初中辅导02:三角形相似
初中相似三角形知识点归纳

初中相似三角形知识点归纳分享借鉴.初中相似三角形知识点11.相似三角形定义:对应角相等,对应边成比例的三角形,叫做相似三角形.2.相似三角形的表示方法:用符号∽ 表示,读作相似于 .3.相似三角形的相似比:相似三角形的对应边的比叫做相似比.4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似.从表中可以看出只要将全等三角形判定定理中的对应边相等的条件改为对应边成比例就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法.6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的`斜边和一条直角边对应成比例,那么这两个直角三角形相似.7.相似三角形的性质定理:(1)相似三角形的对应角相等.(2)相似三角形的对应边成比例.(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比.(4)相似三角形的周长比等于相似比.(5)相似三角形的面积比等于相似比的平方.8. 相似三角形的传递性如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2初中相似三角形知识点21.相似三角形的定义对应角相等.对应边成比例的两个三角形叫做相似三角形.如果三边分别对应A,B,C和a,b,c:那么:A/a=B/b=C/c即三边边长对应比例相同.2.相似三角形判定对应角相等,对应边成比例的两个三角形叫做相似三角形.判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(AA)判定定理2:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似(SAS)判定定理3:如果两个三角形的三组对应边成比例,那么这两个三角形相似(SSS)判定定理4:两三角形三边对应平行,则两三角形相似.判定定理5:两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似.其他判定:由角度比转化为线段比:h1/h2=Sabc3.相似三角形性质(1)相似三角形的对应角相等.(2)相似三角形的对应边成比例.(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比.(4)相似三角形的周长比等于相似比.(5)相似三角形的面积比等于相似比的平方.初中相似三角形知识点3一.平行线分线段成比例定理及其推论:1.定理:三条平行线截两条直线,所得的对应线段成比例.2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边.二.相似预备定理:平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例.三.相似三角形:1.定义:对应角相等,对应边成比例的三角形叫做相似三角形.2.性质:(1)相似三角形的对应角相等;(2)相似三角形的对应线段(边.高.中线.角平分线)成比例;(3)相似三角形的周长比等于相似比,面积比等于相似比的平方.说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应.3. 判定定理:(1)两角对应相等,两三角形相似;(2)两边对应成比例,且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似.四.三角形相似的证题思路:五.利用相似三角形证明线段成比例的一般步骤:一定:先确定四条线段在哪两个可能相似的三角形中;二找:再找出两个三角形相似所需的条件;三证:根据分析,写出证明过程.如果这两个三角形不相似,只能采用其他方法,如找中间比或引平行线等. 六.相似与全等:全等三角形是相似比为1的相似三角形,即全等三角形是相似三角形的特例,它们之间的区别与联系:1.共同点它们的对应角相等,不同点是边长的大小,全等三角形的对应边相等,而相似三角形的对应的边成比例.2.判定方法不同,相似三角形只求形状相同的,大小不一定相等,所以改对应边相等成对应边成比例.初中相似三角形知识点。
初中数学相似三角形知识库相似三角形知识点整理

初中数学相似三角形知识库相似三角形知识点整理一、定义
相似三角形是指两个三角形之间的几何关系,它们的边都是可以比拟的,只不过比例不同,这个比例就是相似比例。
二、定理
1、相似三角形定理:同一个平面中的两个三角形如果它们的两个角的对应边比例相等,那么这两个三角形就是相似的。
2、两相似三角形的比例定理:同一个平面上的两个相似三角形,只要知道它们两个角的对应边比例,那么它们其他的边的比例也可以由此求出。
三、性质
1、锐角相似三角形的性质:两个锐角相似的三角形,它们的锐角相同,其余两个角也相同。
2、直角相似三角形的性质:两个直角相似的三角形,它们的直角相同,其余两个角也相同。
3、相似三角形中边及面积之间的关系:两个三角形相似,那么它们的三个边比例也一定是相等的,两个三角形的面积之比等于它们两个侧面的比例之平方。
四、进一步推广
1、直线及平面之间的相似:两条线段之间也有相似性,即它们的比例也可以求出,同样的,两个平面也有相似性,它们的比例也可以求出。
2、圆锥及圆柱之间的相似:圆锥和圆柱是两种各有特点的几何体,它们之间当然也有相似性,它们的比例也可以求出。
3、圆面积的相似:圆的面积之比可以求出。
【初中数学】初中数学三角形相似重要知识点

【初中数学】初中数学三角形相似重要知识点【—三角形相似判定知识】三角形相似知识经常出现在的大题目中,性质及判定定理也是需要掌握的。
三角形相似判定(1)平行于三角形一边的直线和其他两边平行,所形成的三角形与原三角形相近。
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
(简叙为:两边对应成比例且夹角相等,两个三角形相似。
)(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相近。
(简叙为:三边对应成比例,两个三角形相近。
)(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。
直角三角形认定定理:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相近。
相似三角形性质定理:(1)相近三角形的对应角成正比。
(2)相似三角形的对应边成比例。
(3)相近三角形的对应高线的比,对应中线的比和对应角平分线的比都等同于相近比。
(4)相似三角形的周长比等于相似比。
(5)相近三角形的面积比等同于相近比的平方。
判定定理推论推断一:顶角或底角成正比的两个等腰三角形相近。
推论二:腰和底对应成比例的两个等腰三角形相似。
推断三:存有一个锐角成正比的两个直角三角形相近。
推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
推断五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相近。
推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
性质 1.相近三角形对应角成正比,对应边变成比例。
2.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
3.相近三角形周长的比等同于相近比。
初中相似三角形知识点

初中相似三角形知识点一、相似三角形的定义相似三角形是指两个三角形的对应角相等,且对应边长成比例的三角形。
也就是说,如果三角形ABC与三角形DEF相似,那么角A等于角D,角B等于角E,角C等于角F,并且边AB与边DE、边BC与边EF、边CA与边DF之间的长度成同一比例。
二、相似三角形的标记在标记相似三角形时,我们通常使用一个字母来表示一个三角形,例如三角形ABC。
如果两个三角形相似,我们可以用一个比例系数(通常用字母k表示)来标记它们的对应边。
例如,如果AB/DE = BC/EF = AC/DF = k,那么我们说三角形ABC与三角形DEF相似,并且边长比例为k。
三、相似三角形的性质1. 角的对应性:相似三角形的对应角相等。
2. 边的成比例性:相似三角形的对应边成比例。
3. 面积的比例:相似三角形的面积比等于边长比的平方。
即,如果三角形ABC与三角形DEF相似,且边长比为k,则三角形ABC的面积与三角形DEF的面积之比为k^2。
4. 周长的比例:相似三角形的周长比也等于它们边长的比例。
四、相似三角形的判定1. 三角形相似判定定理:如果两个三角形的两组对应角分别相等,那么这两个三角形相似。
2. 边角边(SAS)判定定理:如果两个三角形有两边及其夹角分别相等,那么这两个三角形相似。
3. 边边边(SSS)判定定理:如果两个三角形的所有对应边分别成比例,那么这两个三角形相似。
五、相似三角形的应用相似三角形的概念在解决实际问题中非常有用,例如在测量、建筑、设计和其他领域。
通过使用相似三角形的性质,我们可以解决涉及长度、面积和角度的问题,尤其是在没有直接测量工具的情况下。
六、练习题1. 已知三角形ABC与三角形DEF相似,且AB = 6cm, BC = 8cm, AC = 10cm,DE = 3cm,求EF的长度。
2. 如果三角形PQR的面积是24平方厘米,并且与三角形ABC相似,且三角形ABC的面积是144平方厘米,求三角形PQR的边长。
关于相似三角形的知识点初中

关于相似三角形的知识点有以下几个重点内容:
1. 相似三角形的定义:如果两个三角形的对应角相等,则这两个三角形相似。
这里的“对应角”指的是在两个相似三角形中,同一个角的角度相等。
2. 相似三角形的性质:
* 对应角相等:如果两个三角形相似,则它们的对应角相等。
* 对应边成比例:如果两个三角形相似,则它们的对应边长之间的比例是常数,这个常数被称为相似比。
* 面积比:如果两个三角形相似,则它们的面积之比等于它们的相似比的平方。
3. 相似三角形的判定方法:
* 根据定义,直接判断对应角是否相等,来确定两个三角形是否相似。
* 如果两个三角形的两个对应角相等,则这两个三角形相似。
* 如果两个三角形的两边成比例且夹角相等,则这两个三角形相似。
4. 相似三角形的应用:在几何学中,相似三角形经常被用来解决实际问题,例如测量、建筑设计等。
5. 全等三角形与相似三角形的关系:全等三角形是特殊的相似三角形,即当两个三角形完全相同时,它们就是全等三角形。
换句话说,全等三角形一定是相似三角形,但相似三角形不一定是全等三角形。
6. 特殊类型的相似三角形:例如,当两个直角三角形中有一个直角相等时,它们就是相似的。
又如,当两个等腰三角形中有一个底角相等时,它们也是相似的。
初中数学知识归纳相似三角形的性质

初中数学知识归纳相似三角形的性质相似三角形是初中数学中重要的概念之一,它在几何学和应用数学中都具有广泛的应用。
相似三角形是指具有相同形状但大小不同的两个三角形。
在本文中,我们将归纳相似三角形的性质,全面了解相似三角形的特点和应用。
一、相似三角形的定义相似三角形的定义是指两个三角形的对应角相等,对应边成比例。
具体表达为:若ΔABC∽ΔA'B'C',则有∠A=∠A',∠B=∠B',∠C=∠C',且AB/A'B' = BC/B'C' = AC/A'C'。
二、相似三角形的性质1. 对应角相等性质:相似三角形的对应角相等,即∠A=∠A',∠B=∠B',∠C=∠C'。
2. 对应边成比例性质:相似三角形的对应边成比例,即AB/A'B' = BC/B'C' = AC/A'C'。
3. 相似三角形的边比例性质:在相似三角形中,各边之间的比值相等。
例如,若ΔABC∽ΔA'B'C',则有AB/BC = A'B'/B'C' = AC/BC =A'C'/B'C'。
三、相似三角形的判定1. AA判定法:若两个三角形的两个角分别相等,则这两个三角形相似。
即若∠A=∠A',∠B=∠B',则ΔABC∽ΔA'B'C'。
2. SAS判定法:若两个三角形的一个角相等,且两个角的对边成比例,则这两个三角形相似。
即若∠A=∠A',AB/A'B' = AC/A'C',则ΔABC∽ΔA'B'C'。
3. SSS判定法:若两个三角形的三边成比例,则这两个三角形相似。
即若AB/A'B' = BC/B'C' = AC/A'C',则ΔABC∽ΔA'B'C'。
九年级人教版相似图形知识点归纳

九年级人教版相似图形知识点归纳相似图形是初中数学中一个重要的概念,掌握相似图形的知识可以帮助我们解决许多几何问题。
在九年级数学课程中,我们学习了人教版教材中关于相似图形的知识点,下面对这些知识点进行归纳总结。
1. 相似三角形的定义相似三角形是指具有相同形状但大小可以不同的三角形。
两个三角形相似的条件是它们对应的角相等,对应的边成比例。
即如果∠A=∠D,∠B=∠E,∠C=∠F,那么三角形ABC与三角形DEF相似,且比例因子为AB/DE=AC/DF=BC/EF。
2. 相似三角形的角与边的性质a. 对应角相等:如果两个三角形相似,则它们对应的角相等。
b. 对应边成比例:如果两个三角形相似,则它们对应的边成比例。
3. 两种用来判断相似三角形的方法a. 三边成比例法:如果两个三角形的三条边长度分别成比例,即AB/DE=AC/DF=BC/EF,那么它们相似。
b. 两角对应相等法:如果两个三角形的两个角分别相等,且它们的第三个角也相等或者两个角分别相等,且它们的第三个角的对方边也成比例,那么它们相似。
4. 相似三角形的性质a. 相似三角形的对应边成比例,比例因子等于任意两边之比。
b. 相似三角形的高线成比例,比例因子等于任意两边之比。
5. 相似三角形与比例a. 两个相似三角形的面积之比等于相似三角形的边长之比的平方。
b. 相似三角形中,对应边的比例等于面积比。
即如果三角形ABC与三角形DEF相似,且比例因子为AB/DE=AC/DF=BC/EF,那么S(ABC)/S(DEF)=(AB/DE)^2=(AC/DF)^2=(BC/EF)^2。
6. 相似图形的面积比如果两个相似图形的边长比为a:b,那么它们的面积比为a^2:b^2。
这一性质适用于各种相似图形,如相似三角形、相似矩形等。
以上是九年级人教版相似图形知识点的归纳总结。
相似图形是几何学中一个非常重要的概念,通过掌握相似图形的性质和判断方法,我们可以在解决几何问题时更加轻松和高效。
初中数学 相似三角形的判定方法

相似三角形的判定•相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。
互为相似形的三角形叫做相似三角形。
例如图中,若B'C'//BC,那么角B=角B',角BAC=角B'A'C',是对顶角,那么我们就说△ABC∽△AB'C'•相似三角形的判定:1.基本判定定理(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
(简叙为:两边对应成比例且夹角相等,两个三角形相似。
)(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
(简叙为:三边对应成比例,两个三角形相似。
)(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。
2.直角三角形判定定理(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
3.一定相似:(1).两个全等的三角形(全等三角形是特殊的相似三角形,相似比为1:1)(2).两个等腰三角形(两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。
)(3).两个等边三角形(两个等边三角形,三个内角都是60度,且边边相等,所以相似)(4).直角三角形中由斜边的高形成的三个三角形。
•相似三角形判定方法:证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。
如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。
一、(预备定理)平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的相似
相似三角形的判定:AA ;SAS ;SSS ;HL
相似三角形的性质:相似三角形的对应角相等,相似三角形的对应边、高、中线、角平分线、周长的比等于相似比,面积比等于相似比的平方。
1.已知ABCD 中,M 、N 为AB 的三等分点,DM 、DN 交AC 于P 、Q 两点,求AP ∶PQ ∶QC 的值。
2.已知AD 为Rt △ABC 斜边BC 上的高。
证明:(1)2AB BD BC =⋅;(2)2
AC CD CB =⋅; (3)2
AD BD DC =⋅;(4)22AB BD
AC CD = B
3.四边形ABCD 中,AC 与BD 相交于点O ,直线l ∥BD ,且与AB 、DC 、BC 、AD 及AC 的延长线分别相交于点M 、N 、R 、S 、P 。
求证:PM PN PR PS ⋅=⋅
4.已知正方形ABCD中,M、N分别在AB、BC边上,且BM=BN,又BP⊥MC于P。
求证:PD⊥PN
5.在正方形ABCD中,E是对角线AC上一点,F是边AB上一点,且AE=2EC,AF=1
2 FB。
求∠EDF的度数。
D
B
6.在△ABC中,∠ACB=2∠ABC。
求证:22
AB AC
AC BC
=+⋅
7.四边形ABCD是梯形,点E是上底边AD上一点,CE的延长线与BA的延长线交于点F,过点E作BA 的平行线交CD的延长线于点M,BM与AD交于点N。
证明:∠AFN=∠DME
8.在△ABC中,∠BAC=90°,AB=AC,BD是中线,AE⊥BD,交BC于E。
求证:BE=2EC。
B
9.已知在凸四边形ABCD 中,E 为△ACD 内一点,满足AC =AD =2AB =2AE ,∠BAE +∠BCE =90°,∠BAC =∠EAD 。
求证:222
4BC CE BE += D
A
10.分别以锐角△ABC 的边为斜边向外作等腰直角三角形DAB ,EBC ,FAC 。
求证:AE =DF ,且AE ⊥DF 。
D。