数据:⏹数据集成与变换数据集成:合并多个数据源中的数据,存放在一个一致的数据存储中数据变换: 平滑:去掉数据中的噪音。

这种技术包括分箱、聚类和回归。

聚集:对数据进行汇总和聚集。

例如,可以聚集日销售数据,计算月和年销售额。

通常,这一步用来为多粒度数据分析构造数据方。

数据泛化:使用概念分层,用高层次概念替换低层次“原始”数据。

例如,分类的属性,如street ,可以泛化为较高层的概念,如city 或country 。

2021年《逻辑学》随堂练习答案·华南理工大学网络教育

2021年《逻辑学》随堂练习答案·华南理工大学网络教育

《逻辑学》随堂练习答案华南理工大学网络教育第一章引论·第一节“逻辑”的含义与历史当前页有3题,你已做3题,已提交3题,其中答对3题。

1.(单选题) 在现代汉语里,“逻辑”是个多义词,以下选项中用“逻辑”来指称某种理论观点的是()A、不经历风雨,怎能见彩虹,这是强者的逻辑B、这篇论文的逻辑性很强C、龟兔赛跑,兔子居然跑不过乌龟,这是什么逻辑D、谦虚使人进步,骄傲使人落后,这是生活的逻辑答题: A. B. C. D. (已提交)正确答案:A问题解析:2.(单选题) “建筑是凝固的音乐”这一定义是()A、正确的定义B、犯了“以比喻代定义”的逻辑错误C、犯了“定义含混”的逻辑错误D、犯了“子项不全”的逻辑错误答题: A. B. C. D. (已提交)正确答案:B问题解析:3.(单选题) “我校有人教逻辑”这一判断可以理解为()。

A、我校有人教逻辑,有人不教逻辑B、我校至少有一人教逻辑C、我校所有人不教逻辑D、我校有人不教逻辑答题: A. B. C. D. (已提交)正确答案:B问题解析:第一章引论·第二节逻辑学的研究对象答题: A. B. C. D. (已提交)正确答案:C问题解析:2.(单选题) “如果鱼和熊掌不可兼得”是事实,则以下哪一项也一定是事实()A、如果鱼不可得,则熊掌可得B、如果熊掌不可得,则鱼可得C、如果鱼可得,则熊掌不可得D、鱼和熊掌皆不可的答题: A. B. C. D. (已提交)正确答案:C问题解析:3.(单选题) 世间万物中,人是第一宝贵的。

我是人,所以,我是世间万物中第一宝贵的。

这个推理中的错误,与以下哪项中出现的错误是一致的?()A、作案者都有作案动机,张三作案了,张三一定有作案动机B、各级干部都应当作出表率,我不是干部,所以,我是不用作出表率的C、中国人不怕死,我是中国人,所以我不怕死D、想当翻译就要学好外语,我可不想当翻译,何必费力学外语答题: A. B. C. D. (已提交)正确答案:C问题解析:第一章引论·第三节逻辑与语言A. B. C.答题: A. B. C. D. (已提交)正确答案:C问题解析:3.(单选题) “p并且q”与“p或者q”这两个判断()。

《数据挖掘》课程PPT-聚类分析

《数据挖掘》课程PPT-聚类分析

图像处理
1 2 3
图像分割
在图像处理中,聚类分析可以用于将图像分割成 多个区域或对象,以便进行更细致的分析和处理。
特征提取
通过聚类分析,可以提取图像中的关键特征,如 颜色、形状、纹理等,以实现图像分类、识别和 检索。
图像压缩
通过聚类分析,可以将图像中的像素进行聚类, 从而减少图像数据的维度和复杂度,实现图像压 缩。
03 推荐系统
利用聚类分析对用户和物品进行分类,为用户推 荐相似或相关的物品或服务。
02
聚类分析的常用算法
K-means算法
• 概述:K-means是一种基于距离的聚类算法,通过迭代将数据划分为K个集群,使得每个数 据点与其所在集群的中心点之间的距离之和最小。
• · 概述:K-means是一种基于距离的聚类算法,通过迭代将数据划分为K个集群,使得每个数 据点与其所在集群的中心点之间的距离之和最小。
03 基于模型的聚类
根据某种模型对数据进行拟合,将数据点分配给 不同的模型,常见的算法有EM算法、高斯混合模 型等。
聚类分析的应用场景
01 客户细分
将客户按照其特征和行为划分为不同的细分市场, 以便更好地了解客户需求并提供定制化服务。
02 异常检测
通过聚类分析发现数据中的异常值或离群点,以 便及时发现潜在的问题或风险。
生物信息学
基因表达分析
在生物信息学中,聚类分析可以用于分析基因表达数据, 将相似的基因聚类在一起,以揭示基因之间的功能关联和 调控机制。
蛋白质组学分析
通过聚类分析,可以研究蛋白质之间的相互作用和功能模 块,以深入了解生物系统的复杂性和动态性。
个性化医疗
通过聚类分析,可以根据个体的基因型、表型等特征进行 分类,为个性化医疗提供依据和支持。

一种模糊矢量相关信息检索模型

一种模糊矢量相关信息检索模型

一种模糊矢量相关信息检索模型
吴应良;韦岗;金连文;李海洲
【期刊名称】《计算机工程与应用》
【年(卷),期】2000(036)011
【摘要】矢量相关模型VCM是当前流行的信息检索模型之一.本文将模糊集理论和方法引入检索模型的构造,提出了一种模糊矢量相关模型FVCM,从而对其理论结构及用户检索模式的表达机制做了模糊化改进.初步实验表明,新模型克服了原模型的一些固有缺陷,有利于提高系统查准率和查全率.
【总页数】3页(P50-51,150)
【作者】吴应良;韦岗;金连文;李海洲
【作者单位】华南理工大学工商管理学院,电子与信息学院,广州,510641;华南理工大学工商管理学院,电子与信息学院,广州,510641;华南理工大学工商管理学院,电子与信息学院,广州,510641;新加坡国立大学Kent Ridge数字实验室,新加坡,119613【正文语种】中文
【中图分类】TP3
【相关文献】
1.医学信息检索中一种基于概念的查询相关模型 [J], 李纲;毛进;芦昆
2.基于多相关本体的模糊信息检索模型 [J], 俞扬信
3.一种基于相关反馈的信息检索模型 [J], 金光赫;王兴伟;曲大鹏;蒋定德
4.信息检索中一种基于词语-主题词相关度的语言模型 [J], 田萱;杜小勇;李海华
5.一种基于Web的模糊矢量相关检索模型 [J], 吴应良;韦岗
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

混合维关联规则(存在重复谓词) L. g :age(X,”19-25”) ∧buys(X, “computer”) ⇒buys(X, “printer”) 分类属性(Categorical Attribute) 又称标称属性(Nominal Attribute) 属性值中包含有限个确定的不同值, 值之间无顺序关系 例如:性别、民族、职业、颜色等 量化属性(Quantitative Attribute) 属性值是数字类型的,值之间隐含了顺序关 例如:年龄、收入、销售量、价格、销售额等 关联挖掘与相关分析 兴趣度的度量 客观度量 两个最为流行的度量: 支持度和置信度(support and confidence) (该规则具有一定的欺骗性 ) 主观度量(Silberschatz&Tuzhilin, KDD95) 一个规则(模式)是感兴趣的,如果 没有想到的(用户感到惊讶的); 可操作的(用户在得到结果后,可以在此之上做些什么) 提升: P(A∪B)=P(B)*P(A), A 和 B 是独立事件
support ({������ }{������ }) support ({x})
使用 Apriori 方法挖掘关联规则 频繁项集:如果项集满足最小支持度,则称之为频繁项集 频繁项集的基本特征:任何频繁项集的非空子集均为频繁项集 Apriori 方法:
提高 Aproori 效率的方法: 1、 基于 hash 的项集计数 2、 较少交易记录 3、 划分 4、 抽样 5、 动态项集计数:在添加一个新的候选集之前,先估计一下是不是他的所有子集 都是频繁的。 挖掘多层关联规则 自上而下,深度优先的方法: 先找高层的“强”规则: 牛奶⇒面包[20%, 60%]. 再找他们底层的“弱”规则: 酸奶⇒黄面包[6%, 50%]. 支持度递减: 随着层次的降低支持度递减 层与层独立: 完全的宽度搜索 层交叉单项过滤 层交叉 k-项集过滤 受控的层交叉单项过滤 为什么要逐步精化 挖掘操作的代价可能高或低,结果可能过细致或粗糙 在速度和质量之间折衷:逐步精化 多维关联规则挖掘 单维关联规则(维内关联规则) 关联规则中仅包含单个谓词(维) 通常针对的是事务数据库 L. g :buys(X, “milk”) ⇒buys(X, “bread”) 多维关联规则:规则内包含 2 个以上维/谓词 维间关联规则(不重复谓词)
第五章关联规则 关联规则挖掘—相关概念 频繁模式: 频繁地出现在数据集中的模式(如项集、子序列或子结构) 为什么频繁模式挖掘重要? 揭示数据集中内在和重要模式 为许多挖掘人物提供基础 所有形如 X ⇒Y 蕴涵式的称为关联规则,这里 X ⊂I, Y ⊂I,并且 X∩Y=Φ 支持度 s:一个事务中包含 X Y 的可能性 L. g:support(X⇒Y) :在所有事件中既购买了 X 又购买了 Y 的概率 置信度 c:一个事务中包含 X 也包含 Y 的条件概率 L. g:confidence(X⇒Y): 购买了 X 的情况下购买 Y 的概率 Support(X⇒Y)) = support({X}{Y}) confidence(X⇒Y) =
总结
��� 大量数据之间的关联关系的发现在选择购物、决策分析和商务管理方面是有用的。一个流
行的应用领域是购物篮分析,通过搜索经常一块购买的商品的集合(或序列),研究顾客的 购买习惯。关联规则挖掘首先找出频繁项集(项的集合,如A 和B,满足最小支持度阈值, 或任务相关元组的百分比),然后,由它们产生形如A ⇒B 的强关联规则。这些规则也满足 最小置信度阈值(预定义的、在满足A 的条件下满足B 的概率)。 ��� 根据不同的标准,关联规则可以分成若干类型,如: (1) 根据规则所处理的值的类型, 关联规则可以分为布尔的和量化的。 布尔关联规则表 现离散(分类)对象之间的联系。量化关联规则是多维关联规则,涉及动态离散化的数 值属性。它也可能涉及分类属性。 (2) 根据规则中数据涉及的维, 关联规则可以分成单维和多维的。 单维关联规则涉及单 个谓词或维,如buys;而多维关联规则涉及多个(不同的)谓词或维。单维关联规则 展示的是维内联系(即,同一个属性或维内的关联);而多维关联规则展示的是维间联 系(即,属性/维之间的关联)。 (3) 根据规则涉及的抽象层,关联规则可以分为单层和多层的。在单层关联规则中,项 或谓词的挖掘不考虑不同的抽象层;而多层关联规则考虑多个抽象层。 (4) 根据对关联挖掘的不同扩充,关联挖掘可以扩充为相关分析和最大频繁模式(“最 大模式”)与频繁闭项集挖掘。相关分析指出相关项的存在与否。最大模式是一个频繁 模式p,使得p的任何真超集都不是频繁的。频繁闭项集是指:项集c 是闭的,如果不 存在c 的真超集c’,使得包含c 的子模式的每个事务也包含c’。 ��� Apriori算法是一种有效的关联规则挖掘算法,它逐级探查,进行挖掘。Apriori性质:频 繁项集的所有非空子集都必须是频繁的。在第k 次迭代,它根据频繁k-项集,形成频繁 (k+1)-项集候选,并扫描数据库一次,找出完整的频繁(k+1)-项集L k+1。涉及散列和事务压 缩的变形可以用来使得过程更有效。其它变形涉及划分数据(在每一部分上挖掘,然后合并 结果)和数据选样(在数据子集上挖掘)。这些变形可以将数据扫描次数减少到一或两次。 ��� 频繁模式增长(FP-增长)是一种不产生候选的挖掘频繁项集方法。它构造一个高度压缩 的数据结构 (FP-树) , 压缩原来的事务数据库。 不是使用类Apriori方法的产生-测试策略, 它聚焦于频繁模式(段)增长,避免了高代价的候选产生,获得更好的效率。 ��� 多层关联规则可以根据每个抽象层上的最小支持度阈值如何定义,使用多种策略挖掘。当 在较低层使用递减的支持度时,剪枝方法包括层交叉按单项过滤,层交叉按k-项集过滤。冗 余的(后代)关联规则可以删除,不向用户提供,如果根据其对应的祖先规则,它们的支持 度和置信度接近于期望值的话。 ��� 挖掘多维关联规则可以根据对量化属性处理分为若干类。第一,量化属性可以根据预定义 的概念分层静态离散化。 数据方非常适合这种方法, 因为数据方和量化属性都可以利用概念 分层。第二,可以挖掘量化关联规则,其量化属性根据分箱动态离散化,“临近的”关联规 则可以用聚类组合。第三,可以挖掘基于距离的关联规则,其中区间根据聚类定义。 ��� 并非所有的强关联规则都是有趣的。对于统计相关的项,可以挖掘相关规则。 ��� 基于限制的挖掘允许用户聚焦,按提供的元规则(即,模式模板)和其它挖掘限制搜索规 则。 这种挖掘促进了说明性数据挖掘查询语言和用户界面的使用, 并对挖掘查询优化提出了 巨大挑战。规则限制可以分五类:反单调的、单调的、简洁的、可变的和不可变的。前四类 限制可以在关联挖掘中使用,指导挖掘过程,导致更有功效和更有效率的挖掘。 ��� 关联规则不应当直接用于没有进一步分析或领域知识的预测。它们不必指示因果关系。然 而,对于进一步探查,它们是有帮助的切入点。这r A ,B
P(A B ) P(A )P(B )
取值小于 1 ,A and B 负相关 取值大于 1 ,A and B 正相关 基于约束的关联挖掘 使用约束的必要性:产生的多数规则是用户不感兴趣的,应在用户提供的各种约束 的指导下进行挖掘 在数据挖掘中常使用的几种约束: 知识类型限制:指定要挖掘的知识类型,如关联规则。 数据限制:指定任务相关的数据集。 维/层限制:指定所用的维或概念分层结构的层。 兴趣度限制:指定规则兴趣度阈值或统计度量,如支持度和置信度。 规则限制:指定要挖掘的规则形式。这种限制可以用元规则(规则模板) 表示,如可以出现在规则前件或后件中谓词的最大或最小个数,或属性、 属性值和/或聚集之间的联系。
相关文档
最新文档