最新-天津101中学2018届高考数学总复习 导数单元教学案(教师版全套) 精品
2018北师大版文科数学高考总复习教师用书3-1导数的概念及运算Word版含答案

第1讲导数的概念及运算最新考纲 1.了解导数概念的实际背景;2.通过函数图像直观理解导数的几何意义;3.能根据导数的定义求函数y=C(C为常数),y=x,y=x2,y=x3,y=1x,y=x的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.知识梳理1.导数与导函数的概念(1)当x1趋于x0,即Δx趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数y=f(x)在x0点的瞬时变化率.在数学中,称瞬时变化率为函数y=f(x)在x0点的导数,通常用符号f′(x0)表示,记作f′(x0)=(2)如果一个函数f(x)在区间(a,b)上的每一点x处都有导数,导数值记为f′(x):f′(x)=,则f′(x)是关于x的函数,称f′(x)为f(x)的导函数,通常也简称为导数.2.导数的几何意义函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k,即k=f′(x0),切线方程为:y-f(x0)=f′(x0)(x-x0).3.基本初等函数的导数公式4.若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).诊 断 自 测1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示 (1)f ′(x 0)与(f (x 0))′表示的意义相同.( ) (2)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (3)曲线的切线与曲线不一定只有一个公共点.( ) (4)若f (x )=a 3+2ax +x 2,则f ′(x )=3a 2+2x .( )解析 (1)f ′(x 0)表示函数f (x )的导数在x 0处的值,而f ((x 0))′表示函数值f (x 0)的导数,其意义不同,(1)错.(2)求f ′(x 0)时,应先求f ′(x ),再代入求值,(2)错.(4)f (x )=a 3+2ax +x 2=x 2+2ax +a 3,∴f ′(x )=2x +2a ,(4)错. 答案 (1)× (2)× (3)√ (4)×2.(教材改编)有一机器人的运动方程为s (t )=t 2+3t (t 是时间,s 是位移),则该机器人在时刻t =2时的瞬时速度为( ) A.194 B.174 C.154 D.134解析 由题意知,机器人的速度方程为v (t )=s ′(t )=2t -3t 2,故当t =2时,机器人的瞬时速度为v (2)=2×2-322=134. 答案 D3.(2016·天津卷)已知函数f (x )=(2x +1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为________.解析 因为f (x )=(2x +1)e x ,所以f ′(x )=2e x +(2x +1)e x =(2x +3)e x , 所以f ′(0)=3e 0=3. 答案 34.(2017·豫北名校期末联考)曲线y =-5e x +3在点(0,-2)处的切线方程为________. 解析 ∵y ′=-5e x ,∴所求曲线的切线斜率k =y ′|x =0=-5e 0=-5,∴切线方程为y -(-2)=-5(x -0),即5x +y +2=0. 答案 5x +y +2=05.(2015·全国Ⅰ卷)已知函数f (x )=ax 3+x +1的图像在点(1,f (1))处的切线过点(2,7),则a =________.解析 由题意可得f ′(x )=3ax 2+1,则f ′(1)=3a +1, 又f (1)=a +2,∴切线方程为y -(a +2)=(3a +1)(x -1). ∵切线过点(2,7),∴7-(a +2)=3a +1,解得a =1. 答案 1考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ; (2)y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2; (4)y =cos x e x .解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =⎝ ⎛⎭⎪⎫ln x +1x e x .(2)因为y =x 3+1+1x 2,所以y ′=(x 3)′+(1)′+⎝ ⎛⎭⎪⎫1x 2′=3x 2-2x 3.(3)因为y =x -12sin x ,所以y ′=⎝ ⎛⎭⎪⎫x -12sin x ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .(4)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos xe x.规律方法 (1)熟记基本初等函数的导数公式及运算法则是导数计算的前提,求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量提高运算速度,减少差错.(2)如函数为根式形式,可先化为分数指数幂,再求导.【训练1】 (1)f (x )=x (2 017+ln x ),若f ′(x 0)=2 018,则x 0等于( ) A .e 2 B .1 C .ln 2 D .e(2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析 (1)f ′(x )=2 017+ln x +1x ·x =2 018+ln x .由f ′(x 0)=2 018,得ln x 0=0,则x 0=1.(2)f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ). 由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3. 答案 (1)B (2)3考点二 导数的几何意义(多维探究) 命题角度一 求切线方程【例2-1】 (1)(2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.(2)(2017·南昌质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( ) A .x +y -1=0 B .x -y -1=0C .x +y +1=0D .x -y +1=0解析 (1)设x >0,则-x <0,f (-x )=e x -1+x . 又f (x )为偶函数,f (x )=f (-x )=e x -1+x , 所以当x >0时,f (x )=e x -1+x .因此,当x >0时,f ′(x )=e x -1+1,f ′(1)=e 0+1=2.则曲线y =f (x )在点(1,2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0.(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎨⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1. ∴直线l 的方程为y =x -1,即x -y -1=0. 答案 (1)2x -y =0 (2)B 命题角度二 求切点坐标【例2-2】 (2017·西安调研)设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.解析 由y ′=e x ,知曲线y =e x 在点(0,1)处的切线斜率k 1=e 0=1. 设P (m ,n ),又y =1x (x >0)的导数y ′=-1x 2, 曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2. 依题意k 1k 2=-1,所以m =1,从而n =1. 则点P 的坐标为(1,1). 答案 (1,1)命题角度三 求与切线有关的参数值(或范围)【例2-3】 已知直线y =12x +b 与曲线y =-12x +ln x 相切,则b 的值为( ) A .2 B .-1 C .-12 D .1 解析 设切点坐标为P (x 0,y 0),由y =-12x +ln x ,得y ′=-12+1x . ∴y ′|x =x 0=-12+1x 0,依题意,-12+1x 0=12,∴x 0=1,则P ⎝ ⎛⎭⎪⎫1,-12, 又切点P ⎝ ⎛⎭⎪⎫1,-12在直线y =12x +b 上,故-12=12+b ,得b =-1. 答案 B规律方法 (1)导数f ′(x 0)的几何意义就是函数y =f (x )在点P (x 0,y 0)处的切线的斜率,切点既在曲线上,又在切线上.切线有可能和曲线还有其他的公共点.(2)“曲线在点P 处的切线”是以点P 为切点,“曲线过点P 的切线”则点P 不一定是切点,此时应先设出切点坐标.(3)当曲线y =f (x )在点(x 0,f (x 0))处的切线垂直于x 轴时,函数在该点处的导数不存在,切线方程是x =x 0.【训练2】 (1)若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.(2)函数f (x )=ln x +ax 的图像存在与直线2x -y =0平行的切线,则实数a 的取值范围是________.解析 (1)由题意得y ′=ln x +x ·1x =1+ln x ,直线2x -y +1=0的斜率为2. 设P (m ,n ),则1+ln m =2,解得m =e , 所以n =eln e =e ,即点P 的坐标为(e ,e).(2)函数f (x )=ln x +ax 的图像存在与直线2x -y =0平行的切线,即f ′(x )=2在(0,+∞)上有解,而f ′(x )=1x +a ,即1x +a 在(0,+∞)上有解,a =2-1x ,因为a >0,所以2-1x <2,所以a 的取值范围是(-∞,2). 答案 (1)(e ,e) (2)(-∞,2)[思想方法]1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常数,其导数一定为0,即(f(x0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.在实施化简时,必须注意交换的等价性.3.曲线的切线与二次曲线的切线的区别:曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.[易错防范]1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.2.曲线y=f(x)“在点P(x0,y0)处的切线”与“过点P(x0,y0)的切线”的区别:前者P(x0,y0)为切点,而后者P(x0,y0)不一定为切点.3.对含有字母参数的函数要分清哪是变量哪是参数,参数是常量,其导数为零.基础巩固题组(建议用时:40分钟)一、选择题1.设y=x2e x,则y′=()A.x2e x+2x B.2x e xC.(2x+x2)e x D.(x+x2)e x解析y′=2x e x+x2e x=(2x+x2)e x.答案 C2.已知函数f(x)的导函数为f′(x),且满足f(x)=2x·f′(1)+ln x,则f′(1)等于() A.-e B.-1C.1 D.e解析由f(x)=2xf′(1)+ln x,得f′(x)=2f′(1)+1 x,∴f′(1)=2f′(1)+1,则f′(1)=-1.答案 B3.曲线y=sin x+e x在点(0,1)处的切线方程是()A.x-3y+3=0 B.x-2y+2=0C.2x-y+1=0 D.3x-y+1=0解析y′=cos x+e x,故切线斜率为k=2,切线方程为y=2x+1,即2x-y+1=0.答案 C4.(2017·成都诊断)已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A .e B .-e C.1e D .-1e解析 y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则y ′|x =x 0=1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1e . 答案 C5.(2017·昆明诊断)设曲线y =1+cos x sin x 在点⎝ ⎛⎭⎪⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于( ) A .-1 B.12 C .-2 D .2 解析 ∵y ′=-1-cos xsin 2 x ,∴=-1.由条件知1a =-1,∴a =-1. 答案 A 二、填空题6.若曲线y =ax 2-ln x 在点(1,a )处的切线平行于x 轴,则a =________.解析 因为y ′=2ax -1x ,所以y ′|x =1=2a -1.因为曲线在点(1,a )处的切线平行于x 轴,故其斜率为0,故2a -1=0,解得a =12. 答案 127.(2017·长沙一中月考)如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=________.解析 由图形可知:f (3)=1,f ′(3)=-13,∵g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3)=1-1=0. 答案 08.(2015·全国Ⅱ卷)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析 由y =x +ln x ,得y ′=1+1x ,得曲线在点(1,1)处的切线的斜率为k =y ′|x =1=2,所以切线方程为y -1=2(x -1),即y =2x -1. 又该切线与y =ax 2+(a +2)x +1相切, 消去y ,得ax 2+ax +2=0, ∴a ≠0且Δ=a 2-8a =0,解得a =8. 答案 8 三、解答题9.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求: (1)斜率最小的切线方程; (2)切线l 的倾斜角α的取值范围. 解 (1)y ′=x 2-4x +3=(x -2)2-1≥-1, 所以当x =2时,y ′=-1,y =53, 所以斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53,斜率k =-1,所以切线方程为x +y -113=0. (2)由(1)得k ≥-1,所以tan α≥-1,所以α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π.10.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解 (1)由y =x 3+x -2,得y ′=3x 2+1, 由已知令3x 2+1=4,解之得x =±1.当x=1时,y=0;当x=-1时,y=-4.又∵点P0在第三象限,∴切点P0的坐标为(-1,-4).(2)∵直线l⊥l1,l1的斜率为4,∴直线l的斜率为-14.∵l过切点P0,点P0的坐标为(-1,-4),∴直线l的方程为y+4=-14(x+1),即x+4y+17=0.能力提升题组(建议用时:20分钟)11.(2016·山东卷)若函数y=f(x)的图像上存在两点,使得函数的图像在这两点处的切线互相垂直,则称y=f(x)具有T性质,下列函数中具有T性质的是()A.y=sin x B.y=ln xC.y=e x D.y=x3解析若y=f(x)的图像上存在两点(x1,f(x1)),(x2,f(x2)),使得函数图像在这两点处的切线互相垂直,则f′(x1)·f′(x2)=-1.对于A:y′=cos x,若有cos x1·cos x2=-1,则当x1=2kπ,x2=2kπ+π(k∈Z)时,结论成立;对于B:y′=1x,若有1x1·1x2=-1,即x1x2=-1,∵x1>0,x2>0,∴不存在x1,x2,使得x1x2=-1;对于C:y′=e x,若有e x1·e x2=-1,即e x1+x2=-1.显然不存在这样的x1,x2;对于D:y′=3x2,若有3x21·3x22=-1,即9x21x22=-1,显然不存在这样的x1,x2.答案 A12.(2017·合肥模拟)点P是曲线x2-y-ln x=0上的任意一点,则点P到直线y=x-2的最小距离为()A.1 B.32 C.52 D. 2解析点P是曲线y=x2-ln x上任意一点,当过点P的切线和直线y=x-2平行时,点P到直线y=x-2的距离最小,直线y=x-2的斜率为1,令y=x2-ln x,得y′=2x-1x=1,解得x=1或x=-12(舍去),故曲线y=x2-ln x上和直线y=x-2平行的切线经过的切点坐标为(1,1),点(1,1)到直线y =x -2的距离等于2,∴点P 到直线y =x -2的最小距离为 2.答案 D13.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 解析 ∵f (x )=12x 2-ax +ln x ,∴f ′(x )=x -a +1x (x >0).∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x ≥2(当且仅当x =1时取等号).答案 [2,+∞)14.已知函数f (x )=x -2x ,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x =1处的切线斜率相同,求a 的值,并判断两条切线是否为同一条直线.解 根据题意有f ′(x )=1+2x 2,g ′(x )=-a x .曲线y =f (x )在x =1处的切线斜率为f ′(1)=3,曲线y =g (x )在x =1处的切线斜率为g ′(1)=-a ,所以f ′(1)=g ′(1),即a =-3.曲线y =f (x )在x =1处的切线方程为y -f (1)=3(x -1).所以y +1=3(x -1),即切线方程为3x -y -4=0.曲线y =g (x )在x =1处的切线方程为y -g (1)=3(x -1),所以y +6=3(x -1),即切线方程为3x -y -9=0,所以,两条切线不是同一条直线.。
全国通用2018版高考数学一轮复习第三章导数及其应用3.2.3导数与函数的综合应用课件文北师大版

当 x 变化时,f(x)与 f′(x)的变化情况如下:
x
(-∞,-2) -2 -2,-23 -23 -23,+∞
f′(x)
+
0
-
0
+
f(x)
c
c-3227
所以,当 c>0 且 c-3227<0,存在 x1∈(-4,-2),x2∈-2,-23, x3∈-23,0,使得 f(x1)=f(x2)=f(x3)=0.由 f(x)的单调性知,当且仅 当 c∈0,3227时, 函数 f(x)=x3+4x2+4x+c 有三个不同零点.
解 (1)因为 x=5 时,y=11,所以a2+10=11,a=2. (2)由(1)可知,该商品每日的销售量为 y=x-2 3+10(x-6)2, 所以商场每日销售该商品所获得的利润为 f(x)=(x-3)x-2 3+10x-62 =2+10(x-3)(x-6)2,3<x<6. 从而,f′(x)=10[(x-6)2+2(x-3)(x-6)] =30(x-4)·(x-6),
(2)因 V(r)=5π(300r-4r3)(0<r<5 3), 故 V′(r)=π5(300-12r2), 故 V′(r)=0,解得 r=5 或-5(因 r=-5 不在定义域内,舍去). 当 r∈(0,5)时,V′(r)>0,故 V(r)在(0,5)上为增函数; 当 r∈(5,5 3)时,V′(r)<0,故 V(r)在(5,5 3)上为减函数. 由此可知,V(r)在 r=5 处取得最大值,此时 h=8. 所以当 r=5,h=8 时,该蓄水池的体积最大.
于是,当 x 变化时,f′(x),f(x)的变化情况如下表:
x
(3,4)
4
(4,6)
f′(x) +
天津101中学高考数学总复习 复数单元精品教学案(教师版全套)

数系的扩充与复数的引入1、了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用.2、理解复数的基本概念以及复数相等的充要条件3、了解复数的代数表示法及其几何意义,能进行复数代数形式的四则运算,了解复数代数重视复数的概念和运算,注意复数问题实数化.第1课时 复数的有关概念1.复数:形如 ),(R b a ∈的数叫做复数,其中a , b 分别叫它的 和 .2.分类:设复数 (,)z a bi a b R =+∈:(1) 当 =0时,z 为实数;(2) 当 ≠0时,z 为虚数;(3) 当 =0, 且 ≠0时,z 为纯虚数.3.复数相等:如果两个复数 相等且 相等就说这两个复数相等.4.共轭复数:当两个复数实部 ,虚部 时.这两个复数互为共轭复数.(当虚部不为零时,也可说成互为共轭虚数).5.若z =a +bi, (a, b ∈R), 则 | z |= ; z z ⋅= .6.复平面:建立直角坐标系来表示复数的平面叫做复平面, x 轴叫做 , 叫虚轴.7.复数z =a +bi(a, b ∈R)与复平面上的点 建立了一一对应的关系.8.两个实数可以比较大小、但两个复数如果不全是实数,就 比较它们的大小.例1. m 取何实数值时,复数z =362+--m m m +i m m )152(2--是实数?是纯虚数?解:① z 是实数503015122=⇒⎩⎨⎧≠+=--⇒m m m m ② z 为纯虚数2303060151222-==⇒⎪⎩⎪⎨⎧≠+=--≠--⇒m m m m m m m 或变式训练1:当m 分别为何实数时,复数z=m 2-1+(m 2+3m +2)i 是(1)实数?(2)虚数?(3)纯虚数?(4)零?解:(1)m=-1,m=-2;(2)m≠-1,m≠-2;(3)m=1;(4)m=-1.例2. 已知x 、y 为共轭复数,且i xyi y x 643)(2-=-+,求x .解:设),(,R b a bi a y bi a x ∈-=+=则代入由复数相等的概念可得1,1±=±=b a 变式训练2:已知复数z=1+i ,如果221z az b z z ++-+=1-i,求实数a,b 的值.由z=1+i 得221z az b z z ++-+=()(2)a b a i i+++=(a +2)-(a +b)i 从而21()1a a b +=⎧⎨-+=-⎩,解得12a b =-⎧⎨=⎩.例3. 若方程0)2()2(2=++++mi x i m x 至少有一个实根,试求实数m 的值.解:设实根为o x ,代入利用复数相等的概念可得o x =222±=⇒±m 变式训练3:若关于x 的方程x 2+(t 2+3t +tx )i=0有纯虚数根,求实数t 的值和该方程的根.解:t=-3,x 1=0,x 2=3i .提示:提示:设出方程的纯虚数根,分别令实部、虚部为0,将问题转化成解方程组.例4. 复数 (,)z x yi x y R =+∈满足|22|||i z z --=,试求y x 33+的最小值.设),(R y x yi x z ∈+=,则2=+y x ,于是692332=≥+-x x 变式训练4:已知复平面内的点A 、B 对应的复数分别是i z +=θ21sin 、θθ2cos cos 22i z +-=,其中)2,0(πθ∈,设AB 对应的复数为z .(1) 求复数z ;(2) 若复数z 对应的点P 在直线x y 21=上,求θ的值.解:(1) θ212sin 21i z z z --=-=(2) 将)sin 2,1(2θ--P 代入xy 21=可得21sin ±=θ611,67,65,6ππππθ=⇒.1.要理解和掌握复数为实数、虚数、纯虚数、零时,对实部和虚部的约束条件.2.设z =a +bi (a ,b ∈R),利用复数相等和有关性质将复数问题实数化是解决复数问题的常用方法.第2课时 复数的代数形式及其运算1.复数的加、减、乘、除运算按以下法则进行:设12, (,,,)z a bi z c di a b c d R =+=+∈,则(1) 21z z ±= ;(2) 21z z ⋅= ;(3) 21z z = (≠2z ).2.几个重要的结论:⑴ )|||(|2||||2221221221z z z z z z +=-++⑵ z z ⋅= = .⑶ 若z 为虚数,则2||z = ()2 z =≠填或3.运算律⑴ n m z z ⋅= .⑵ n m z )(= .⑶ n z z )(21⋅= ),(R n m ∈.例1.计算:ii i i i 2121)1()1(20054040++-++--+ 解:提示:利用i i i i =±=±20052,2)1(原式=0变式训练1:2=(A )1- (B )122+ (C )122-+ (D )1解:212===-+ 故选C ; 例2. 若012=++z z ,求2006200520032002z z z z +++解:提示:利用z z z ==43,1原式=2)1(432002-=+++z z z z变式训练2:已知复数z 满足z 2+1=0,则(z 6+i )(z 6-i )= ▲ .解:2例3. 已知4,a a R >∈,问是否存在复数z ,使其满足ai z i z z +=+⋅32(a ∈R ),如果存在,求出z 的值,如果不存在,说明理由解:提示:设),(R y x yi x z ∈+=利用复数相等的概念有⎩⎨⎧==++ax y y x 23222 0034222>∆⇒=-++⇒a y y i a a z a 216224||2-±-+=⇒≤⇒ 变式训练3:若(2)a i i b i -=+,其中i R b a ,,∈是虚数单位,则a +b =__________ 解:3例4. 证明:在复数范围内,方程255||(1)(1)2i z i z i z i -+--+=+(i 为虚数单位)无解. 证明:原方程化简为2||(1)(1)1 3.z i z i z i +--+=-设yi x z += (x 、y ∈R ,代入上述方程得22221 3.x y xi yi i +--=-221(1)223(2)x y x y ⎧+=⎪∴⎨+=⎪⎩ 将(2)代入(1),整理得281250.x x -+=160,()f x ∆=-<∴方程无实数解,∴原方程在复数范围内无解.变式训练4:已知复数z 1满足(1+i)z 1=-1+5i ,z 2=a -2-i ,其中i 为虚数单位,a ∈R, 若12z z -<1z ,求a 的取值范围.解:由题意得 z 1=151i i-++=2+3i,于是12z z -=42a i -+,1z =13.13,得a 2-8a +7<0,1<a<7.1.在复数代数形式的四则运算中,加减乘运算按多项式运算法则进行,除法则需分母实数化,必须准确熟练地掌握.2.记住一些常用的结果,如ω,i 的有关性质等可简化运算步骤提高运算速度.3.复数的代数运算与实数有密切联系但又有区别,在运算中要特别注意实数范围内的运算法则在复数范围内是否适用.复数章节测试题一、选择题1.若复数ii a 213++(a R ∈,i 为虚数单位)是纯虚数,则实数a 的值为 ( ) A 、-6 B 、13 C.32D.13 2.定义运算bc ad d c b a -=,,,则符合条件01121=+-+ii i z ,,的复数_z 对应的点在( ) A .第一象限; B .第二象限; C .第三象限; D .第四象限;3.若复数()()22ai i --是纯虚数(i 是虚数单位),则实数a =( )A.-4;B.4;C.-1;D.1;4.复数i i ⋅--2123=( )A .-IB .IC . 22-iD .-22+i6.若复数z ai z i z 且复数满足,1)1(+=-在复平面上对应的点位于第二象限,则实数a 的取值范围是( )A .1>aB .11<<-aC .1-<aD .11>-<a a 或7.已知复数z 满足2)1()1(i z i +=-,则z =( ) (A) -1+ i (B) 1+i (C) 1-i (D) -1-i8.若复数12,1z a i z i =+=-,且12z z 为纯虚数,则实数a 为 ( )A .1B .-1C .1或-1D .09.如果复数)2)(1(i ai ++的实部和虚部相等,则实数a 等于( )(A )1- (B )31 (C )21 (D )1 10.若z 是复数,且i z 432+-=,则z 的一个值为 ( )A .1-2iB .1+2iC .2-iD .2+i11.若复数15z a i =-+为纯虚数,其中,a R i ∈为虚数单位,则51a i ai+-=( ) A . i B . i - C . 1 D . 1-12.复数1i i+在复平面中所对应的点到原点的距离为( ) A .12 B .22C .1D . 2二、填空题13.设z a bi =+,a ,b ∈R ,将一个骰子连续抛掷两次,第一次得到的点数为a ,第二次得到的点数为b ,则使复数z 2为纯虚数的概率为 .14.设i 为虚数单位,则41i i +⎛⎫= ⎪⎝⎭. 15.若复数z 满足方程1-=⋅i i z ,则z= .16..已知实数x ,y 满足条件5003x y x y x -+⎧⎪+⎨⎪⎩≥≥≤,i z x y =+(i 为虚数单位),则|12i |z -+的最小值是 .17.复数z=12i+,则|z|= . 18.虚数(x -2)+ y i 其中x 、y 均为实数,当此虚数的模为1时,xy 的取值范围是( ) A .[-33,33] B .033[-∪(]330 C .[-3,3] D .[-3,0∪(0,3]19.已知ii a z --=1 (a>0),且复数)(i z z +=ω的虚部减去它的实部所得的差等于23,求复数ω的模.20..复平面内,点1Z 、2Z 分别对应复数1z 、2z ,且i a a z )10(5321-++=,22(25)1z a i a =+--, )(R a ∈其中,若21z z +可以与任意实数比较大小,求21OZ OZ ⋅的值(O 为坐标原点).复数章节测试题答案一、选择题1. A 2.答案:A 3.答案:B4.答案:B6.答案:A7.A8.B9.B10.B11.D12.B二、填空题13. 61 14.2i15.1i +16.答案:221718. 答案:B ∵⎩⎨⎧≠=+-0y 1y )2x (22, 设k =x y , 则k 为过圆(x -2)2 + y 2 = 1上点及原点的直线斜率,作图如下, k≤3331=, 又∵y≠0 ,∴k≠0.由对称性 选B .【帮你归纳】本题考查复数的概念,以及转化与化归的数学思维能力,利用复数与解析几何、平面几何之间的关系求解.虚数一词又强调y≠0,这一易错点.【误区警示】本题属于基础题,每步细心计算是求解本题的关键,否则将会遭遇“千里之堤,溃于蚁穴”之尴尬. 19.解:i a a a i z z 221)(2+++=+=ω i a 3232+=⇒=⇒ω523||=⇒ω 20.解:依题意21z z +为实数,可得。
2018版高考数学理北师大版大一轮复习讲义教师版文档

1.若函数f (x )在R 上可导,且满足f (x )-xf ′(x )>0,则( ) A .3f (1)<f (3) B .3f (1)>f (3) C .3f (1)=f (3) D .f (1)=f (3)答案 B解析 由于f (x )>xf ′(x ),则⎣⎡⎦⎤f (x )x ′=f ′(x )x -f (x )x 2<0恒成立,因此f (x )x 在R 上是减函数, ∴f (3)3<f (1)1,即3f (1)>f (3).故选B. 2.若函数f (x )=kx -ln x 在区间(1,+∞)上是增加的,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞) D .[1,+∞)答案 D解析 由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)上是增加的⇔f ′(x )=k -1x ≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x <1,所以k ≥1.即k 的取值范围为[1,+∞).3.(2016·宝鸡模拟)函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+1(x ≤0),e ax (x >0)在[-2,2]上的最大值为2,则a 的范围是( )A .[12ln 2,+∞)B .[0,12ln 2]C .(-∞,0]D .(-∞,12ln 2]答案 D解析 当x ≤0时,f ′(x )=6x 2+6x =6x (x +1), 所以f (x )在(-∞,-1)上为增函数, 在(-1,0]上为减函数,所以f (x )在x ∈[-2,0]上的最大值为f (-1)=2,欲使得函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+1(x ≤0),e ax (x >0)在[-2,2]上的最大值为2,则当x =2时,e 2a 的值必须小于等于2, 即e 2a ≤2,解得a ∈(-∞,12ln 2].4.(2016·全国甲卷)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________. 答案 1-ln 2解析 y =ln x +2的切线为y =1x 1·x +ln x 1+1(设切点横坐标为x 1),y =ln(x +1)的切线为y =1x 2+1x +ln(x 2+1)-x 2x 2+1(设切点横坐标为x 2),∴⎩⎨⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.5.(2016·陕西西工大附中模拟)设函数f (x )为(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2 016)2f (x +2 016)-9f (-3)>0的解集为________. 答案 {x |x <-2 019}解析 由2f (x )+xf ′(x )>x 2(x <0), 得2xf (x )+x 2f ′(x )<x 3, 即[x 2f (x )]′<x 3<0. 令F (x )=x 2f (x ),则当x <0时,F ′(x )<0,即F (x )在(-∞,0)上是减函数, ∴F (x +2 016)=(x +2 016)2f (x +2 016), F (-3)=9f (-3),即不等式等价为F (x +2 016)-F (-3)>0. ∵F (x ) 在(-∞,0)上是减函数,∴由F (x +2 016)>F (-3),得x +2 016<-3, ∴x <-2 019.题型一 利用导数研究函数性质例1 (2015·课标全国Ⅱ)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上是增加的.若a >0,则当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0.所以f (x )在⎝⎛⎭⎫0,1a 上是增加的,在⎝⎛⎭⎫1a ,+∞上是减少的.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a 取得最大值,最大值为f ⎝⎛⎭⎫1a =ln 1a +a ⎝⎛⎭⎫1-1a =-ln a +a -1. 因此f ⎝⎛⎭⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上是增加的, g (1)=0.于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).思维升华 利用导数主要研究函数的单调性、极值、最值.已知f (x )的单调性,可转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题;含参函数的最值问题是高考的热点题型,解此类题的关键是极值点与给定区间位置关系的讨论,此时要注意结合导函数图像的性质进行分析.已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的递增区间;(2)若函数f (x )在(-1,1)上是增加的,求a 的取值范围. 解 (1)当a =2时,f (x )=(-x 2+2x )e x , 所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x .令f ′(x )>0,即(-x 2+2)e x >0,因为e x >0, 所以-x 2+2>0,解得-2<x < 2. 所以函数f (x )的递增区间是(-2,2). (2)因为函数f (x )在(-1,1)上是增加的, 所以f ′(x )≥0对x ∈(-1,1)都成立.因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x =[-x 2+(a -2)x +a ]e x ,所以[-x 2+(a -2)x +a ]e x ≥0对x ∈(-1,1)都成立. 因为e x >0,所以-x 2+(a -2)x +a ≥0对x ∈(-1,1)都成立, 即a ≥x 2+2x x +1=(x +1)2-1x +1=(x +1)-1x +1对x ∈(-1,1)都成立.令y =(x +1)-1x +1,则y ′=1+1(x +1)2>0,所以y =(x +1)-1x +1在(-1,1)上是增加的,所以y <(1+1)-11+1=32,即a ≥32.因此a 的取值范围为[32, +∞).题型二 利用导数研究方程的根或函数的零点问题 例2 (2015·北京)设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.(1)解 函数的定义域为(0,+∞).由f (x )=x 22-k ln x (k >0),得f ′(x )=x -k x =x 2-kx.由f ′(x )=0,解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上随x 的变化情况如下表:所以,f (x )的递减区间是(0,k ),递增区间是(k ,+∞). f (x )在x =k 处取得极小值f (k )=k (1-ln k )2.(2)证明 由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2.因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e ,当k =e 时,f (x )在区间(1,e]上是减少的且f (e)=0,所以x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(0,e)上是减少的且f (1)=12>0,f (e)=e -k 2<0,所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.思维升华 函数零点问题一般利用导数研究函数的单调性、极值等性质,并借助函数图像,根据零点或图像的交点情况,建立含参数的方程(或不等式)组求解,实现形与数的和谐统一.已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2. (1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点. (1)解 f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2. 由题设得-2a =-2,所以a =1.(2)证明 由(1)知,f (x )=x 3-3x 2+x +2. 设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题设知1-k >0.当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )是增加的, g (-1)=k -1<0,g (0)=4,所以g (x )=0在(-∞,0]上有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4, 则g (x )=h (x )+(1-k )x >h (x ).h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)上是减少的,在(2,+∞)上是增加的, 所以g (x )>h (x )≥h (2)=0.所以g (x )=0在(0,+∞)上没有实根. 综上,g (x )=0在R 上有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点. 题型三 利用导数研究不等式问题 例3 已知f (x )=x ln x ,g (x )=-x 2+ax -3.(1)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围;(2)证明:对一切x ∈(0,+∞),都有ln x >1e x -2e x 成立.(1)解 对一切x ∈(0,+∞),有2x ln x ≥-x 2+ax -3,则a ≤2ln x +x +3x,设h (x )=2ln x +x +3x (x >0),则h ′(x )=(x +3)(x -1)x 2,当x ∈(0,1)时,h ′(x )<0,h (x )是减少的, 当x ∈(1,+∞)时,h ′(x )>0,h (x )是增加的, 所以h (x )min =h (1)=4. 因为对一切x ∈(0,+∞), 2f (x )≥g (x )恒成立, 所以a ≤h (x )min =4. (2)证明 问题等价于证明 x ln x >x e x -2e(x ∈(0,+∞)).f (x )=x ln x (x ∈(0,+∞))的最小值是-1e,当且仅当x =1e 时取到,设m (x )=x e x -2e (x ∈(0,+∞)),则m ′(x )=1-x e x ,易知m (x )max =m (1)=-1e,当且仅当x =1时取到.从而对一切x ∈(0,+∞),都有ln x >1e x -2e x成立.思维升华 求解不等式恒成立或有解时参数的取值范围问题,一般常用分离参数的方法,但是如果分离参数后对应的函数不便于求解其最值,或者求解其函数最值烦琐时,可采用直接构造函数的方法求解.已知函数f (x )=x 3-2x 2+x +a ,g (x )=-2x +9x,若对任意的x 1∈[-1,2],存在x 2∈[2,4],使得f (x 1)=g (x 2),则实数a 的取值范围是________________. 答案 [-74,-32]解析 问题等价于f (x )的值域是g (x )的值域的子集, 显然,g (x )是减少的,∴g (x )max =g (2)=12,g (x )min =g (4)=-234; 对于f (x ),f ′(x )=3x 2-4x +1, 令f ′(x )=0,解得x =13或x =1,当x 变化时,f ′(x ),f (x )的变化情况列表如下:∴f (x )max =a +2,f (x )min =a -4,∴⎩⎨⎧a +2≤12,a -4≥-234,∴a ∈[-74,-32].1.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0, 故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f ′(x )>0, 故f (x )在(5,+∞)内为增函数.综上,f (x )的单调增区间为(5,+∞),单调减区间为(0,5). 2.(2016·千阳中学模拟)已知函数f (x )=x ln x .(1)求f (x )的最小值;(2)若对所有x ≥1都有f (x )≥ax -1,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f (x )的导数f ′(x )=1+ln x , 令f ′(x )>0,解得x >1e ,令f ′(x )<0,解得0<x <1e,从而f (x )在(0,1e )上是减少的,在(1e ,+∞)上是增加的.所以,当x =1e 时,f (x )取得最小值-1e.(2)依题意,得f (x )≥ax -1在[1,+∞)上恒成立, 即不等式a ≤ln x +1x 对于x ∈[1,+∞)恒成立.令g (x )=ln x +1x,则g ′(x )=1x -1x 2=1x (1-1x ).当x >1时,因为g ′(x )=1x (1-1x )>0,故g (x )在[1,+∞)上是增加的, 所以g (x )的最小值是g (1)=1, 从而a 的取值范围是(-∞,1].3.(2015·重庆)设函数f (x )=3x 2+axe x(a ∈R ).(1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程; (2)若f (x )在[3,+∞)上为减函数,求a 的取值范围. 解 (1)对f (x )求导得f ′(x )=(6x +a )e x -(3x 2+ax )e x (e x )2=-3x 2+(6-a )x +a e x,因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x,故f (1)=3e ,f ′(1)=3e ,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e (x -1),化简得3x -e y =0.(2)由(1)知f ′(x )=-3x 2+(6-a )x +ae x .令g (x )=-3x 2+(6-a )x +a ,由g (x )=0,解得x 1=6-a -a 2+366,x 2=6-a +a 2+366.当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数; 当x 1<x <x 2时,g (x )>0,即f ′(x )>0, 故f (x )为增函数;当x >x 2时,g (x )<0,即f ′(x )<0,故f (x )为减函数.由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92,故a 的取值范围为⎣⎡⎭⎫-92,+∞. 4.已知函数f (x )=x 2+x sin x +cos x .(1)若曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,求a 与b 的值; (2)若曲线y =f (x )与直线y =b 有两个不同交点,求b 的取值范围. 解 由f (x )=x 2+x sin x +cos x , 得f ′(x )=x (2+cos x ).(1)因为曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,所以f ′(a )=a (2+cos a )=0,b =f (a ). 解得a =0,b =f (0)=1. (2)令f ′(x )=0,得x =0.当x 变化时,f (x )与f ′(x )的变化情况如下:所以函数f (x )在区间(-∞,0)上是减少的,在区间(0,+∞)上是增加的,f (0)=1是f (x )的最小值. 当b ≤1时,曲线y =f (x )与直线y =b 最多只有一个交点; 当b >1时,f (-2b )=f (2b )≥4b 2-2b -1>4b -2b -1>b , f (0)=1<b ,所以存在x 1∈(-2b,0),x 2∈(0,2b ), 使得f (x 1)=f (x 2)=b .由于函数f (x )在区间(-∞,0)和(0,+∞)上均单调,所以当b >1时曲线y =f (x )与直线y =b 有且仅有两个不同交点. 综上可知,如果曲线y =f (x )与直线y =b 有两个不同交点, 那么b 的取值范围是(1,+∞).5.(2016·四川)设函数f (x )=ax 2-a -ln x ,其中a ∈R . (1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x -e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).解 (1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内是减少的. 当a >0时,由f ′(x )=0,有x =12a. 此时,当x ∈⎝⎛⎭⎫0,12a 时,f ′(x )<0,f (x )是减少的; 当x ∈⎝⎛⎭⎫12a ,+∞时,f ′(x )>0,f (x )是增加的. (2)令g (x )=1x -1e x -1,s (x )=e x -1-x .则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内是增加的.又由s (1)=0,有s (x )>0,从而当x >1时,g (x )>0. 当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a >1.由(1)有f ⎝⎛⎭⎫12a <f (1)=0, 而g ⎝⎛⎭⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立. 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x>x -1x +1x 2-1x=x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)内是增加的. 又因为h (1)=0,所以当x >1时, h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立.综上,a ∈⎣⎡⎭⎫12,+∞.。
2017_2018版高中数学第1章导数及其应用习题课导数的应用学案苏教版选修2_2

因此f(x)max=f(0)=2.
综上,当0<t<2时,f(x)max=f(0)=2,f(x)min=f(t)=t3-3t2+2;
当2≤t<3时,f(x)max=f(0)=2,f(x)min=f(2)=-2.
跟踪训练3 1
例4 解 (1)f′(x)=x- = (x>0).
①当a≤0时,f′(x)>0恒成立,f(x)为(-∞,+∞)上的增函数,因此函数f(x)无极值.
②当a>0时,令f′(x)=0,得ex=a,x=lna.
x∈(-∞,lna)时,f′(x)<0;x∈(lna,+∞)时,f′(x)>0,
因此f(x)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增,
导数作为一种重要的工具,在研究函数中具有重要的作用,例如函数的单调性、极值与最值等问题,都能够通过导数得以解决.不但如此,利用导数研究取得函数的性质后,还能够进一步研究方程、不等式等诸多代数问题,因此必然要熟练把握利用导数来研究函数的各类方式.
提示:完成作业 习题课
答案精析
问题导学
知识点一
增 减
知识点二
即3+2a=-3,a=-3.
又函数过(1,0)点,即-2+b=0,b=2.
因此a=-3,b=2,f(x)=x3-3x2+2.
(2)由f(x)=x3-3x2+2,得f′(x)=3x2-6x.
由f′(x)=0得,x=0或x=2.
①当0<t<2时,在区间(0,t)上f′(x)<0,f(x)在[0,t]上是减函数,
(2)将f(x)的各极值与f(a),f(b)比较得出函数f(x)在[a,b]上的最值.
天津101中学高考数学总复习 平面向量单元精品教学案(教师版全套)

平面向量1.理解向量的概念,掌握向量的几何表示,了解共线向量的概念.2.掌握向量的加法和减法的运算法则及运算律.3.掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件.4.了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.5.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.6.掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式.向量由于具有几何形式与代数形式的“双重身份”,使它成为中学数学知识的一个交汇点,成为多项内容的媒介.主要考查:1.平面向量的性质和运算法则,共线定理、基本定理、平行四边形法则及三角形法则.2.向量的坐标运算及应用.3.向量和其它数学知识的结合.如和三角函数、数列、曲线方程等及向量在物理中的应用.4.正弦定理、余弦定理及利用三角公式进行恒等变形的能力.以化简、求值或判断三角形的形状为主.解三角形常常作为解题工具用于立体几何中的计算或证明.第1课时向量的概念与几何运算⑴既有又有的量叫向量.的向量叫零向量. 的向量,叫单位向量.⑵ 叫平行向量,也叫共线向量.规定零向量与任一向量 .⑶ 且 的向量叫相等向量.2.向量的加法与减法⑴ 求两个向量的和的运算,叫向量的加法.向量加法按 法则或 法则进行.加法满足 律和 律.⑵ 求两个向量差的运算,叫向量的减法.作法是将两向量的 重合,连结两向量的 ,方向指向 .3.实数与向量的积⑴ 实数λ与向量的积是一个向量,记作λ.它的长度与方向规定如下:① | λ |= .② 当λ>0时,λ的方向与的方向 ; 当λ<0时,λ的方向与的方向 ; 当λ=0时,λ .⑵ λ(μ)= . (λ+μ)= .λ(+b )= .⑶ 共线定理:向量b 与非零向量共线的充要条件是有且只有一个实数λ使得 .4.⑴ 平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量,有且只有一对实数1λ、2λ,使得 .⑵ 设1e 、2e 是一组基底,=2111e y e x +,b =2212e y e x +,则与b 共线的充要条件是 .例1.已知△ABC 中,D 为BC 的中点,E 为AD 的中点.设=,=,求.解:=AE -=41(+)-=-43a +41b 变式训练1.如图所示,D 是△ABC 边AB 上的中点,则向量等于( )A .-+21B .--BA 21C .-21D .+21解:A例2. 已知向量2132e e -=,2132e e +=,2192e e -=,其中1e 、2e 不共线,求实数λ、μ,BC使μλ+=.解:c =λ+μb ⇒21e -92e =(2λ+2μ)1e +(-3λ+3μ)2e ⇒2λ+2μ=2,且-3λ+3μ=-9⇒λ=2,且μ=-1变式训练2:已知平行四边形ABCD 的对角线相交于O 点,点P 为平面上任意一点,求证:4=+++证明 +PC =2PO ,+=2PO ⇒++PC +=4PO例3. 已知ABCD 是一个梯形,AB 、CD 是梯形的两底边,且AB =2CD ,M 、N 分别是DC和AB 的中点,若a =,b =,试用a 、b 表示和.解:连NC ,则==-=+=+=4141;21-=-=变式训练3:如图所示,OADB 是以向量=,=为邻边的平行四边形,又=31,=31,试用、表示,,.解:=61a +65b ,=32a +32b ,=21-61b 例4. 设,是两个不共线向量,若与起点相同,t ∈R ,t 为何值时,,t ,31(+)三向量的终点在一条直线上?解:设])(31[t +-=-λ (λ∈R)化简整理得:)31()132(=-+-t λλ∵不共线与,∴⎪⎪⎩⎪⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=-=-2123030132t t λλλ故21=t 时,)(31,,t +三向量的向量的终点在一直线上.变式训练4:已知,,,,OA a OB b OC c OD d OE e ===== ,设t R ∈,如果3,2,a c b d ==()e t a b =+,那么t 为何值时,,,C D E 三点在一条直线上?解:由题设知,23,(3)CD d c b a CE e c t a tb =-=-=-=-+,,,C D E 三点在一条直线上的充要条件是存在实数k ,使得CE kCD = ,即(3)32t a tb ka kb -+=-+,整理得(33)(2)t k a k t b -+=-.①若,a b共线,则t 可为任意实数;②若,a b 不共线,则有33020t k t k -+=⎧⎨-=⎩,解之得,65t =.综上,,a b 共线时,则t 可为任意实数;,a b 不共线时,65t =.D1.认识向量的几何特性.对于向量问题一定要结合图形进行研究.向量方法可以解决几何中的证明.2.注意与O 的区别.零向量与任一向量平行.3.注意平行向量与平行线段的区别.用向量方法证明AB ∥CD ,需证∥,且AB 与CD 不共线.要证A 、B 、C 三点共线,则证∥即可.4.向量加法的三角形法则可以推广为多个向量求和的多边形法则,特点:首尾相接首尾连;向量减法的三角形法则特点:首首相接连终点.第2课时 平面向量的坐标运算1.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底,对于一个向量,有且只有一对实数x 、y ,使得=x i +y j .我们把(x 、y)叫做向量的直角坐标,记作 .并且||= .2.向量的坐标表示与起点为 的向量是一一对应的关系.3.平面向量的坐标运算:若=(x 1、y 1),=(x 2、y 2),λ∈R ,则:+= -= λ=已知A(x 1、y 1),B(x 2、y 2),则= .4.两个向量=(x 1、y 1)和=(x 2、y 2)共线的充要条件是 .例1.已知点A (2,3),B (-1,5),且=31AB ,求点C 的坐标.解=31=(-1,32),=+=(1, 311),即C(1, 311)变式训练1.若(2,8)OA = ,(7,2)OB =- ,则31AB= .解: (3,2)--提示:(9,6)AB OB OA =-=--例2. 已知向量=(cos 2α,sin 2α),=(cos 2β,sin 2β),|-|=552,求cos(α-β)的值.解:|-|=55222552=--⇒)cos(βα2cos 22552βα--⇒=55222552=--⇒)cos(βα⇒cos 2βα-=53⇒cos(α-β)=257-变式训练2.已知-2b =(-3,1),2+b =(-1,2),求+b .解 a =(-1,1),b =(1,0),∴a +b =(0,1)例3. 已知向量=(1, 2),=(x, 1),1e =+2,2e =2-,且1e ∥2e ,求x .解:1e =(1+2x ,4),2e =(2-x ,3),1e ∥2e ⇒3(1+2x)=4(2-x)⇒x =21变式训练3.设=(ksinθ, 1),b =(2-cosθ, 1) (0 <θ<π),∥,求证:k≥3.证明: k =θθsin cos 2- ∴k -3=θπθsin )3cos(22--≥0 ∴k≥3例4. 在平行四边形ABCD 中,A(1,1),=(6,0),点M 是线段AB 的中点,线段CM 与BD 交于点P .(1) 若=(3,5),求点C 的坐标;(2) 当||=||时,求点P 的轨迹.解:(1)设点C 的坐标为(x 0,y 0),)5,1()5,9()0,6()5,3(00--==+=+=y x得x 0=10 y 0=6 即点C(10,6)(2) ∵= ∴点D 的轨迹为(x -1)2+(y -1)2=36 (y ≠1) ∵M 为AB 的中点∴P 分的比为21设P(x ,y),由B(7,1) 则D(3x -14,3y -2) ∴点P 的轨迹方程为)1(4)1()5(22≠=-+-y y x变式训练4.在直角坐标系x 、y 中,已知点A(0,1)和点B(-3,4),若点C 在∠AOB 的平分线上,且||=2,求的坐标.解 已知A (0,1),B (-3,4) 设C (0,5), D (-3,9)则四边形OBDC 为菱形 ∴∠AOB 的角平分线是菱形OBDC 的对角线OD ∵2103==∴)5103,510(1032-==1.认识向量的代数特性.向量的坐标表示,实现了“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.2.由于向量有几何法和坐标法两种表示方法,所以我们应根据题目的特点去选择向量的表示方法,由于坐标运算方便,可操作性强,因此应优先选用向量的坐标运算.第3课时 平面向量的数量积1.两个向量的夹角:已知两个非零向量和b ,过O 点作=,=b ,则∠AOB =θ (0°≤θ≤180°) 叫做向量a 与b 的 .当θ=0°时,a 与b ;当θ=180°时,a 与b ;如果与b 的夹角是90°,我们说与b 垂直,记作 .2.两个向量的数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,则数量叫做与b 的数量积(或内积),记作·b ,即·b = .规定零向量与任一向量的数量积为0.若=(x 1, y 1),b =(x 2, y 2),则·b = . 3.向量的数量积的几何意义:|b |cosθ叫做向量b 在方向上的投影 (θ是向量与b 的夹角).·b 的几何意义是,数量·b 等于 .4.向量数量积的性质:设、b 都是非零向量,是单位向量,θ是与b 的夹角.⑴ ·=·= ⑵ ⊥b ⇔⑶ 当与b 同向时,·b = ;当与b 反向时,·b = . ⑷ cos θ= .⑸ |·b |≤ 5.向量数量积的运算律:⑴ ·b = ; ⑵ (λ)·b = =·(λb ) ⑶ (+)·c =4,|b |=5,且与b 的夹角为60°,求:(2+3b )·(3-2b ). 解:(2+3b )(3-2b )=-4变式训练1.已知||=3,|b |=4,|+b |=5,求|2-3b |的值. 解:56例2. 已知向量=(sin θ,1),b =(1,cos θ),-22πθπ<<.(1) 若a ⊥b ,求θ; (2) 求|a +b |的最大值.解:(1)若⊥,则0cos sin =+θθ 即1tan -=θ 而)2,2(ππθ-∈,所以4πθ-=(2))4sin(223)cos (sin 23πθθθ++=++=+当4πθ=时,+的最大值为12+变式训练2:已知(cos ,sin )a αα= ,(cos ,sin )b ββ=,其中0αβπ<<<. (1)求证:a b + 与a b -互相垂直;(2)若ka →+→b 与a k →-→b 的长度相等,求βα-的值(k 为非零的常数).证明:222222()()(cos sin )(cos sin )0a b a b a b ααββ+⋅-=-=+-+= a b ∴+ 与a b -互相垂直(2)k a →+(cos cos ,sin sin )b k k αβαβ→=++,a k →-(cos cos ,sin sin )b k k αβαβ→=--,k a b →+= a kb →-= ,cos()0βα-=,2πβα-=例3. 已知O 是△ABC 所在平面内一点,且满足(-)·(+-2)=0,判断△ABC 是哪类三角形.解:设BC 的中点为D ,则(-)(2-+)=0⇒2·=0⇒BC ⊥AD ⇒△ABC 是等腰三角形.变式训练3:若(1,2),(2,3),(2,5)A B C -,则△ABC 的形状是 .解: 直角三角形.提示:(1,1),(3,3),0,AB AC AB AC AB AC ==-⋅=⊥例4. 已知向量m =(cosθ, sinθ)和n =(2-sinθ, cosθ) θ∈(π, 2π)且|n m +|=528,求cos(82πθ+)的值.解:+=(cos θ-sin θ+2, cos θ+sin θ)由已知(cos θ-sin θ+2)2+(cos θ+sin θ)2=25128化简:cos 257)4(=+πθ又cos 225162)4cos(1)82(=++=+πθπθ∵θ∈(π, 2π) ∴cos 25162)4cos(1)82(=++=+παπθ<0 ∴cos 25162)4cos(1)82(=++=+παπθ=-54 变式训练4.平面向量11),(2a b =-=,若存在不同时为0的实数k 和t ,使2(3)x a t b =+- ,,y ka tb =-+ 且x y ⊥ ,试求函数关系式()k f t =. 解:由11),(2a b =-=得0,||2,||1a b a b ⋅===22222[(3)]()0,(3)(3)0a t b ka tb ka ta b k t a b t t b +-⋅-+=-+⋅--⋅+-=33311(3),()(3)44k t t f t t t =-=- 1.运用向量的数量积可以解决有关长度、角度等问题.因此充分挖掘题目所包含的几何意义,往往能得出巧妙的解法.2.注意·b 与ab 的区别.·b =0≠>=,或b =. 3.应根据定义找两个向量的夹角。
2018年高考数学一轮复习 专题15 导数的综合应用教学案 文

专题15 导数的综合应用1.会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).2.会利用导数解决某些实际问题.1.利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f (x );(2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值; (4)回归实际问题作答. 2.不等式问题(1)证明不等式时,可构造函数,将问题转化为函数的极值或最值问题.(2)求解不等式恒成立问题时,可以考虑将参数分离出来,将参数范围问题转化为研究新函数的值域问题. 3.方程解的个数问题构造函数,利用导数研究函数的单调性,极值和特殊点的函数值,根据函数性质结合草图推断方程解的个数.高频考点一 用导数解决与不等式有关的问题 例1、已知函数f (x )=ax +bx 2+1在点(-1,f (-1))处的切线方程为x +y +3=0. (1)求函数f (x )的解析式;(2)设g (x )=ln x ,求证:g (x )≥f (x )在[1,+∞)上恒成立; (3)若0<a <b ,求证:ln b -ln a b -a >2aa 2+b 2.(1)解 将x =-1代入切线方程得y =-2,所以f (-1)=b -a1+1=-2,化简得b -a =-4.①f ′(x )=a (x 2+1)-(ax +b )·2x(x 2+1)2, f ′(-1)=2a +2(b -a )4=-1.②联立①②,解得a =2,b =-2.所以f (x )=2x -2x 2+1.(3)证明 因为0<a <b ,所以b a>1,由(2)知ln b a >2·ba -2⎝ ⎛⎭⎪⎫b a 2+1,整理得ln b -ln a b -a >2aa 2+b 2,所以当0<a <b 时,ln b -ln a b -a >2aa 2+b2.【方法规律】证明不等式通常需要构造函数,利用函数的最值、单调性证明.(1)证明不等式f (x )<g (x ),可构造函数F (x )=f (x )-g (x ),利用导数求F (x )的值域,得到F (x )<0即可;(2)对于证明含有两个变量a ,b 的不等式时,一种方法是通过变形构造成不等式f (a )>f (b ),然后利用函数f (x )的单调性证明,另一种方法是通过换元构造成单变量不等式,如本例令x =ba然后再利用已知关系证明即可.【变式探究】 (2016·全国Ⅲ卷)设函数f (x )=ln x -x +1. (1)讨论f (x )的单调性;(2)证明当x ∈(1,+∞)时,1<x -1ln x<x ;(3)设c >1,证明当x ∈(0,1)时,1+(c -1)x >c x. (1)解 依题意,f (x )的定义域为(0,+∞).f ′(x )=1x-1,令f ′(x )=0,得x =1,∴当0<x <1时,f ′(x )>0,f (x )单调递增. 当x >1时,f ′(x )<0,f (x )单调递减.(2)证明 由(1)知f (x )在x =1处取得最大值,且最大值f (1)=0. 所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x-1,因此1<x -1ln x<x .高频考点二、不等式恒成立问题求参数的范围 例2、已知函数f (x )=ax +ln x ,x ∈[1,e]. (1)若a =1,求f (x )的最大值;(2)若f (x )≤0恒成立,求实数a 的取值范围. 解 (1)若a =1,则f (x )=x +ln x , f ′(x )=1+1x =x +1x .∵x ∈[1,e],∴f ′(x )>0,∴f (x )在[1,e]上为增函数, ∴f (x )max =f (e)=e +1.(2)法一 ∵f (x )≤0即ax +ln x ≤0对x ∈[1,e]恒成立, ∴a ≤-ln xx,x ∈[1,e].令g (x )=-ln x x,x ∈[1,e],则g ′(x )=ln x -1x2, ∵x ∈[1,e],∴g ′(x )≤0, ∴g (x )在[1,e]上递减, ∴g (x )min =g (e)=-1e ,∴a ≤-1e.法二 要使x ∈[1,e],f (x )≤0恒成立,只需x ∈[1,e]时,f (x )max ≤0,显然当a ≥0时,f (x )=ax +ln x 在[1,e]上递增,③当1<-1a <e 时,即-1<a <-1e时,f (x )在⎣⎢⎡⎦⎥⎤1,-1a 上递增,在⎣⎢⎡⎦⎥⎤-1a ,e 上递减,∴f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a ,∵1<-1a<e ,∴0<ln ⎝ ⎛⎭⎪⎫-1a <1,∴f ⎝ ⎛⎭⎪⎫-1a <0成立.由①②③可得a ≤-1e.【方法规律】由不等式恒(能)成立求参数的范围常有两种方法:(1)讨论最值:先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值范围;(2)分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值范围.【变式探究】已知a 为实数,函数f (x )=a ln x +x 2-4x .(1)是否存在实数a ,使得f (x )在x =1处取得极值?证明你的结论;(2)设g (x )=(a -2)x ,若∃x 0∈⎣⎢⎡⎦⎥⎤1e ,e ,使得f (x 0)≤g (x 0)成立,求实数a 的取值范围. 解 (1)函数f (x )的定义域为(0,+∞),f ′(x )=a x +2x -4=2x 2-4x +ax.假设存在实数a ,使f (x )在x =1处取得极值,则f ′(1)=0,∴a =2,此时,f ′(x )=2(x -1)2x,当x >0时,f ′(x )≥0恒成立, ∴f (x )在(0,+∞)上单调递增, ∴x =1不是f (x )的极值点.∴G ′(x )=(2x -2)(x -ln x )-(x -2)(x -1)(x -ln x )2=(x -1)(x -2ln x +2)(x -ln x )2. ∵x ∈⎣⎢⎡⎦⎥⎤1e ,e , ∴2-2ln x =2(1-ln x )≥0, ∴x -2ln x +2>0,∴x ∈⎝ ⎛⎭⎪⎫1e ,1时,G ′(x )<0,G (x )单调递减; x ∈(1,e)时,G ′(x )>0,G (x )单调递增,∴G (x )min =G (1)=-1. ∴a ≥G (x )min =-1.故实数a 的取值范围为[-1,+∞). 高频考点三、利用导数解决函数零点问题 例3、设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.(1)解 由f (x )=x 22-k ln x (k >0),得x >0且f ′(x )=x -k x =x 2-kx .由f ′(x )=0,解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上的变化情况如下表:所以,f (x )的单调递减区间是(0,k ),单调递增区间是(k ,+∞).f (x )在x =k 处取得极小值f (k )=k (1-ln k )2.【方法技巧】函数零点问题通常可作以下适当转化来处理.函数y =f (x )的零点⇔方程f (x )=0的根⇔若f (x )=g (x )-h (x ),则f (x )的零点就是函数y =g (x )与y =h (x )图象交点的横坐标. 【变式探究】设函数f (x )=x 3+ax 2+bx +c . (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围.解 (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .因为f (0)=c ,f ′(0)=b , 所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c . (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4. 令f ′(x )=0,得3x 2+8x +4=0, 解得x =-2或x =-23.当x 变化时,f (x )与f ′(x )的变化情况如下:所以,当c >0且c -3227<0,存在x 1∈(-4,-2),x 2∈⎝ ⎛⎭⎪⎫-2,-23,x 3∈⎝ ⎛⎭⎪⎫-23,0,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎝ ⎛⎭⎪⎫0,3227时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.高频考点四、利用导数解决生活中的优化问题例4、某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.解 (1)因为x =5时,y =11,所以a2+10=11,a =2.于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4时,函数f (x )取得极大值,也是最大值. 所以,当x =4时,函数f (x )取得最大值,且最大值等于42.答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.【感悟提升】在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.用导数求实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义可知该极值点就是最值点.【变式探究】某品牌电动汽车的耗电量y 与速度x 之间有关系y =13x 3-392x 2-40x (x >0),为使耗电量最小,则速度应定为________. 答案 401.【2016高考江苏卷】(本小题满分16分)已知函数()(0,0,1,1)xxf x a b a b a b =+>>≠≠. 设12,2a b ==. (1)求方程()2f x =的根;(2)若对任意x R ∈,不等式(2)f()6f x m x ≥-恒成立,求实数m 的最大值;(3)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值。
2018高考数学复习导数及其应用教师用书理

第三章⎪⎪⎪ 导数及其应用第一节变化率与导数、导数的计算突破点(一) 导数的运算1.函数y =f (x )在x =x 0处的导数称函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0 Δy Δx =li m Δx →0fx 0+Δx -f x 0Δx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=li m Δx →0Δy Δx=li m Δx →0 fx 0+Δx -f x 0Δx.2.函数f (x )的导函数 称函数f ′(x )=li m Δx →0f x +Δx -f xΔx为f (x )的导函数.3.基本初等函数的导数公式(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x)+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f x g x ′=fx g x -f x gx[g x2(g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.本节主要包括2个知识点: 1.导数的运算;导数的几何意义.[例1] 求下列函数的导数: (1)y =(1-x )⎝⎛⎭⎪⎫1+1x ;(2)y =ln x x;(3)y =tan x ; (4)y =3x e x-2x+e ; (5)y =x +x 2+1.[解] (1)∵y =(1-x )⎝ ⎛⎭⎪⎫1+1x =1x -x =x -12-x 12,∴y ′=(x -12)′-(x 12)′=-12x -32-12x -12.(2)y ′=⎝ ⎛⎭⎪⎫ln x x ′=ln x ′x -x ′ln x x 2 =1x·x -ln xx2=1-ln xx2. (3)y ′=⎝ ⎛⎭⎪⎫sin x cos x ′=sin x ′cos x -sin x cos x ′cos 2x=cos x cos x -sin x -sin x cos 2x =1cos 2x. (4)y ′=(3x e x)′-(2x)′+(e)′ =(3x)′e x+3x(e x)′-(2x)′ =3x(ln 3)·e x+3x e x-2xln 2 =(ln 3+1)·(3e)x-2xln 2. (5)y ′=x +x 2+-x +x 2+x 2+2=x +2x +3x 2+-2xx +x 2+2=x 2+-2x x +x +x +x 2+2.[方法技巧]导数的运算方法(1)连乘积形式:先展开化为多项式的形式,再求导.(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导. (3)对数形式:先化为和、差的形式,再求导. (4)根式形式:先化为分数指数幂的形式,再求导.(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导. (6)复合函数:确定复合关系,由外向内逐层求导.导数运算的应用[例2] (1)(2016·济宁二模)已知函数f (x )=x (2 017+ln x ),f ′(x 0)=2 018,则x 0=( )A .e 2B .1C .ln 2D .e(2)已知f (x )=12x 2+2xf ′(2 017)+2 017ln x ,则f ′(1)=________.[解析] (1)由题意可知f ′(x )=2 017+ln x +x ·1x=2 018+ln x .由f ′(x 0)=2 018,得ln x 0=0,解得x 0=1.(2)由题意得f ′(x )=x +2f ′(2 017)+2 017x,所以f ′(2 017)=2 017+2f ′(2 017)+2 0172 017,即f ′(2 017)=-(2 017+1)=-2 018. 故f ′(1)=1+2×(-2 018)+2 017=-2 018. [答案] (1)B (2)-2 018[方法技巧]对抽象函数求导的解题策略在求导问题中,常涉及一类解析式中含有导数值的函数,即解析式类似为f (x )=f ′(x 0)x +sin x +ln x (x 0为常数)的函数,解决这类问题的关键是明确f ′(x 0)是常数,其导数值为0.因此先求导数f ′(x ),令x =x 0,即可得到f ′(x 0)的值,进而得到函数解析式,求得所求的导数值.能力练通 抓应用体验的“得”与“失” 1.[考点一](2017·东北四市联考)已知y = 2 017,则y ′=( ) A.12 2 017B .-12 2 017C.2 0172 017 D .0解析:选D 因为常数的导数为0,又y = 2 017是常数函数,所以y ′=0.2.[考点二](2016·大同二模)已知函数f (x )=x sin x +ax ,且f ′⎝ ⎛⎭⎪⎫π2=1,则a =( ) A .0 B .1 C .2D .4解析:选A ∵f ′(x )=sin x +x cos x +a ,且f ′⎝ ⎛⎭⎪⎫π2=1,∴sin π2+π2cos π2+a =1,即a =0.3.[考点二](2017·湖北重点中学月考)已知函数f (x )的导数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94 D.94解析:选C 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x,所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94.故选C.4.[考点二]在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)的值为________.解析:因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x =(x -a 1)·(x -a 2)·…·(x -a 8)+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.又数列{a n }为等比数列,所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8,所以f ′(0)=84=4 096.答案:4 0965.[考点一]求下列函数的导数. (1)y =x 2sin x ; (2)y =ln x +1x;(3)y =cos x ex ;(4)y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2. 解:(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x .(2)y ′=⎝ ⎛⎭⎪⎫ln x +1x ′=(ln x )′+⎝ ⎛⎭⎪⎫1x ′=1x -1x2.(3)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=cos x ′e x -cos x e x′e x 2=-sin x +cos x e x. (4)∵y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2=12x sin(4x +π)=-12x sin 4x ,∴y ′=-12sin 4x -12x ·4cos 4x=-12sin 4x -2x cos 4x .突破点(二) 导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).特别地,如果曲线y =f (x )在点(x 0,y 0)处的切线垂直于x 轴,则此时导数f ′(x 0)不存在,由切线定义可知,切线方程为x =x 0.[例1] 已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. [解] (1)∵f ′(x )=3x 2-8x +5, ∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2, 即x -y -4=0.(2)设切点坐标为(x 0,x 30-4x 20+5x 0-4), ∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2), 又切线过点(x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0, 解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0. [方法技巧]求切线方程问题的两种类型及方法(1)求“在”曲线y =f (x )上一点P (x 0,y 0)处的切线方程(高考常考类型),则点P (x 0,y 0)为切点,切线斜率为k =f ′(x 0),有唯一的一条切线,对应的切线方程为y -y 0=f ′(x 0)(x-x 0).(2)求“过”曲线y =f (x )上一点P (x 0,y 0)的切线方程,则切线经过点P ,点P 可能是切点,也可能不是切点,这样的直线可能有多条.解决问题的关键是设切点,利用“待定切点法”,即:①设切点A (x 1,y 1),则以A 为切点的切线方程为y -y 1=f ′(x 1)(x -x 1);②根据题意知点P (x 0,y 0)在切线上,点A (x 1,y 1)在曲线y =f (x )上,得到方程组⎩⎪⎨⎪⎧y 1=f x 1,y 0-y 1=fx 1x 0-x 1,求出切点A (x 1,y 1),代入方程y -y 1=f ′(x 1)(x -x 1),化简即得所求的切线方程.[提醒] “过点A 的曲线的切线方程”与“在点A 处的曲线的切线方程”是不相同的,后者A 必为切点,前者未必是切点.曲线在某点处的切线,若有,则只有一条;曲线过某点的切线往往不止一条.切线与曲线的公共点不一定只有一个.求切点坐标[例2] 设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则点P 的坐标为________.[解析] y =e x 的导数为y ′=e x ,则曲线y =e x 在点(0,1)处的切线斜率k 1=e 0=1.y =1x(x>0)的导数为y ′=-1x 2(x >0),设P (m ,n ),则曲线y =1x(x >0)在点P 处的切线斜率k 2=-1m2(m >0).因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).[答案] (1,1)求参数的值[例3] 直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值等于( ) A .2 B .-1 C .1D .-2[解析] 依题意知,y ′=3x 2+a ,则⎩⎪⎨⎪⎧13+a ×1+b =3,3×12+a =k ,k ×1+1=3,由此解得⎩⎪⎨⎪⎧a =-1,b =3,k =2,所以2a +b =1,选C.[答案] C[方法技巧]根据导数的几何意义求参数值的思路根据导数的几何意义求参数的值时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.能力练通 抓应用体验的“得”与“失”1.[考点一]已知f (x )=2e xsin x ,则曲线f (x )在点(0,f (0))处的切线方程为( ) A .y =0 B .y =2x C .y =xD .y =-2x解析:选 B ∵f (x )=2e x sin x ,∴f (0)=0,f ′(x )=2e x(sin x +cos x ),∴f ′(0)=2,∴曲线f (x )在点(0,f (0))处的切线方程为y =2x .2.[考点三]曲线f (x )=x 2+a x +1在点(1,f (1))处的切线的倾斜角为3π4,则实数a =( )A .1B .-1C .7D .-7解析:选C f ′(x )=2xx +-x 2+a x +2=x 2+2x -a x +2,∵f ′(1)=tan3π4=-1,即3-a4=-1,∴a =7. 3.[考点二]在平面直角坐标系xOy 中,点M 在曲线C :y =x 3-x +1上,且在第二象限内,已知曲线C 在点M 处的切线的斜率为2,则点M 的坐标为________.解析:由y ′=3x 2-1=2,得x =±1,又点M 在第二象限内,故x =-1,此时y =1,故点M 的坐标为(-1,1).答案:(-1,1)4.[考点三](2017·衡阳八中模拟)已知函数f (x )=a xln x ,x ∈(0,+∞),其中a >0且a ≠1,f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________.解析:因为f (x )=a xln x ,所以f ′(x )=ln a ·a xln x +a xx.又f ′(1)=3,所以a =3.答案:35.[考点二]若曲线y =x ln x 上点P 处的切线平行于直线 2x -y +1=0,则点P 的坐标是________.解析:由题意得y ′=ln x +x ·1x=1+ln x ,直线2x -y +1=0的斜率为2.设P (m ,n ),则1+ln m =2,解得m =e ,所以n =eln e =e ,即点P 的坐标为(e ,e).答案:(e ,e)6.[考点一]如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x ) 是g (x )的导函数,则曲线g (x )在x =3处的切线方程为________.解析:由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g (3)=3f (3)=3,g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.则曲线g (x )在x =3处的切线方程为y -3=0.答案:y -3=0[全国卷5年真题集中演练——明规律]1.(2014·新课标全国卷Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3解析:选D y ′=a -1x +1,由题意得y ′|x =0=2,即a -1=2,所以a =3. 2.(2016·全国甲卷)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析:易得(ln x +2)′=1x ,[ln(x +1)]′=1x +1.设曲线y =ln x +2上的切点横坐标为x 1,曲线y =ln(x +1)上的切点横坐标为x 2,则y =ln x +2的切线方程为:y =1x 1·x +lnx 1+1,y =ln(x +1)的切线方程为:y =1x 2+1x +ln(x 2+1)-x 2x 2+1.根据题意,有⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=x 2+-x 2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.答案:1-ln 23.(2016·全国丙卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析:因为f (x )为偶函数,所以当x >0时,f (x )=f (-x )=ln x -3x ,所以f ′(x )=1x-3,则f ′(1)=-2.所以y =f (x )在点(1,-3)处的切线方程为y +3=-2(x -1),即y =-2x -1.答案:y =-2x -14.(2016·全国甲卷)已知函数f (x )=(x +1)ln x -a (x -1). (1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)若当x ∈(1,+∞)时,f (x )>0,求a 的取值范围. 解:(1)f (x )的定义域为(0,+∞). 当a =4时,f (x )=(x +1)ln x -4(x -1),f (1)=0,f ′(x )=ln x +1x-3,f ′(1)=-2.故曲线y =f (x )在(1,f (1))处的切线方程为y -0=-2(x -1),即2x +y -2=0. (2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a x -x +1>0.设g (x )=ln x -a x -x +1,则g ′(x )=1x-2a x +2=x 2+-a x +1x x +2,g (1)=0. ①当a ≤2,x ∈(1,+∞)时,x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在(1,+∞)上单调递增,因此g (x )>0;②当a >2时,令g ′(x )=0得x 1=a -1-a -2-1,x 2=a -1+a -2-1.由x 2>1和x 1x 2=1得x 1<1,故当x ∈(1,x 2)时,g ′(x )<0,g (x )在(1,x 2)上单调递减,因此g (x )<0.综上,a 的取值范围是(-∞,2].[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.函数f (x )=(x +2a )(x -a )2的导数为( ) A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)解析:选C ∵f (x )=(x +2a )(x -a )2=x 3-3a 2x +2a 3, ∴f ′(x )=3(x 2-a 2).2.曲线y =sin x +e x在点(0,1)处的切线方程是( ) A .x -3y +3=0 B .x -2y +2=0 C .2x -y +1=0D .3x -y +1=0解析:选C ∵y =sin x +e x, ∴y ′=cos x +e x, ∴y ′| x =0=cos 0+e 0=2,∴曲线y =sin x +e x在点(0,1)处的切线方程为y -1=2(x -0),即2x -y +1=0. 3.(2016·安庆二模)给出定义:设f ′(x )是函数y =f (x )的导函数,f ″(x )是函数f ′(x )的导函数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.已知函数f (x )=3x +4sin x -cos x 的拐点是M (x 0,f (x 0)),则点M ( )A .在直线y =-3x 上B .在直线y =3x 上C .在直线y =-4x 上D .在直线y =4x 上解析:选B f ′(x )=3+4cos x +sin x ,f ″(x )=-4sin x +cos x ,由题可知f ″(x 0)=0,即4sin x 0-cos x 0=0,所以f (x 0)=3x 0,故M (x 0,f (x 0))在直线y =3x 上.故选B.4.(2016·贵阳一模)曲线y =x e x在点(1,e)处的切线与直线ax +by +c =0垂直,则a b的值为( )A .-12eB .-2e C.2e D.12e解析:选D y ′=e x+x e x,则y ′|x =1=2e.∵曲线在点(1,e)处的切线与直线ax +by+c =0垂直,∴-a b =-12e ,∴a b =12e,故选D.5.已知直线y =-x +1是函数f (x )=-1ae x图象的切线,则实数a =________.解析:设切点为(x 0,y 0).f ′(x )=-1a e x ,则f ′(x 0)=-1a·e x 0=-1,∴e x 0=a ,又-1a·e x 0=-x 0+1,∴x 0=2,∴a =e 2.答案:e 2[练常考题点——检验高考能力]一、选择题1.(2017·惠州模拟)已知函数f (x )=1x cos x ,则f (π)+f ′⎝ ⎛⎭⎪⎫π2=( ) A .-3π2B .-1π2 C .-3πD .-1π解析:选C 由题可知,f (π)=-1π,f ′(x )=-1x 2cos x +1x (-sin x ),则f (π)+f ′⎝ ⎛⎭⎪⎫π2=-1π+2π×(-1)=-3π.2.设曲线y =1+cos x sin x 在点⎝ ⎛⎭⎪⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于( )A .-1 B.12C .-2D .2解析:选A ∵y ′=-1-cos x sin 2x ,∴y ′x =π2=-1,由条件知1a =-1,∴a =-1. 3.(2017·上饶模拟)若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为( )A .1 B. 2 C.22D. 3 解析:选B 由题可得,y ′=2x -1x.因为y =x 2-ln x 的定义域为(0,+∞),所以由2x -1x=1,得x =1,则P 点坐标为(1,1),所以曲线在点P 处的切线方程为x -y =0,所以两平行线间的距离为d =22=2,即点P 到直线y =x -2距离的最小值为 2.4.(2016·南昌二中模拟)设点P 是曲线y =x 3-3x +23上的任意一点,P 点处切线倾斜角α的取值范围为( )A.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫5π6,πB.⎣⎢⎡⎭⎪⎫2π3,πC.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,πD.⎝⎛⎦⎥⎤π2,5π6 解析:选C 因为y ′=3x 2-3≥-3,故切线斜率k ≥-3,所以切线倾斜角α的取值范围是⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,π. 5.(2017·重庆诊断)已知函数f (x )=2e x+1+sin x ,其导函数为f ′(x ),则f (2 017)+f (-2 017)+f ′(2 017)-f ′(-2 017)的值为( )A .0B .2C .2 017D .-2 017 解析:选B ∵f (x )=2e x +1+sin x ,∴f ′(x )=-2e xx +2+cos x ,f (x )+f (-x )=2e x +1+sin x +2e -x +1+sin(-x )=2,f ′(x )-f ′(-x )=-2e xx +2+cos x +2e -x-x +2-cos(-x )=0,∴f (2 017)+f (-2 017)+f ′(2 017)-f ′(-2 017)=2.6.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2解析:选D ∵f ′(x )=1x,∴直线l 的斜率为k =f ′(1)=1,又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2.二、填空题7.已知函数f (x )在R 上可导,且f (x )=x 2+2x ·f ′(2),则函数f (x )的解析式为________.解析:由题意得f ′(x )=2x +2f ′(2),则f ′(2)=4+2f ′(2),所以f ′(2)=-4,所以f (x )=x 2-8x .答案:f (x )=x 2-8x8.若直线l 与幂函数y =x n的图象相切于点A (2,8),则直线l 的方程为________. 解析:由题意知,A (2,8)在y =x n 上,∴2n =8,∴n =3,∴y ′=3x 2,直线l 的斜率k =3×22=12,又直线l 过点(2,8).∴y -8=12(x -2),即直线l 的方程为12x -y -16=0.答案:12x -y -16=09.若曲线f (x )=ax 3+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析:由题意,可知f ′(x )=3ax 2+1x ,又存在垂直于y 轴的切线,所以3ax 2+1x=0,即a =-13x3(x >0),故a ∈(-∞,0).答案:(-∞,0)10.已知f ′(x ),g ′(x )分别是二次函数f (x )和三次函数g (x )的导函数,且它们在同一平面直角坐标系内的图象如图所示.(1)若f (1)=1,则f (-1)=________;(2)设函数h (x )=f (x )-g (x ),则h (-1),h (0),h (1)的大小关系为________.(用“<”连接)解析:(1)依题意,f ′(x )=x ,g ′(x )=x 2, 设f (x )=ax 2+bx +c (a ≠0),g (x )=dx 3+ex 2+mx +n (d ≠0),则f ′(x )=2ax +b =x ,g ′(x )=3dx 2+2ex +m =x 2, 故a =12,b =0,d =13,e =m =0,f (x )=12x 2+c ,g (x )=13x 3+n ,由f (1)=1得c =12,则f (x )=12x 2+12,故f (-1)=1.(2)h (x )=f (x )-g (x )=12x 2-13x 3+c -n ,则有h (-1)=56+c -n ,h (0)=c -n ,h (1)=16+c -n ,故h (0)<h (1)<h (-1).答案:(1)1 (2)h (0)<h (1)<h (-1) 三、解答题11.已知函数f (x )=13x 3-2x 2+3x (x ∈R)的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.解:(1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k ,则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧k ≥-1,-1k≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).12.设函数y =x 2-2x +2的图象为C 1,函数y =-x 2+ax +b 的图象为C 2,已知过C 1与C 2的一个交点的两切线互相垂直,求a +b 的值.解:对于C 1:y =x 2-2x +2,有y ′=2x -2, 对于C 2:y =-x 2+ax +b ,有y ′=-2x +a , 设C 1与C 2的一个交点为(x 0,y 0),由题意知过交点(x 0,y 0)的两条切线互相垂直. ∴(2x 0-2)(-2x 0+a )=-1, 即4x 20-2(a +2)x 0+2a -1=0,① 又点(x 0,y 0)在C 1与C 2上,故有⎩⎪⎨⎪⎧y 0=x 20-2x 0+2,y 0=-x 20+ax 0+b ,即2x 20-(a +2)x 0+2-b =0.② 由①②消去x 0,可得a +b =52.第二节导数与函数的单调性突破点(一) 利用导数讨论函数的单调性或求函数的单调区间1.函数的单调性与导数的关系 函数y =f (x )在某个区间内可导:(1)若f ′(x )>0,则f (x )在这个区间内单调递增; (2)若f ′(x )<0,则f (x )在这个区间内单调递减;本节主要包括2个知识点:1.利用导数讨论函数的单调性或求函数的单调区间; 2.利用导数解决函数单调性的应用问题.(3)若f ′(x )=0,则f (x )在这个区间内是常数函数. 2.由函数的单调性与导数的关系可得的结论(1)函数f (x )在(a ,b )内可导,且f ′(x )在(a ,b )任意子区间内都不恒等于0.当x ∈(a ,b )时,f ′(x )≥0⇔函数f (x )在(a ,b )上单调递增; f ′(x )≤0⇔函数f (x )在(a ,b )上单调递减.(2)f ′(x )>0(<0)在(a ,b )上成立是f (x )在(a ,b )上单调递增(减)的充分条件.考点贯通 抓高考命题的“形”与“神”证明或讨论函数的单调性判断函数单调性的三种方法 定义法在定义域内(或定义域的某个区间内)任取x 1,x 2,且x 1<x 2,通过判断f (x 1)-f (x 2)与0的大小关系来确定函数f (x )的单调性图象法 利用函数图象的变化趋势直观判断,若函数图象在某个区间内呈上升趋势,则函数在这个区间内是增函数;若函数图象在某个区间内呈下降趋势,则函数在这个区间内是减函数导数法 利用导数判断可导函数f (x )在定义域内(或定义域的某个区间内)的单调性f x a x ax 2f x [解] f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x.(1)当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; (2)当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; (3)当0<a <1时,令f ′(x )=0,解得x = 1-a 2a ,则当x ∈⎝⎛⎭⎪⎫0, 1-a 2a 时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫1-a 2a ,+∞时,f ′(x )>0,故f (x )在⎝ ⎛⎭⎪⎫0, 1-a 2a 上单调递减,在 1-a2a,+∞上单调递增.[方法技巧]导数法证明或讨论函数f (x )在(a ,b )内单调性的步骤(1)求f ′(x );(2)确定f ′(x )在(a ,b )内的符号;(3)得出结论:当f ′(x )>0时,函数f (x )在(a ,b )内单调递增;当f ′(x )<0时,函数f (x )在(a ,b )内单调递减.[提醒] 讨论含参函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.求函数的单调区间[例2] 已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x ,求函数f (x )的单调区间.[解] 对f (x )求导得f ′(x )=14-a x 2-1x,由曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.所以f (x )=x4+54x -ln x -32,则f ′(x )=x 2-4x -54x 2, 令f ′(x )=0,解得x =-1或x =5,因x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数. 所以函数f (x )的单调递增区间为(5,+∞),单调递减区间为(0,5). [方法技巧]用导数求函数单调区间的三种类型及方法(1)当不等式f ′(x )>0或f ′(x )<0可解时,确定函数的定义域,解不等式f ′(x )>0或f ′(x )<0求出单调区间.(2)当方程f ′(x )=0可解时,确定函数的定义域,解方程f ′(x )=0,求出实数根,把函数f (x )的间断点(即f (x )的无定义点)的横坐标和实根按从大到小的顺序排列起来,把定义域分成若干个小区间,确定f ′(x )在各个区间内的符号,从而确定单调区间.(3)不等式f ′(x )>0或f ′(x )<0及方程f ′(x )=0均不可解时求导并化简,根据f ′(x )的结构特征,选择相应基本初等函数,利用其图象与性质确定f ′(x )的符号,得单调区间.能力练通 抓应用体验的“得”与“失”1.[考点二]函数f (x )=(x -3)e x的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4)D .(2,+∞)解析:选D 依题意得f ′(x )=(x -3)′e x+(x -3)(e x)′=(x -2)e x,令f ′(x )>0,解得x >2,所以f (x )的单调递增区间是(2,+∞).故选D.2.[考点一]下列函数中,在(0,+∞)上为增函数的是( ) A .f (x )=sin 2x B .f (x )=x e xC .f (x )=x 3-xD .f (x )=-x +ln x解析:选B 对于A ,f (x )=sin 2x 的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k ∈Z);对于B ,f ′(x )=e x (x +1),当x ∈(0,+∞)时,f ′(x )>0,∴函数f (x )=x e x在(0,+∞)上为增函数;对于C ,f ′(x )=3x 2-1,令f ′(x )>0,得x >33或x <-33,∴函数f (x )=x 3-x 在⎝ ⎛⎭⎪⎫-∞,-33和⎝ ⎛⎭⎪⎫33,+∞上单调递增;对于D ,f ′(x )=-1+1x =-x -1x ,令f ′(x )>0,得0<x <1,∴函数f (x )=-x +ln x 在区间(0,1)上单调递增.综上所述,应选B.3.[考点二]函数y =12x 2-ln x 的单调递减区间为( )A .(0,1)B .(0,+∞)C .(1,+∞)D .(0,2)解析:选A 对于函数y =12x 2-ln x ,易得其定义域为(0,+∞),y ′=x -1x =x 2-1x,令x 2-1x <0,又x >0,所以x 2-1<0,解得0<x <1,即函数y =12x 2-ln x 的单调递减区间为(0,1).4.[考点一]已知函数f (x )=ln x -ax (a ∈R),讨论函数f (x )的单调性. 解:f (x )的定义域为(0,+∞),f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x-a >0,即函数f (x )在(0,+∞)上单调递增.②当a >0时,令f ′(x )=1x -a =0,可得x =1a,当0<x <1a 时,f ′(x )=1-axx>0;当x >1a 时,f ′(x )=1-ax x<0,故函数f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.由①②知,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.5.[考点二]已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值; (2)当a 2=4b 时,求函数f (x )+g (x )的单调区间. 解:(1)f ′(x )=2ax ,g ′(x )=3x 2+b ,由已知可得⎩⎪⎨⎪⎧f =a +1=c ,g=1+b =c ,2a =3+b ,解得a =b =3.(2)令F (x )=f (x )+g (x )=x 3+ax 2+a 24x +1,F ′(x )=3x 2+2ax +a 24,令F ′(x )=0,得x 1=-a 2,x 2=-a6,∵a >0,∴x 1<x 2,由F ′(x )>0得,x <-a 2或x >-a6; 由F ′(x )<0得,-a 2<x <-a6. ∴函数f (x )+g (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,-a 2,⎝ ⎛⎭⎪⎫-a6,+∞;单调递减区间为⎝ ⎛⎭⎪⎫-a 2,-a 6.突破点(二) 利用导数解决函数单调性的应用问题利用导数解决函数单调性的应用问题主要有:(1)已知函数的单调性求参数范围问题:此类问题是近几年高考的热点,一般为解答题的第二问,难度中档.有时也以选择题、填空题的形式出现,难度中高档.解决此类问题的关键是转化为恒成立问题,再参变分离,转化为最值问题求解.(2)比较大小或解不等式问题:利用导数方法解决此类问题的主要技巧就是灵活地构造函数,通过函数的性质求解.考点贯通 抓高考命题的“形”与“神”由函数的单调性求参数取值范围的方法(1)可导函数在区间(a,b)上单调,实际上就是在该区间上f′(x)≥0(或f′(x)≤0)恒成立,得到关于参数的不等式,从而转化为求函数的最值问题,求出参数的取值范围;(2)可导函数在区间(a,b)上存在单调区间,实际上就是f′(x)>0(或f′(x)<0)在该区间上存在解集,即f′(x)max>0(或f′(x)min<0)在该区间上有解,从而转化为不等式问题,求出参数的取值范围;(3)若已知f(x)在区间I上的单调性,区间I上含有参数时,可先求出f(x)的单调区间,令I是其单调区间的子集,从而求出参数的取值范围.[例1] 已知函数f(x)=x3-ax-1.(1)若f(x)在区间(1,+∞)上为增函数,求a的取值范围;(2)若f(x)在区间(-1,1)上为减函数,求a的取值范围;(3)若f(x)的单调递减区间为(-1,1),求a的值.[解] (1)因为f′(x)=3x2-a,且f(x)在区间(1,+∞)上为增函数,所以f′(x)≥0在(1,+∞)上恒成立,即3x2-a≥0在(1,+∞)上恒成立,所以a≤3x2在(1,+∞)上恒成立,所以a≤3,即a的取值范围为(-∞,3].(2)因为f(x)在区间(-1,1)上为减函数,所以f′(x)=3x2-a≤0在(-1,1)上恒成立,即a≥3x2在(-1,1)上恒成立.因为-1<x<1,所以3x2<3,所以a≥3.即a的取值范围为[3,+∞).(3)因为f(x)=x3-ax-1,所以f′(x)=3x2-a.由f′(x)=0,得x=±3a3(a≥0).因为f(x)的单调递减区间为(-1,1),所以3a3=1,即a=3.应用结论“函数f(x)在(a,b)上单调递增⇔f′(x)≥0恒成立;函数f(x)在(a,b)上单调递减⇔f′(x)≤0恒成立”时,切记检验等号成立时导数是否在(a,b)上恒为0. [易错提醒][例2] (1)若0<x1<x2<1,则( )A .e x 2-e x 1>ln x 2-ln x 1B .e x 2-e x 1<ln x 2-ln x 1C .x 2e x 1>x 1e x 2D .x 2e x 1<x 1e x 2(2)已知函数f (x )(x ∈R)满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________.[解析] (1)构造函数f (x )=e x-ln x ,则f ′(x )=e x-1x =x e x-1x.令f ′(x )=0,得x ex-1=0.根据函数y =e x 与y =1x的图象可知两函数图象交点x 0∈(0,1),因此f (x )=e x-ln x在(0,1)上不是单调函数,无法判断f (x 1)与f (x 2)的大小,故A ,B 错;构造函数g (x )=exx,则g ′(x )=x e x -e x x 2=e x x -x 2,故函数g (x )=exx在(0,1)上单调递减,故g (x 1)>g (x 2),即e x 1x 1>e x 2x 2,则x 2e x 1>x 1e x 2,故选C.(2)设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减, ∴x 2>1,即x ∈(-∞,-1)∪(1,+∞). [答案] (1)C (2)(-∞,-1)∪(1,+∞)[方法技巧]利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.能力练通 抓应用体验的“得”与“失”1.[考点一]已知函数f (x )=x 2+4x +a ln x ,若函数f (x )在(1,2)上是单调函数,则实数a 的取值范围是( )A .(-6,+∞)B .(-∞,-16)C .(-∞,-16]∪[-6,+∞)D .(-∞,-16)∪(-6,+∞)解析:选C ∵f (x )的定义域为(0,+∞),f ′(x )=2x +4+a x =2x 2+4x +ax,f (x )在(1,2)上是单调函数,∴f ′(x )≥0或f ′(x )≤0在(1,2)上恒成立,即2x 2+4x +a ≥0或2x 2+4x +a ≤0在(1,2)上恒成立,即a ≥-(2x 2+4x )或a ≤-(2x 2+4x )在(1,2)上恒成立.记g (x )=-(2x 2+4x ),1<x <2,则-16<g (x )<-6,∴a ≥-6或a ≤-16,故选C.2.[考点二](2016·南昌三模)已知函数f (x )=x 3-3x ,若在△ABC 中,角C 是钝角,则( )A .f (sin A )>f (cosB ) B .f (sin A )<f (cos B )C .f (sin A )>f (sin B )D .f (sin A )<f (sin B )解析:选A ∵f (x )=x 3-3x ,∴f ′(x )=3x 2-3=3(x +1)(x -1),故函数f (x )在区间(-1,1)上是减函数,又A 、B 都是锐角,且A +B <π2,∴0<A <π2-B <π2,∴sin A <sin ⎝ ⎛⎭⎪⎫π2-B =cos B ,故f (sin A )>f (cos B ),故选A.3.[考点一]若函数f (x )=x 3-12x 在区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:因为f ′(x )=3x 2-12,由f ′(x )>0,得函数的增区间是(-∞,-2)及(2,+∞),由f ′(x )<0,得函数的减区间是(-2,2),由于函数在(k -1,k +1)上不是单调函数,所以k -1<-2<k +1或k -1<2<k +1,解得-3<k <-1或1<k <3.答案:(-3,-1)∪(1,3)4.[考点一]已知函数f (x )=x 33-(4m -1)x 2+(15m 2-2m -7)x +2在R 上为单调递增函数,则实数m 的取值范围是________.解析:f ′(x )=x 2-2(4m -1)x +15m 2-2m -7,由题意可得f ′(x )≥0在x ∈R 上恒成立,所以Δ=4(4m -1)2-4(15m 2-2m -7)=4(m 2-6m +8)≤0,解得2≤m ≤4.答案:[2,4]5.[考点二]已知定义域为R 的函数f (x )满足f (4)=-3,且对任意的x ∈R 总有f ′(x )<3,则不等式f (x )<3x -15的解集为________.解析:令g (x )=f (x )-3x +15,则f (x )<3x -15的解集即为g (x )<0的解集.又g ′(x )=f ′(x )-3<0,所以g (x )在R 上是减函数.又g (4)=f (4)-3×4+15=0,所以g (x )<g (4),故x >4.所以f (x )<3x -15的解集为(4,+∞).答案:(4,+∞)[全国卷5年真题集中演练——明规律] 1.(2016·全国乙卷)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a的取值范围是( )A .[-1,1]B.⎣⎢⎡⎦⎥⎤-1,13 C.⎣⎢⎡⎦⎥⎤-13,13D.⎣⎢⎡⎦⎥⎤-1,-13 解析:选C 取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A 、B 、D.故选C.2.(2015·新课标全国卷Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R)的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)解析:选A 设y =g (x )=f x x (x ≠0),则g ′(x )=xfx -f xx 2,当x >0时,xf ′(x )-f (x )<0,∴g ′(x )<0,∴g (x )在(0,+∞)上为减函数,且g (1)=f (1)=-f (-1)=0.∵f (x )为奇函数,∴g (x )为偶函数,∴g (x )的图象的示意图如图所示.当x >0时,由f (x )>0,得g (x )>0,由图知0<x <1,当x <0时,由f (x )>0,得g (x )<0,由图知x <-1,∴使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),故选A.3.(2014·新课标全国卷Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x.因为f (x )在区间(1,+∞)上单调递增, 所以当x >1时,f ′(x )=k -1x≥0恒成立,即k ≥1x在区间(1,+∞)上恒成立.因为x >1,所以0<1x<1,所以k ≥1.故选D.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.函数f (x )=e x-e x ,x ∈R 的单调递增区间是( ) A .(0,+∞) B .(-∞,0) C .(-∞,1)D .(1,+∞)解析:选D 由题意知,f ′(x )=e x-e ,令f ′(x )>0,解得x >1,故选D. 2.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A f ′(x )=32x 2+a ,当a >0时,f ′(x )>0,即a >0时,f (x )在R 上单调递增,由f (x )在R 上单调递增,可得a ≥0.故“a >0”是“f (x )在R 上单调递增”的充分不必要条件.3.已知函数f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则f (x )的图象可能是( )解析:选D 当x <0时,由导函数f ′(x )=ax 2+bx +c <0,知相应的函数f (x )在该区间内单调递减;当x >0时,由导函数f ′(x )=ax 2+bx +c 的图象可知,导函数在区间(0,x 1)内的值是大于0的,则在此区间内函数f (x )单调递增.只有D 选项符合题意.4.若函数f (x )=sin x +ax 为R 上的减函数,则实数a 的取值范围是________. 解析:∵f ′(x )=cos x +a ,由题意可知,f ′(x )≤0对任意的x ∈R 都成立,∴a ≤-1,故实数a 的取值范围是(-∞,-1].答案:(-∞,-1]5.已知函数f (x )的导函数为f ′(x )=5+cos x ,x ∈(-1,1),且f (0)=0,如果f (1-x )+f (1-x 2)<0,则实数x 的取值范围为________.解析:∵导函数f ′(x )是偶函数,且f (0)=0,∴原函数f (x )是奇函数,∴所求不等式变形为f (1-x )<f (x 2-1),∵导函数值恒大于0,∴原函数在定义域上单调递增,又f (x )的定义域为(-1,1),∴-1<1-x <x 2-1<1,解得1<x <2,∴实数x 的取值范围是(1,2).答案:(1,2)[练常考题点——检验高考能力]一、选择题1.已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是( )A.⎝ ⎛⎭⎪⎫0,12和(1,+∞) B .(0,1)和(2,+∞) C.⎝ ⎛⎭⎪⎫0,12和(2,+∞) D .(1,2)解析:选C 函数f (x )=x 2-5x +2ln x 的定义域是(0,+∞),令f ′(x )=2x -5+2x=2x 2-5x +2x=x -x -x>0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,12,(2,+∞). 2.若函数f (x )=x 3-tx 2+3x 在区间[]1,4上单调递减,则实数t 的取值范围是( )A.⎝ ⎛⎦⎥⎤-∞,518B.(]-∞,3C.⎣⎢⎡⎭⎪⎫518,+∞ D.[)3,+∞解析:选C f ′(x )=3x 2-2tx +3,由于f (x )在区间[]1,4上单调递减,则有f ′(x )≤0在[]1,4上恒成立,即3x 2-2tx +3≤0在[1,4]上恒成立,则t ≥32⎝ ⎛⎭⎪⎫x +1x 在[]1,4上恒成立,因为y =32⎝ ⎛⎭⎪⎫x +1x 在[]1,4上单调递增,所以t ≥32⎝ ⎛⎭⎪⎫4+14=518,故选C.3.已知函数f (x )=x 3+bx 2+cx +d 的图象如图所示,则函数y =log 2x 2+23bx +c 3的单调递减区间为( )A.⎣⎢⎡⎭⎪⎫12,+∞ B .[3,+∞) C .[-2,3]D .(-∞,-2)解析:选D 因为f (x )=x 3+bx 2+cx +d ,所以f ′(x )=3x 2+2bx +c ,由图可知f ′(-2)=f ′(3)=0,所以⎩⎪⎨⎪⎧12-4b +c =0,27+6b +c =0,解得⎩⎪⎨⎪⎧b =-32,c =-18.令g (x )=x 2+23bx +c 3,则g (x )=x 2-x -6,g ′(x )=2x -1,由g (x )=x 2-x -6>0,解得x <-2或x >3.当x <12时,g ′(x )<0,所以g (x )=x 2-x -6在(-∞,-2)上为减函数,所以函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为(-∞,-2).4.(2017·甘肃诊断考试)函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:选C 因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数,所以a =f (0)<f ⎝ ⎛⎭⎪⎫12=b ,又f (x )=f (2-x ),所以c =f (3)=f (-1),所以c =f (-1)<f (0)=a ,所以c <a <b ,故选C.5.若函数f (x )=x +bx(b ∈R)的导函数在区间(1,2)上有零点,则f (x )在下列区间上单调递增的是( )A .(-2,0)B .(0,1)C .(1,+∞)D .(-∞,-2)解析:选D 由题意知,f ′(x )=1-bx 2,∵函数f (x )=x +b x(b ∈R)的导函数在区间(1,2)上有零点,∴当1-b x2=0时,b =x 2,又x ∈(1,2),∴b ∈(1,4).令f ′(x )>0,解得x <-b 或x >b ,即f (x )的单调递增区间为(-∞,-b ),(b ,+∞),∵b ∈(1,4),∴(-∞,-2)符合题意,故选D.6.已知y =f (x )为(0,+∞)上的可导函数,且有f ′(x )+f xx>0,则对于任意的a ,b ∈(0,+∞),当a >b 时,有( )A .af (a )<bf (b )B .af (a )>bf (b )C .af (b )>bf (a )D .af (b )<bf (a )解析:选 B 由f ′(x )+f x x >0得xfx +f x x >0,即[xf xx>0,即[xf (x )]′x >0.∵x >0,∴[xf (x )]′>0,即函数y =xf (x )为增函数,由a ,b ∈(0,+∞)且a >b ,得af (a )>bf (b ),故选B.二、填空题7.若幂函数f (x )的图象过点⎝⎛⎭⎪⎫22,12,则函数g (x )=e xf (x )的单调递减区间为________.解析:设幂函数为f (x )=x α,因为图象过点⎝⎛⎭⎪⎫22,12,所以12=⎝ ⎛⎭⎪⎫22α,α=2,所以f (x )=x 2,故g (x )=e x x 2,令g ′(x )=e x x 2+2e x x =e x(x 2+2x )<0,得-2<x <0,故函数g (x )的单调递减区间为(-2,0).答案:(-2,0)8.已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎢⎡⎦⎥⎤13,2上是增函数,则实数a 的取值范围为________.解析:f ′(x )=x +2a -1x ≥0在⎣⎢⎡⎦⎥⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎢⎡⎦⎥⎤13,2上恒成立,∵⎝ ⎛⎭⎪⎫-x +1x max=83,∴2a ≥83,即a ≥43.答案:⎣⎢⎡⎭⎪⎫43,+∞9.已知R 上可导函数f (x )的图象如图所示,则不等式(x 2-2x -3)·f ′(x )>0的解集为________.解析:由题图可知,⎩⎪⎨⎪⎧f x ,x ∈,+∪-∞,-1,fx,x ∈-1,,不等式(x 2-2x -3)f ′(x )>0等价于⎩⎪⎨⎪⎧fx ,x 2-2x -3>0或⎩⎪⎨⎪⎧fx ,x 2-2x -3<0,解得x ∈(-∞,-1)∪(3,+∞)∪(-1,1).答案:(-∞,-1)∪(3,+∞)∪(-1,1)10.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.解析:对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞. 答案:⎝ ⎛⎭⎪⎫-19,+∞三、解答题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数及其应用1.了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.2. 熟记八个基本导数公式(c,m x (m 为有理数),x x a e x x a x x log ,ln ,,,cos ,sin 的导数);掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数.3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充导数的应用价值极高,主要涉及函数单调性、极大(小)值,以及最大(小)值等,遇到有关问题要能自觉地运用导数.第1课时 变化率与导数、导数的计算1.导数的概念:函数y =)(x f 的导数)(x f ',就是当Δx →0时,函数的增量Δy 与自变量的增量Δx 的比xy∆∆的 ,即)(x f '= = .2.导函数:函数y =)(x f 在区间(a, b)内 的导数都存在,就说)(x f 在区间( a, b )内 ,其导数也是(a ,b )内的函数,叫做)(x f 的 ,记作)(x f '或x y ',函数)(x f 的导函数)(x f '在0x x =时的函数值 ,就是)(x f 在0x 处的导数.3.导数的几何意义:设函数y =)(x f 在点0x 处可导,那么它在该点的导数等于函数所表示曲线在相应点),(00y x M 处的 .4.求导数的方法(1) 八个基本求导公式)('C = ; )('n x = ;(n∈Q) )(sin 'x = , )(cos 'x =)('x e = , )('x a =)(ln 'x = , )(log 'x a =(2) 导数的四则运算)('±v u = ])(['x Cf =)('uv = ,)('vu = )0(≠v (3) 复合函数的导数设)(x u θ=在点x 处可导,)(u f y =在点)(x u θ=处可导,则复合函数)]([x f θ在点x 处可导, 且)(x f '= ,即x u x u y y '⋅'='.12+x 在x 0到x 0+Δx 之间的平均变化率.解 ∵Δy=11)(11)(11)(22020202020+++∆+--+∆+=+-+∆+x x x x x x x x x .11)(2,11)()(220200202020+++∆+∆+=∆∆∴+++∆+∆+∆=x x x x x x y x x x x x x 变式训练1. 求y=x 在x=x 0处的导数解 )())((limlim lim00000000000x x x x x x x x x x x x x x x yx x x +∆+∆+∆+-∆+=∆-∆+=∆∆→∆→∆→∆.211lim00x x x x x =+∆+=→∆例2. 求下列各函数的导数: (1);sin 5xxx x y ++=(2));3)(2)(1(+++=x x x y (3);4cos 212sin 2⎪⎭⎫⎝⎛--=x x y (4).1111xxy ++-=解 (1)∵,sin sin 23232521xx x xxx x x y ++=++=-∴y′.cos sin 2323)sin()()(232252323x x x x x x x x x x-----+-+-='+'+'= (2)方法一 y=(x 2+3x+2)(x+3)=x 3+6x 2+11x+6,∴y′=3x 2+12x+11. 方法二 'y =[])3)(2)(1()3()2)(1('+++++'++x x x x x x =[])2)(1()2()1('++++'+x x x x (x+3)+(x+1)(x+2)=(x+2+x+1)(x+3)+(x+1)(x+2)=(2x+3)(x+3)+(x+1)(x+2)=3x2(3)∵y=,sin 212cos 2sin x x x =⎪⎭⎫ ⎝⎛--∴.cos 21)(sin 21sin 21x x x y ='='⎪⎭⎫ ⎝⎛='(4)xx x x x xxy -=+--++=++-=12)1)(1(111111 ,∴.)1(2)1()1(212x x x x y -=-'--='⎪⎭⎫ ⎝⎛-='变式训练2:求y=tanx 的导数.解 y′.cos 1cos sin cos cos )(cos sin cos )(sin cos sin 22222x x xx x x x x x x x =+='-'='⎪⎭⎫ ⎝⎛=例3. 已知曲线y=.34313+x (1)求曲线在x=2处的切线方程;(2)求曲线过点(2,4)的切线方程.解 (1)∵y′=x 2,∴在点P (2,4)处的切线的斜率k='y |x=2∴曲线在点P (2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0. (2)设曲线y=34313+x 与过点P (2,4)的切线相切于点⎪⎭⎫⎝⎛+3431,300x x A ,则切线的斜率k='y |x x ==20x .∴切线方程为),(343102030x x x x y -=⎪⎭⎫ ⎝⎛+-即.343232+-⋅=x x x y ∵点P (2,4)在切线上,∴4=,343223020+-x x 即,044,0432020302030=+-+∴=+-x x x x x ∴,0)1)(1(4)1(00020=-+-+x x x x ∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x-y-4=0或x-y+2=0.变式训练3:若直线y=kx 与曲线y=x 3-3x 2+2x 相切,则k= .答案 2或41-例4. 设函数bx ax x f ++=1)( (a,b∈Z ),曲线)(x f y =在点))2(,2(f 处的切线方程为y=3.(1)求)(x f 的解析式;(2)证明:曲线)(x f y =上任一点的切线与直线x=1和直线y=x 所围三角形的面积为定值,并求出此定值.(1)解 2)(1)(b x a x f +-=',于是⎪⎪⎩⎪⎪⎨⎧=+-=++,0)2(1,32122b a b a 解得⎩⎨⎧-==,1,1b a 或⎪⎪⎩⎪⎪⎨⎧-==.38,49b a因为a,b ∈Z ,故.11)(-+=x x x f (2)证明 在曲线上任取一点⎪⎪⎭⎫⎝⎛-+11,00x x x .由200)1(11)(--='x x f 知,过此点的切线方程为)()1(11110200020x x x x x x y -⎥⎦⎤⎢⎣⎡--=-+--.令x=1,得1100-+=x x y ,切线与直线x=1交点为⎪⎪⎭⎫ ⎝⎛-+11,100x x .令y=x ,得120-=x y ,切线与直线y=x 的交点为)12,12(0--x x .直线x=1与直线y=x 的交点为(1,1).从而所围三角形的面积为22212211121112100000=--=----+x x x x x .所以,所围三角形的面积为定值2.变式训练4:偶函数f (x )=ax 4+bx 3+cx 2+dx+e 的图象过点P (0,1),且在x=1处的切线方程为y=x-2,求y=f (x )的解析式解 ∵f(x )的图象过点P (0,1),又∵f(x )为偶函数,∴f(-x )=f (x)故ax 4+bx 3+cx 2+dx+e=ax 4-bx 3+cx 2-∴b=0,∴f(x )=ax 4+cx2∵函数f (x )在x=1处的切线方程为y=x-2,∴可得切点为(1,-1)∴a+c+1=-∵)1('f =(4ax 3+2cx)|x=1=4a+2c ,由③④得a=25,c=29-函数y=f (x )的解析式为.12925)(24+-=x x x f1.理解平均变化率的实际意义和数学意义。
2.要熟记求导公式,对于复合函数的导数要层层求导.3.搞清导数的几何意义,为解决实际问题,如切线、加速度等问题打下理论基础.第2课时 导数的概念及性质1. 函数的单调性⑴ 函数y =)(x f 在某个区间内可导,若)(x f '>0,则)(x f 为 ;若)(x f '<0,则)(x f 为 .(逆命题不成立)(2) 如果在某个区间内恒有0)(='x f ,则)(x f .注:连续函数在开区间和与之相应的闭区间上的单调性是一致的.(3) 求可导函数单调区间的一般步骤和方法:① 确定函数)(x f 的 ;② 求)(x f ',令 ,解此方程,求出它在定义区间内的一切实根;③ 把函数)(x f 的间断点(即)(x f 的无定义点)的横坐标和上面的各个实根按由小到大的顺序排列起来,然后用这些点把函数)(x f 的定义区间分成若干个小区间;④ 确定)(x f '在各小开区间内的 ,根据)(x f '的符号判定函数)(x f 在各个相应小开区间内的增减性.2.可导函数的极值⑴ 极值的概念设函数)(x f 在点0x 附近有定义,且对0x 附近的所有点都有 (或 ),则称)(0x f 为函数的一个极大(小)值.称0x 为极大(小)值点.⑵ 求可导函数极值的步骤: ① 求导数)(x f ';② 求方程)(x f '=0的 ;③ 检验)(x f '在方程)(x f '=0的根左右的符号,如果在根的左侧附近为正,右侧附近为负,那么函数y =)(x f 在这个根处取得 ;如果在根的左侧附近为负,右侧为正,那么函数y =)(x f 在这个根处取得 .3.函数的最大值与最小值: ⑴ 设y =)(x f 是定义在区间[a ,b ]上的函数,y =)(x f 在(a ,b )内有导数,则函数y =)(x f 在[a ,b ]上 有最大值与最小值;但在开区间内 有最大值与最小值. (2) 求最值可分两步进行:① 求y =)(x f 在(a ,b )内的 值;② 将y =)(x f 的各 值与)(a f 、)(b f 比较,其中最大的一个为最大值,最小的一个为最小值.(3) 若函数y =)(x f 在[a ,b ]上单调递增,则)(a f 为函数的 ,)(b f 为函数的 ;若函数y =)(x f 在[a ,b ]上单调递减,则)(a f 为函数的 ,)(b f 为函数的 .例1. 已知f(x)=e x-ax-(1)求f(x)的单调增区间;(2)若f(x )在定义域R 内单调递增,求a 的取值范围;(3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a 的值;若不存在,说明理由.解:)(x f '=e x-(1)若a≤0,)(x f '=e x-a≥0恒成立,即f(x)在R 上递增 若a>0,e x-a≥0,∴e x≥a,x≥lna.∴f(x)的单调递增区间为(2)∵f(x )在R 内单调递增,∴)(x f '≥0在R 上恒成立∴e x-a≥0,即a≤e x在R 上恒成立∴a≤(e x )min ,又∵e x>0,(3)方法一 由题意知e x-a≤0在(-∞,0]上恒成立∴a≥e x 在(-∞,0]上恒成立.∵e x在(-∞,0]上为增函数∴x=0时,e x 最大为1.∴a≥1.同理可知e x-a≥0在[0,+∞)上恒成立∴a≤e x在[0,+∞)上恒成立.∴a≤1,方法二 由题意知,x=0为f(x)的极小值点.∴)0('f =0,即e 0-a=0,∴a=1. 变式训练1. 已知函数f(x)=x 3-ax-(1)若f(x)在实数集R 上单调递增,求实数a 的取值范围;(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a 的取值范围;若不存在,说明理由;(3)证明:f(x)=x 3-ax-1的图象不可能总在直线y=a 的上方(1)解 由已知)(x f '=3x 2-a,∵f(x)在(-∞,+∞)上是单调增函数,∴)(x f '=3x 2-a≥0在(-∞,+∞)上恒成立,即a≤3x 2对x∈R 恒成立∵3x 2≥0,∴只需a≤0,又a=0时,)(x f '=3x 2故f(x)=x 3-1在R 上是增函数,则(2)解 由)(x f '=3x 2-a≤0在(-1,1)上恒成立,得a≥3x 2,x∈(-1,1)恒成立∵-1<x<1,∴3x 2<3,∴只需a≥3.当a=3时,)(x f '=3(x 2-在x∈(-1,1)上,)(x f '<0,即f(x)在(-1,1)上为减函数,故存在实数a≥3,使f(x)在(-1,1)上单调递减(3)证明 ∵f(-1)=a-2<a,∴f(x)的图象不可能总在直线y=a 的上方.例2. 已知函数f(x)=x 3+ax 2+bx+c,曲线y=f(x )在点x=1处的切线为l:3x-y+1=0,若x=32时,y=f(x )有极值.(1)求a,b,c 的值;(2)求y=f(x )在[-3,1]上的最大值和最小值.解 (1)由f(x)=x 3+ax 2+bx+c,得)(x f '=3x 2当x=1时,切线l 的斜率为3,可得当x=32时,y=f(x)有极值,则⎪⎭⎫ ⎝⎛'32f =0,可得由①②解得a=2,b=-4.由于切点的横坐标为∴1+a+b+c=(2)由(1)可得f(x)=x 3+2x 2-4x+5,∴)(x f '=3x 2+4x-令)(x f '=0,得x=-2,x=32当x 变化时,y,y′的取值及变化如下表:x -3 (-3,-2) -2 ⎪⎭⎫ ⎝⎛-32,232⎪⎭⎫ ⎝⎛1,32 1 y′ +0 -+y8单调递增 ↗13单调递减 ↘2795 单调递增↗4∴y=f(x )在[-3,1]上的最大值为13,最小值为.2795 变式训练2. 函数y=x 4-2x 2+5在区间[-2,2]上的最大值与最小值.解 先求导数,得y′=4x 3-4x,令y′=0,即4x 3-4x=0.解得x 1=-1,x 2=0,x 3导数y′的正负以及f(-2),f(2)如下表x -2 (-2,-1) -1 (-1,0) 0 (0,1) 1 (1,2) 2 y′ - 0 + 0 - 0 + y 13 ↘ 4 ↗ 5 ↘ 4 ↗ 13从上表知,当x=±2时,函数有最大值13,当x=±1时,函数有最小值4.例3. 已知函数f(x)=x 2e -ax(a >0),求函数在[1,2]上的最大值.解 ∵f(x )=x 2e -ax (a >0),∴)(x f '=2xe -ax +x 2·(-a)e -ax =e -ax (-ax 2+2x).令)(x f '>0,即e -ax (-ax 2+2x)>0,得0<x<a2∴f(x)在(-∞,0),⎪⎭⎫ ⎝⎛+∞,2a上是减函数,在⎪⎭⎫⎝⎛a 2,0上是增函数①当0<a2<1,即a>2时,f(x )在(1,2)上是减函数∴f(x )max =f (1)=e -a. ②当1≤a2≤2,即1≤a≤2时,f(x)在⎪⎭⎫ ⎝⎛a 2,1上是增函数,在⎪⎭⎫⎝⎛2,2a上是减函数,∴f(x)max =f ⎪⎭⎫ ⎝⎛a 2=4a -2e -2.③当a2>2时,即0<a<1时,f(x)在(1,2)上是增函数,∴f(x )max =f (2)=4e -2a综上所述,当0<a<1时,f(x)的最大值为4e -2a当1≤a≤2时,f(x)的最大值为4a -2e -2当a>2时,f(x)的最大值为e -a.变式训练3. 设函数f(x)=-x(x-a)2(x∈R ),其中a∈R(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程; (2)当a≠0时,求函数f(x)的极大值和极小值解:(1)当a=1时,f(x)=-x(x-1)2=-x 3+2x 2-f(2)=-2,)(x f '=-3x 2+4x-=')2(f -12+8-1=-5,∴当a=1时,曲线y=f(x)在点(2,f(2))处的切线方程为 5x+y-(2)f(x)=-x(x-a)2=-x 3+2ax 2-a 2)(x f '=-3x 2+4ax-a 2=-(3x-a)(x-令)(x f '=0,解得x=3a 或由于a≠0,以下分两种情况讨论①若a>0,当x 变化时,)(x f '的正负如下表: x(-∞,3a ) 3a (3a ,a) a (a,+∞) )(x f '- 0+ 0 - f(x)↘3274a - ↗0 ↘因此,函数f(x)在x=3a 处取得极小值f (3a),且f (3a )=-;2743a函数f(x)在x=a 处取得极大值f(a),且②若a<0,当x 变化时,)(x f '的正负如下表:x(-∞,a) a (a,3a ) 3a (3a,+∞) )(x f '- 0 + 0 -f(x) ↘↗-3274a ↘因此,函数f(x)在x=a 处取得极小值f(a),且f(a)=0; 函数f(x)在x=3a 处取得极大值f (3a)且f (3a )=-3274a .例4. 某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x 元(9≤x≤11)时,一年的销售量为(12-x)2万件(1)求分公司一年的利润L (万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L 最大,并求出L 的最大值Q (a ).解 (1)分公司一年的利润L (万元)与售价x 的函数关系式为:L=(x-3-a)(12-x)2,x∈[9,11](2))(x L ' =(12-x)2-2(x-3-a)(12-x)=(12-x)(18+2a- 令'L =0得x=6+32a 或x=12(不合题意,舍去)∵3≤a≤5,∴8≤6+32a≤328在x=6+32a 两侧L′的值由正变负所以①当8≤6+32a <9即3≤a<29时,L max =L(9)=(9-3-a)(12-9)2=9(6-②当9≤6+32a≤328,即29≤a≤5时,L max =L(6+32a)=(6+32a-3-a)[12-(6+32a)]2=4(3-31a)3所以⎪⎪⎩⎪⎪⎨⎧≤≤⎪⎭⎫ ⎝⎛-<≤-=.529,3134,293),6(9)(3a a a a a Q答 若3≤a<29,则当每件售价为9元时,分公司一年的利润L 最大,最大值Q (a )=9(6-a)(万元);若29≤a≤5,则当每件售价为(6+32a)元时,分公司一年的利润L 最大,最大值Q(a)=33134⎪⎭⎫ ⎝⎛-a (万元).变式训练4:某造船公司年造船量是20艘,已知造船x 艘的产值函数为R(x)=3700x+45x 2-10x 3(单位:万元),成本函数为C(x)=460x+5 000(单位:万元),又在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x).(1)求利润函数P(x)及边际利润函数MP(x);(提示:利润=产值-成本)(2)问年造船量安排多少艘时,可使公司造船的年利润最大? (3)求边际利润函数MP(x)的单调递减区间,并说明单调递减在本题中的实际意义是什么?解:(1)P(x)=R(x)-C(x)=-10x 3+45x 2+3 240x-5 000(x∈N *,且MP(x)=P(x+1)-P(x)=-30x 2+60x+3 275 (x∈N *,且(2))(x P '=-30x 2+90x+3 240=-30(x-∵x>0,∴)(x P '=0时,x=12,∴当0<x<12时,)(x P '>0,当x>12时,)(x P' ∴x=12时,P(x)有最大值即年造船量安排12艘时,可使公司造船的年利润最大(3)MP(x)=-30x 2+60x+3 275=-30(x-1)2+3 318 所以,当x≥1时,MP(x)单调递减,所以单调减区间为[1,19],且x∈N *MP(x)是减函数的实际意义是:随着产量的增加,每艘利润与前一艘比较,利润在减少.研究可导函数)(x f 的单调性、极值(最值)时,应先求出函数)(x f 的导函数)('x f ,再找出)('x f =0的x 取值或)('x f >0()('x f <0)的x 的取值范围.导数及其应用单元检测题一、选择题1.曲线y=e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为( )49e 2 2C.e2D.2e 22.如果函数y=f(x)的图象如图所示,那么导函数y=)(x f '的图象可能是 ( )3.设f(x)=x 2(2-x),则f(x)的单调增区间是 ( ))34 B.(,34+∞) C.(--∞,0)∪(34,+∞)4.设a∈R ,若函数y=e x+ax,x∈R 有大于零的极值点,则- B.a>-1-e1-e15.已知函数y=f(x)=x 3+px 2+qx 的图象与x 轴切于非原点的一点,且y 极小值=-4,那么p 、q 的值分别为 ( )6.已知x≥0,y≥0,x+3y=9,则x 2y 的最大值为 ( )A.36B.18C.257.下列关于函数f(x)=(2x-x 2)e x的判断正确的是 ( ) ①f(x)>0的解集是②f(-2)是极小值,f(2)是极大值; ③f(x)没有最小值,也没有最大值8.函数f(x)的图象如图所示,下列数值排序正确的是<)2('f <)3('f <f(3)-<)3('f <f(3)-f(2) <)2('f <f(3)<)2('f <f(3)-<f(3)-f(2)<)2('f <)3('f9.若函数f(x)=x 3-ax 2+1在(0,2)内单调递减,则实数a 的取值范围为 ( )C.a≤310.函数f(x)=x 3-ax 2-bx+a 2,在x=1时有极值10,则a 、b 的值为 ( )-3,或a=--3,b=-以上都不正确 11.使函数f(x)=x+2cosx 在[0,2π]上取最大值的x 为 ( )6π3π D.2π 12.若函数f(x)=x 3-3bx+3b 在(0,1)内有极小值,则 ( )21二、填空题13.若f(x)=x 3+3ax 2+3(a+2)x+1没有极值,则a 的取值范围为14.如图是y=f(x)导数的图象,对于下列四个判断:①f(x)在[-2,-1]上是增函数;②x=-1是f(x)的极小值点;③f(x)在[-1,2]上是增函数,在[2,4]上是减函数; ④x=3是f(x)的极小值点其中判断正确的是15.函数f(x)的导函数y=)(x f '的图象如右图,则函数f(x)的单调递增区间为16.已知函数f(x)的导函数为)(x f ',且满足f(x)=3x 2+2x )2('f ,则)5('f =三、解答题17.已知函数f(x)=x 3-21x2(1)若f(x)在(-∞,+∞)上是增函数,求b 的取值范围(2)若f(x)在x=1处取得极值,且x∈[-1,2]时,f(x)<c 2恒成立,求c 的取值范围18.设p:f(x)=(x2-4)(x-a)在(-∞,-2)和(2,+∞)上是单调增函数;q:不等式x2-2x>a的解集为R.如果p与q有且只有一个正确,求a的取值范围19.已知函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,试确定实数a的取值范围20.已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值(1)求f(x)的解析式;(2)讨论f(x)在区间[-3,3]上的单调性1x2上一点,直线l过点P并与抛物线21.如图所示,P是抛物线C:y=2C在点P的切线垂直,l与抛物线C相交于另一点Q,当点P在抛物线C上移动时,求线段PQ的中点M的轨迹方程,并求点M到x轴的最短距离.1,22.已知某质点的运动方程为s(t)=t3+bt2+ct+d,下图是其运动轨迹的一部分,若t∈[2 4]时,s(t)<3d2恒成立,求d的取值范围导数及其应用单元检测题答案一、选择题1.答案2.答案3.答案4.答案5.答案6.答案7.答案 D8.答案9.答案10.答案11.答案12.答案二、填空题13.答案 [-1,2]14.答案 ②③15.答案 [-1,0]和[2,+∞)16.答案三、解答题17.解 (1))(x f '=3x 2-x+b,因f(x)在(-∞,+∞)上是增函数,则)(x f '≥0.即3x 2-∴b≥x -3x 2在(-∞,+∞)恒成立.设g(x)=x-3x 2 当x=61时,g(x)max =121,∴b≥121(2)由题意知)1('f =0,即3-1+b=0,∴b=-x∈[-1,2]时,f(x)<c 2恒成立,只需f(x)在[-1,2]上的最大值小于c 2即可.因)(x f '=3x 2-x-2,令)(x f '=0,得x=1或x=-32.∵f(1)=-23f(-,21)1(,2722)32c f c +=-+= ∴f(x)max =f(2)=2+c,∴2+c<c 2.解得c>2或c<-1,所以c 的取值范围为(-∞,-1)∪(2,+∞).18.解 命题p:由原式得f(x)=x 3-ax 2-∴)(x f '=3x 2-2ax-4,y′的图象为开口向上且过点(0,-4)的抛物线由条件得)2(-'f ≥0且)2('f即⎩⎨⎧≥-≥+.048084a a ∴-命题q:ax x x >--=-1)1(222 ∵该不等式的解集为R ,∴a<-当p 正确q 不正确时,-当p 不正确q 正确时,a<-∴a 的取值范围是(-∞,-2)∪[-1,2]19.解 f(x)=x(x-1)(x-a)=x 3-(a+1)x 2∴)(x f '=3x 2-要使函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,只需)(x f '=3x 2-2(a+1)x+a 在(2,+∞)上满足)(x f '≥0即可)(x f '=3x 2-2(a+1)x+a 的对称轴是x=31+a∴a 的取值应满足:⎪⎩⎪⎨⎧≥'≤+0(2)231f a 或⎪⎪⎩⎪⎪⎨⎧≥+'>+0)31(231a f a 解得:a≤38.∴a 的取值范围是a≤38.20.解 (1)∵函数F(x)=f(x)-3x 2是奇函数∴F(-x)=-F(x),化简计算得∵函数f(x)在x=-1处取极值,∴)1(-'ff(x)=-2x 3+3x 2+cx, )(x f '=-6x2∴)1(-'f =-6-6+c=0,c=12.∴f(x)=-2x 3+3x 2(2))(x f '=-6x 2+6x+12=-6(x 2-x-令)(x f '=0,得x 1=-1,x 2x -3 (-3,-1) -1 (-1,2) 2 (2,3)3 )(x f ' - 0 + 0 - f(x) 45 ↘ -7 ↗ 20 ↘ 9 ∴函数f(x)在[-3,-1]和[2,3]上是减函数,函数f(x)在[-1,2]上是增函数.21. 解 设P (x 0,y 0),则y 0=,212x∴过点P 的切线斜率k=x当x 0=0时不合题意,∴x∴直线l 的斜率k l =-011x -=k∴直线l 的方程为y-)(1210020x x x x --=此式与y=221x 联立消去y 得x 2+.022200=--x x x设Q (x 1,y 1),M(x,y).∵M 是PQ 的中点, ∴⎪⎪⎩⎪⎪⎨⎧++=+---=-=+=12121)1(112202020000010x x x x x x y x x x x消去x 0,得y=x 2+221x +1 (x≠0)就是所求的轨迹方程.由x≠0知x2∴y=x 2+221x +1≥2.12121·22+=+x x上式等号仅当x 2=221x ,即x=±421时成立,所以点M 到x 轴的最短距离是2+1.22. 解 )(t s '=3t 2由图象可知,s(t)在t=1和t=3处取得极值则)1('s =0, )3('s即,0627023⎩⎨⎧=++=++c b c b 解得⎩⎨⎧=-=96c b ∴)(t s '=3t 2-12t+9=3(t-1)(t-当t∈[21,1)时,)(t s '当t∈(1,3)时,)(t s '当t∈(3,4)时,)(t s '则当t=1时,s(t)取得极大值为又s(4)=4+d ,故t∈[21,4]时,s(t)的最大值为 已知s(t)<3d 2在[21,4]上恒成立, ∴s(t)max <3d 2.即4+d<3d 2 解得d>34或d<-1.∴d 的取值范围是{d|d>34或d<-1}.。