不等关系与不等式作业
不等关系与不等式

不等关系与不等式【提出新问】怎样比较两个实数的大小?理论依据:如果b a -是正数,则b a >,如果b a -是负数,则b a <,如果b a -是零,则b a = 反之也对例1.比较)5)(3(-+a a 与)4)(2(-+a a 的大小 练习:(1)比较2)6()7)(5(+++x x x 与 的大小;(2)如果0x >,比较22)1()1(+-x x 与 的大小说明: 1.比较大小的步骤:作差-变形-定号-结论;不等式的性质思路1:(可选)性质1:如果b a >,那么a b <;如果a b <,那么b a >(对称性) 性质2:如果b a >,c b > 那么c a >(传递性)性质3:如果b a >,那么c b c a +>+ (加法单调性)反之亦然 性质5:如果b a >且d c >,那么d b c a +>+ (相加法则) 推论:如果b a >且d c <,那么d b c a ->- (相减法则) 性质4:如果b a >且0>c , 那么bc ac >;如果b a >且0<c 那么bc ac < (乘法单调性)性质6:如果0>>b a 且0>>d c ,那么bd ac >(相乘法则)推论1’(补充)如果0>>b a 且d c <<0,那么dbc a >(相除法则) 性质7 如果0>>b a , 那么nn b a > )1(>∈n N n 且性质8:如果0>>b a ,那么n n b a > )1(>∈n N n 且 证:(反证法)假设n n b a ≤则:若ba b a ba b a nnn n=⇒=<⇒<这都与b a >矛盾 ∴n n b a >二、不等式的运算性质:1.不等式的加法运算性质:①c b c a b a +>+⇔> )(R c ∈ ②d b c a d c b a +>+⇒>>, (3)]4,2(-∈a ,]4,2[∈b ,求b a +,b a -2的范围。
不等关系与不等式

第六篇不等式(必修5)第1节不等关系与不等式课时训练练题感提知能【选题明细表】一、选择题1.(2013四川遂宁模拟)如果a>b,则下列各式正确的是( D )(A)a·lg x>b·lg x (B)ax2>bx2(C)a2>b2 (D)a·2x>b·2x解析:∵a>b,2x>0,∴a·2x>b·2x.故选D.2.(2014华中师大一附中模拟)若a、b为实数,则“0<ab<1”是“b<”的( D )(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件解析:若0<ab<1,当a<0时,b>,反之,若b<,当a<0时,ab>1.故选D.3.(2013成都外国语学校高三月考)把下列各题中的“=”全部改成“<”,结论仍然成立的是( D )(A)如果a=b,c=d,那么a-c=b-d(B)如果a=b,c=d,那么ac=bd(C)如果a=b,c=d,且cd≠0,那么=(D)如果a=b,那么a3=b3解析:a<b⇒a3<b3,选项D正确,故选D.4.(2013潍坊模拟)若角α,β满足-<α<β<π,则α-β的取值范围是( B )(A)(-,) (B)(-,0)(C)(0,) (D)(-,0)解析:∵-<α<β<π,∴-<α<π,-π<-β<,∴-<α-β<,又α-β<0,∴-<α-β<0.故选B.5.若a<b<0,则以下结论正确的是( C )(A)a2<ab<b2(B)a2<b2<ab(C)a2>ab>b2(D)a2>b2>ab解析:法一由a<b<0得即所以a2>ab>b2.故选C.法二由a<b<0得a-b<0,则a2-ab=a(a-b)>0,即a2>ab,ab-b2=b(a-b)>0,即ab>b2,因此a2>ab>b2.故选C.6.(2014四川雅安模拟)如果a,b,c满足c<b<a,且ac<0,那么下列选项中不一定成立的是( C )(A)ab>ac (B)c(b-a)>0(C)cb2<ab2(D)ac(a-c)<0解析:由条件知a>0,c<0,则选项A、B、D一定正确,当b=0时,选项C 不正确.故选C.7.(2013浙江龙泉市模拟)如果a<b<0,那么,下列不等式中正确的是( D )(A)< (B)a2<b2(C)>(D)<解析:法一由a<b<0,所以>0,a<b两边同乘以得:<,故选项A错;由a<b<0,得-a>-b>0,两边平方得:a2>b2,故选项B错;由a<b<0,得a-b<0,所以a(a-b)>0,若>成立,则>成立,即a>a-b成立,也就是b>0成立,与已知矛盾,故选项C错;由a<b<0得<<0,所以->->0,则=(-)2<(-)2=,故选项D正确.法二∵a<b<0,故可取a=-3,b=-2,∴=->-=,故选项A错;a2=9,b2=4,∴a2>b2,故选项B错;a-b=-1,∴=-1<-=,故选项C错;=,=,∴<,故选项D正确.故选D. 8.(2013年高考新课标全国卷Ⅱ)设a=log36,b=log510,c=log714,则( D )(A)c>b>a (B)b>c>a(C)a>c>b (D)a>b>c解析:∵1<log23<log25<log27,∴>>>0,即log32>log52>log72,a=log3(3×2)=1+log32,b=log510=1+log52,c=log714=1+log72,∴a>b>c.故选D.二、填空题9.已知a+b>0,则+与+的大小关系是.解析:+-=+=(a-b)=.∵a+b>0,(a-b)2≥0,∴≥0.∴+≥+.答案:+≥+10.已知存在实数a满足ab2>a>ab,则实数b的取值范围是. 解析:∵ab2>a>ab,∴a≠0,当a>0时,b2>1>b,即解得b<-1;当a<0时,b2<1<b,即无解.综上可得b<-1.答案:(-∞,-1)11.(2013四川绵阳模拟)现给出三个不等式:①a2+1>2a;②a2+b2>2(a-b-);③+>+.其中恒成立的不等式共有个.解析:①∵a2+1-2a=(a-1)2≥0,故①不恒成立;②∵a2+b2-2a+2b+3=(a-1)2+(b+1)2+1>0,∴a2+b2>2(a-b-)恒成立.③∵(+)2=17+2,(+)2=17+2,又∵>,∴17+2>17+2,∴+>+,成立.答案:212.如图所示的两种广告牌,其中图(1)是由两个等腰直角三角形构成的,图(2)是一个矩形,则这两个广告牌面积的大小关系可用含字母a,b(a≠b)的不等式表示为.解析:图(1)所示广告牌的面积为(a2+b2),图(2)所示广告牌的面积为ab,显然图(1)的面积大于图(2)的面积,故用不等式表示为(a2+b2)>ab(a≠b).答案:(a2+b2)>ab(a≠b)13.(2013南京一模)给出下列四个命题:①若a>b>0,则>;②若a>b>0,则a->b-;③若a>b>0,则>;④设a,b是互不相等的正数,则|a-b|+≥2.其中正确命题的序号是(把你认为正确命题的序号都填上).解析:①作差可得-=,而a>b>0,则<0,①是假命题;②a>b>0,则<,进而可得->-,所以可得a->b-,②是真命题;③-===<0,③是假命题;④当a-b<0时不成立,④是假命题.答案:②三、解答题14.已知某学生共有10元钱,打算购买单价分别为0.6元和 0.7元的铅笔和练习本,根据需要,铅笔至少买7枝,练习本至少买6本.写出满足条件的不等式.解:设铅笔买x枝,练习本买y本(x,y∈N*),总钱数为0.6x+0.7y,且不大于10,∴15.若α,β满足试求α+3β的取值范围.解:设α+3β=x(α+β)+y(α+2β)=(x+y)α+(x+2y)β.由解得∴α+3β=-(α+β)+2(α+2β),∵-1≤-(α+β)≤1,2≤2(α+2β)≤6,∴两式相加,得1≤α+3β≤7.16.某单位组织职工去某地参观学习需包车前往.甲车队说:“如果领队买一张全票,其余人可享受7.5折优惠.”乙车队说:“你们属团体票,按原价的8折优惠.”这两个车队的原价、车型都是一样的,试根据单位去的人数比较两车队的收费哪家更优惠.解:设该单位职工有n人(n∈N*),全票价为x元,坐甲车需花y1元,坐乙车需花y2元,则y1=x+x·(n-1)=x+xn,y2=nx.所以y1-y2=x+xn-nx=x-nx=x.当n=5时,y1=y2;当n>5时,y1<y2;当n<5时,y1>y2.因此当单位去的人数为5人时,两车队收费相同;多于5人时,甲车队更优惠;少于5人时,乙车队更优惠.。
高二数学复习 课时提升作业(三十二) 6.1《不等关系与不等式》文 新人教A版

课时提升作业(三十二)不等关系与不等式一、选择题(每小题5分,共35分)1.(2015·成都模拟)已知a,b为非零实数,且a<b,则下列不等式一定成立的是( )A.a2<b2B.ab2>a2bC.<D.<【解析】选C.若a<b<0,则a2>b2,故A错;若0<a<b,则>,故D错;若ab<0,即a<0,b>0,则a2b>ab2,故B错.2.(2015·嘉兴模拟)设M=x2,N=-x-1,则M与N的大小关系是( )A.M>NB.M=NC.M<ND.与x有关【解析】选A.M-N=x2+x+1=+>0,所以M>N.3.(2015·广东实验中学模拟)已知0<a<b<1,则( )A.>B.<C.<D.>【解题提示】利用不等式的基本性质和指数函数、对数函数的单调性即可得出.【解析】选D.因为0<a<b<1,所以-=<0,可得<;>;(lga)2>(lgb)2;lga<lgb<0,可得>.综上可知,只有D正确.【加固训练】(2015·富阳模拟)如果a,b,c满足c<b<a,且ac<0,那么下列选项中不一定成立的是( )A.ab>acB.bc>acC.cb2<ab2D.ac(a-c)<0【解析】选C.因为c<b<a,且ac<0,所以a>0,c<0.所以ab-ac=a(b-c)>0,bc-ac=(b-a)c>0,ac(a-c)<0,所以A,B,D均正确.因为b可能等于0,也可能不等于0.所以cb2<ab2不一定成立.4.某同学拿50元钱买纪念邮票,票面8角的每套5张,票面2元的每套4张,如果每种邮票至少买两套,则买票面8角的x套与票面2元的y套用不等式表示为( )A. B.C. D.0.8×5x+2×4y≤50【解析】选A.根据题意直接列出相应的不等式,组成不等式组即可.5.若a>b>c,a+b+c=0,下列不等式恒成立的是( )A.ac>bcB.ab>acC.a|b|>c|b|D.a2>b2>c2【解析】选B.由a>b>c,a+b+c=0,得a>0,c<0,因为b>c,所以ab>ac.6.若-<α<β<,则α-β一定不属于的区间是( )A.(-π,π)B.C.(0,π)D.(-π,0)【解题提示】由-<α<β<可得-<-β<,从而有-π<α-β<0.【解析】选C.因为-<α<β<,所以-<-β<,所以-π<α-β<0,结合选项可知选项C一定不可能,故选C.7.(2015·上海模拟)若a,b为实数,则a>b>0是“a2>b2”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分条件也非必要条件【解题提示】当a,b>0时,由题意解出a2>b2为a>b或a<-b,然后再判断命题的关系.【解析】选A.若a>0,b>0,因为a2>b2,所以a2-b2>0,所以a>b或a<-b,所以a>b>0⇒a2>b2,反之则不成立,所以a>b>0是a2>b2的充分不必要条件,故选A.二、填空题(每小题5分,共15分)8.(2015·北京模拟)已知a+b>0,则+与+的大小关系是.【解析】+-=+=(a-b)=.因为a+b>0,(a-b)2≥0,所以≥0,所以+≥+.答案:+≥+9.(2015·临沂模拟)用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长18m,要求菜园的面积不小于216m2,靠墙的一边长为xm,其中的不等关系可用不等式(组)表示为. 【解析】矩形的另一边长为(30-x)=15-x,矩形面积为x且0<x<18,则不等式组为答案:10.已知f(x)=ax2+b,若1≤f(1)≤2,2≤f(2)≤3,则f(3)的范围为.【解析】令f(3)=9a+b=m(a+b)+n(4a+b)=(m+4n)a+(m+n)b,则解得即f(3)=-(a+b)+(4a+b).因为1≤a+b≤2,2≤4a+b≤3,所以2≤f(3)≤,即f(3)的范围是.答案:【一题多解】本题还可有以下解法:巧妙换元:令a+b=x,4a+b=y,则a=,b=,1≤x≤2,2≤y≤3.因为f(3)=9a+b=,6≤8y-5x≤19,所以2≤f(3)≤,即f(3)的范围是.【加固训练】(2015·盐城模拟)若-1<a+b<3,2<a-b<4,则2a+3b的取值范围为.【解析】设2a+3b=x(a+b)+y(a-b),则解得又因为-<(a+b)<,-2<-(a-b)<-1,所以-<(a+b)-(a-b)<,即-<2a+3b<答案:(20分钟40分)1.(5分)(2015·资阳模拟)已知a,b为实数,则“a>b>1”是“<”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】选A.由a>b>1⇒a-1>b-1>0⇒<,当a=0,b=2时,<,但a>b>1不成立,所以< a>b>1,故选A.2.(5分)(2015·烟台模拟)已知-1<a<0,A=1+a2,B=1-a2,C=,比较A,B,C的大小结果为( )A.A<B<CB.B<A<CC.A<C<BD.B<C<A【解析】选B.方法一:不妨设a=-,则A=,B=,C=2,由此得B<A<C,选B.方法二:由-1<a<0得1+a>0,A-B=(1+a2)-(1-a2)=2a2>0得A>B,C-A=-(1+a2)=-=->0,得C>A,所以B<A<C.3.(5分)(2015·遵义模拟)已知下列结论:①若a>|b|,则a2>b2;②若a>b,则<;③若a>b,则a3>b3;④若a<0,-1<b<0,则ab2>a.其中正确的是(只填序号即可).【解析】对于①,因为a>|b|≥0,所以a2>b2,即①正确;对于②,当a=2,b=-1时,显然不正确;对于③,显然正确;对于④,因为a<0,-1<b<0,ab2-a=a(b2-1)>0,所以ab2>a,即④正确.答案:①③④4.(12分)已知函数f(x)=ax2+bx+c满足f(1)=0,且a>b>c,求的取值范围.【解题提示】用a+c把b表示出来代入a>b>c,利用放缩法求解.【解析】因为f(1)=0,所以a+b+c=0,所以b=-(a+c).又a>b>c,所以a>-(a+c)>c,且a>0,c<0,所以1>->,即1>-1->,所以解得-2<<-.5.(13分)(能力挑战题)某单位组织职工去某地参观学习需包车前往.甲车队说:“如领队买全票一张,其余人可享受7.5折优惠”,乙车队说:“你们属团体票,按原价的8折优惠”.这两车队的原价、车型都是一样的,试根据单位的人数,比较两车队的收费哪家更优惠.【解析】设该单位职工有n人(n∈N*),全票价为x元,坐甲车需花y1元,坐乙车需花y2元,则y1=x+x·(n-1)=x+nx,y2=nx.因为y1-y2=x+nx-nx=x-nx=x,当n=5时,y1=y2;当n>5时,y1<y2;当n<5时,y1>y2.因此当单位去的人数为5人时,两车队收费相同;多于5人时,选甲车队更优惠;少于5人时,选乙车队更优惠.。
不等关系与不等式(含解析)

不等关系与不等式班级___________ 姓名_____________ 学号__________层级一 学业水平达标1.李辉准备用自己节省的零花钱买一台学习机,他现在已存60元.计划从现在起以后每个月节省30元,直到他至少有400元.设x 个月后他至少有400元,则可以用于计算所需要的月数x 的不等式是( )A .30x -60≥400B .30x +60≥400C .30x -60≤400D .30x +40≤4002.若abcd <0,且a >0,b >c ,d <0,则( ) A .b <0,c <0 B .b >0,c >0 C .b >0,c <0D .0<c <b 或c <b <03.已知:a ,b ,c ,d ∈R ,则下列命题中必成立的是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,c <d ,则a c >bdD .若a 2>b 2,则-a <-b4.设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,则2α-β3的范围是( ) A.⎝⎛⎭⎫0,56π B.⎝⎛⎭⎫-π6,56π C.()0,πD.⎝⎛⎭⎫-π6,π 5.已知M =2x +1,N =11+x 2,则M ,N 的大小关系为( ) A .M >N B .M <N C .M =ND .不确定6.某校高一年级的213名同学去科技馆参观,租用了某公交公司的x 辆公共汽车.如果每辆车坐30人,则最后一辆车不空也不满.则题目中所包含的不等关系为________.7.比较大小:a 2+b 2+c 2________2(a +b +c )-4.8.已知-1≤x +y ≤4,且2≤x -y ≤3,则z =2x -3y 的取值范围是________(用区间表示).9.(1)若a <b <0,求证:b a <ab ; (2)已知a >b ,1a <1b ,求证:ab >0.层级二 应试能力达标1.若x ∈R ,y ∈R ,则( ) A .x 2+y 2>2xy -1 B .x 2+y 2=2xy -1 C .x 2+y 2<2xy -1D .x 2+y 2≤2xy -12.已知a 1∈(0,1),a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .M ≥N3.若-1<α<β<1,则下列各式中恒成立的是( ) A .-2<α-β<0 B .-2<α-β<-1 C .-1<α-β<0D .-1<α-β<14.有一家三口的年龄之和为65岁,设父亲、母亲和小孩的年龄分别为x ,y ,z ,则下列选项中能反映x ,y ,z 关系的是( )A .x +y +z =65B.⎩⎪⎨⎪⎧x +y +z =65,x >y >z ,x ,y ,z ∈N *C.⎩⎪⎨⎪⎧x +y +z =65,x >z >0,y >z >0,x ,y ,z ∈N*D.⎩⎪⎨⎪⎧x +y +z =65,x <65,y <65,z <65,x ,y ,z ∈N*5.已知|a |<1,则11+a与1-a 的大小关系为________. 6.设a ,b 为正实数,有下列命题: ①若a 2-b 2=1,则a -b <1; ②若1b -1a =1,则a -b <1; ③若|a -b |=1,则|a -b |<1; ④若|a 3-b 3|=1,则|a -b |<1.其中正确的命题为________(写出所有正确命题的序号). 7.比较a 2+b 2与2(2a -b )-5的大小;答案解析1.李辉准备用自己节省的零花钱买一台学习机,他现在已存60元.计划从现在起以后每个月节省30元,直到他至少有400元.设x 个月后他至少有400元,则可以用于计算所需要的月数x 的不等式是( )A .30x -60≥400B .30x +60≥400C .30x -60≤400D .30x +40≤400解析:选B x 月后他至少有400元,可表示成30x +60≥400. 2.若abcd <0,且a >0,b >c ,d <0,则( ) A .b <0,c <0 B .b >0,c >0 C .b >0,c <0D .0<c <b 或c <b <0解析:选D 由a >0,d <0,且abcd <0,知bc >0, 又∵b >c ,∴0<c <b 或c <b <0.3.已知:a ,b ,c ,d ∈R ,则下列命题中必成立的是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,c <d ,则a c >bd D .若a 2>b 2,则-a <-b解析:选B 选项A ,若a =4,b =2,c =5,显然不成立,选项C 不满足倒数不等式的条件,如a >b >0,c <0<d 时,不成立;选项D 只有a >b >0时才可以.否则如a =-1,b =0时不成立,故选B.4.设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,则2α-β3的范围是( ) A.⎝⎛⎭⎫0,56π B.⎝⎛⎭⎫-π6,56π C.()0,πD.⎝⎛⎭⎫-π6,π 解析:选D 0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,由同向不等式相加得到-π6<2α-β3<π.5.已知M =2x +1,N =11+x 2,则M ,N 的大小关系为( ) A .M >N B .M <N C .M =ND .不确定 解析:选A ∵2x >0,∴M =2x +1>1,而x 2+1≥1, ∴11+x 2≤1,∴M >N ,故选A. 6.某校高一年级的213名同学去科技馆参观,租用了某公交公司的x 辆公共汽车.如果每辆车坐30人,则最后一辆车不空也不满.则题目中所包含的不等关系为________.解析:根据题意得:⎩⎪⎨⎪⎧30(x -1)<213,30x >213.答案:⎩⎪⎨⎪⎧30(x -1)<213,30x >2137.比较大小:a 2+b 2+c 2________2(a +b +c )-4. 解析:a 2+b 2+c 2-[2(a +b +c )-4] =a 2+b 2+c 2-2a -2b -2c +4=(a -1)2+(b -1)2+(c -1)2+1≥1>0, 故a 2+b 2+c 2>2(a +b +c )-4. 答案:>8.已知-1≤x +y ≤4,且2≤x -y ≤3,则z =2x -3y 的取值范围是________(用区间表示).解析:∵z =-12(x +y )+52(x -y ),-2≤-12(x +y )≤12,5≤52(x -y )≤152,∴3≤-12(x +y )+52(x -y )≤8,∴z 的取值范围是[3,8]. 答案:[3,8]9.(1)若a <b <0,求证:b a <ab ;(2)已知a >b ,1a <1b ,求证:ab >0. 证明:(1)由于b a -a b =b 2-a 2ab =(b +a )(b -a )ab , ∵a <b <0,∴b +a <0,b -a >0,ab >0, ∴(b +a )(b -a )ab <0,故b a <ab .(2)∵1a <1b ,∴1a -1b<0,即b -aab <0,而a >b ,∴b -a <0,∴ab >0.层级二 应试能力达标1.若x ∈R ,y ∈R ,则( ) A .x 2+y 2>2xy -1 B .x 2+y 2=2xy -1 C .x 2+y 2<2xy -1D .x 2+y 2≤2xy -1解析:选A 因为x 2+y 2-(2xy -1)=x 2-2xy +y 2+1=(x -y )2+1>0,所以x 2+y 2>2xy-1,故选A.2.已知a 1∈(0,1),a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .M ≥N解析:选B ∵a 1∈(0,1),a 2∈(0,1),∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1)>0,∴M >N ,故选B.3.若-1<α<β<1,则下列各式中恒成立的是( ) A .-2<α-β<0 B .-2<α-β<-1 C .-1<α-β<0D .-1<α-β<1解析:选A 由-1<α<1,-1<β<1,得-1<-β<1, ∴-2<α-β<2.又∵α<β,故知-2<α-β<0.4.有一家三口的年龄之和为65岁,设父亲、母亲和小孩的年龄分别为x ,y ,z ,则下列选项中能反映x ,y ,z 关系的是( )A .x +y +z =65B.⎩⎪⎨⎪⎧x +y +z =65,x >y >z ,x ,y ,z ∈N *C.⎩⎪⎨⎪⎧x +y +z =65,x >z >0,y >z >0,x ,y ,z ∈N*D.⎩⎪⎨⎪⎧x +y +z =65,x <65,y <65,z <65,x ,y ,z ∈N*解析:选C 由题意得x +y +z =65,x >z >0,y >z >0,x ,y ,z ∈N *.故选C. 5.已知|a |<1,则11+a与1-a 的大小关系为________. 解析:由|a |<1,得-1<a <1. ∴1+a >0,1-a >0. 即11+a 1-a =11-a 2∵0<1-a 2≤1,∴11-a 2≥1,∴11+a≥1-a . 答案:11+a≥1-a 6.设a ,b 为正实数,有下列命题:①若a 2-b 2=1,则a -b <1; ②若1b -1a =1,则a -b <1;③若|a -b |=1,则|a -b |<1; ④若|a 3-b 3|=1,则|a -b |<1.其中正确的命题为________(写出所有正确命题的序号).解析:对于①,由题意a ,b 为正实数,则a 2-b 2=1⇒a -b =1a +b ⇒a -b >0⇒a >b >0,故a +b >a -b >0.若a -b ≥1,则1a +b ≥1⇒a +b ≤1≤a -b ,这与a +b >a -b >0矛盾,故a-b <1成立.对于②,取特殊值,a =3,b =34,则a -b >1.对于③,取特殊值,a =9,b =4时,|a -b |>1. 对于④,∵|a 3-b 3|=1,a >0,b >0, ∴a ≠b ,不妨设a >b >0. ∴a 2+ab +b 2>a 2-2ab +b 2>0, ∴(a -b )(a 2+ab +b 2)>(a -b )(a -b )2. 即a 3-b 3>(a -b )3>0, ∴1=|a 3-b 3|>(a -b )3>0, ∴0<a -b <1, 即|a -b |<1.因此正确. 答案:①④7.(1)比较a 2+b 2与2(2a -b )-5的大小; (2)已知a ,b ∈(0,+∞),求证:a a b b ≥(ab )2+a b ,当且仅当a =b 时等号成立.解:(1)∵a 2+b 2-[2(2a -b )-5]=(a -2)2+(b +1)2≥0, ∴a 2+b 2≥2(2a -b )-5,当且仅当a =2,b =-1时,等号成立.。
不等关系与不等式(一轮)

1.(2014年银川质检)已知a,b,c∈R,则“a>b”是“ac2>bc2”的( A.充分而不必要条件 C.充要条件 解析:a>b 答案:B B.必要而不充分条件 D.既不充分也不必要条件
第六章
不等式、推理与证明
6.1 不等关系与不等 式
知识脉络
6.1不等关系与不等式
考纲 1.了解现实世界和日常生活中的不等关系 考情 2.了解不等式(组)的实际背景 3.掌握不等式的性质及应用
13年(4考):天津T4 北京T2 浙江T7浙江T10 三年 12年(5考):浙江T10 天津T4 湖南T7湖北T9 江苏T14 考题 11年(3考):陕西T3 浙江T6 福建T21
性质 同向可加性
同向同正
性质内容
a b a+c>b+d ____________ c d a b 0 ac>bd __________ c d 0
特别提醒 ⇒ ⇒
可乘性 可乘方性
可开方性
a>b>0⇒_____ an>bn (n∈N,n≥2)
n a>b>0⇒________ anb
又∵1≤f(-1)≤2,2≤f(1)≤4, ∴5≤3f(-1)+f(1)≤10,故 5≤f(-2)≤10.
【方法 2】
1≤a-b≤2 由 2≤a+b≤4
确定的平面区域如图阴影部分,
3 3 , 2 2
当 =5, 2 2 当 f(-2)=4a-2b 过点 B(3,1)时,取得最大值 4×3-2×1=10,
不等关系与不等式(一)

解: ∵ (a + 3)(a 5) (a + 2)(a 4)
2 2
作差
= ( a 2a 15) (a 2a 8) 变形 = 7 ∴ (a + 3)(a 5) (a + 2)(a 4) <0 定符号 0 ∴ ( a + 3)( a 5) < (a + 2)(a 4) 确定大小
这是一个解不等式的问题
3
问题 3: 某钢铁厂要把长度为 4000mm 的钢管截成 500mm 和 600mm 两种,按照生产的要求,600mm 钢管的数量不 两种,按照生产的要求, 应怎样截更好? 能超过 500mm 钢管的 3 倍。应怎样截更好
分析: 500mm 的钢管 x 根, 600mm 的钢管 y 根. 分析:假设截得 500 截得 600 根据题意,应有如下的不等关系: 根据题意,应有如下的不等关系: 4000mm; ⑴解得两种钢管的总长度不能超过 4000 ; 600mm 钢管的数量不能超过 500 500mm 钢管数量的 3 倍; ⑵截得 600 解得两钟钢管的数量都不能为负。 ⑶解得两钟钢管的数量都不能为负。
这个数学问题又怎么解决? ?
分析: 分析:若杂志的定价为 x 元,则销售的总收入为 x2 × 0.5 x 万元。那么不等关系“销售的 万元。那么不等关系“ 10 0.2 元” 总 收入 大于 22.4 万 元 ” 可以表 示为不等式 x2 × 0.5 x >22.4 22.4 10 0.2
不等关系与不等式( 不等关系与不等式(一)
很早以前, 古希腊的一名哲学家就 很早以前, 古希腊的一名 曾经说过: 曾经说过: 世界上没有两片完全相同 “ 的树叶”,不等关系是普遍存在的. 的树叶” 不等关系是普遍存在的.
不等式关系与不等式练习

不等式性质练习一、选择题1、与a b >等价的不等式是 ( )A 、a b >B 、1a b> C 、lg lg a b > D 、22a b > 2、已知()f x 是R 上的增函数,且0a b +>,则 ( )A 、()()()()f a f b f a f b +>-+-B 、()()()()f a f b f a f b +<-+-C 、()()()()f a f a f b f b -+>-+D 、()()()()f a f a f b f b -+<-+3、若,x y m n >>,则下列不等式正确的是 ( )A 、x m y n ->-B 、mx ny >C 、x y n m> D 、m y n x ->- 4、若0,0n m ><且0m n +<,则下列不等式成立的是 ( )A 、n m n m -<<<-B 、n m m n -<<-<C 、m n n m <-<<-D 、m n m n <-<-<5、若0,10a b <-<<,则2,,a ab ab 之间的大小关系是 ( )A 、2a ab ab >>B 、2ab ab a >>C 、2ab a ab >>D 、2ab ab a >>二、填空题6、用不等号“,><”填空(1)、,a b c d a c b d ><⇒--(2)、0,0a b c d a c b d >><<⇒(3)、0a b >>⇒ (4)、22110a b a b >>⇒ 7、在等比数列{}n a 和等差数列{}n b 中,1133130,0,a b a b a a =>=>≠,则55a b 与的大小关系是 。
不等关系与不等式(解析版)

§7.1 不等关系与不等式题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.( √ )(2)若a b>1,则a >b .( × ) (3)一个不等式的两边同加上或同乘以同一个数,不等号方向不变.( × )(4)a >b >0,c >d >0⇒a d >b c.( √ ) (5)若ab >0,则a >b ⇔1a <1b.( √ ) 题组二 教材改编2.若0<a <b ,且a +b =1,则将a ,b ,12,2ab ,a 2+b 2从小到大排列为________________. 答案 a <2ab <12<a 2+b 2<b 解析 ∵0<a <b 且a +b =1,∴a <12<b <1,∴2b >1且2a <1, ∴a <2b ·a =2a (1-a )=-2a 2+2a =-2⎝⎛⎭⎫a -122+12<12. 即a <2ab <12, 又a 2+b 2=(a +b )2-2ab =1-2ab >1-12=12,即a 2+b 2>12, a 2+b 2-b =(1-b )2+b 2-b =(2b -1)(b -1),又2b -1>0,b -1<0,∴a 2+b 2-b <0,∴a 2+b 2<b ,综上,a <2ab <12<a 2+b 2<b . 题组三 易错自纠4.若a >b >0,c <d <0,则一定有( )A.a c -b d >0B.a c -b d <0C.a d >b cD.a d <b c答案 D解析 ∵c <d <0,∴0<-d <-c ,又0<b <a ,∴-bd <-ac ,即bd >ac ,又∵cd >0,∴bd cd >ac cd ,即b c >a d. 5.若-π2<α<β<π2,则α-β的取值范围是__________. 答案 (-π,0)解析 由-π2<α<π2,-π2<-β<π2,α<β, 得-π<α-β<0.题型一 比较两个数(式)的大小1.已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是() A .c ≥b >a B .a >c ≥b C .c >b >a D .a >c >b答案 A解析 ∵c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b .又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1,∴b -a =a 2-a +1=⎝⎛⎭⎫a -122+34>0,∴b >a ,∴c ≥b >a .2.若a =ln 33,b =ln 44,c =ln 55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c答案 B解析 方法一 易知a ,b ,c 都是正数,b a =3ln 44ln 3=log 8164<1,所以a >b ;b c =5ln 44ln 5=log 6251 024>1,所以b >c .即c <b <a .方法二 对于函数y =f (x )=ln x x ,y ′=1-ln xx 2,易知当x >e 时,函数f (x )单调递减.因为e<3<4<5,所以f (3)>f (4)>f (5),即c <b <a .思维升华 比较大小的常用方法(1)作差法一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法一般步骤:①作商;②变形;③判断商与1的大小关系;④结论.(3)函数的单调性法:将要比较的两个数作为一个函数的两个函数值,根据函数的单调性得出大小关系.题型二 不等式的性质典例 (1)已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中一定成立的是( )A .ab >acB .c (b -a )<0C .cb 2<ab 2D .ac (a -c )>0答案 A解析 由c <b <a 且ac <0,知c <0且a >0.由b >c ,得ab >ac 一定成立.(2)设a >b >1,c <0,给出下列三个结论:①c a >c b;②a c <b c ;③log b (a -c )>log a (b -c ). 其中所有正确结论的序号是( )A .①B .①②C .②③D .①②③答案 D解析 由不等式性质及a >b >1,知1a <1b, 又c <0,∴c a >c b,①正确; 构造函数y =x c ,∵c <0,∴y =x c 在(0,+∞)上是单调递减的,又a >b >1,∴a c <b c ,②正确;∵a >b >1,c <0,∴a -c >b -c >1,∴log b (a -c )>log a (a -c )>log a (b -c ),③正确.思维升华 解决此类问题常用两种方法:一是直接使用不等式的性质逐个验证;二是利用特殊值法排除错误答案.利用不等式的性质判断不等式是否成立时要特别注意前提条件.跟踪训练 若1a <1b <0,给出下列不等式:①1a +b <1ab;②|a |+b >0;③a -1a >b -1b ;④ln a 2>ln b 2. 其中正确的不等式是( )A .①④B .②③C .①③D .②④答案 C解析 方法一 因为1a <1b<0,故可取a =-1,b =-2. 显然|a |+b =1-2=-1<0,所以②错误;因为ln a 2=ln(-1)2=0,ln b 2=ln(-2)2=ln 4>0,所以④错误.综上所述,可排除A ,B ,D.方法二 由1a <1b<0,可知b <a <0. ①中,因为a +b <0,ab >0,所以1a +b<0,1ab >0. 故有1a +b <1ab,即①正确; ②中,因为b <a <0,所以-b >-a >0.故-b >|a |,即|a |+b <0,故②错误;③中,因为b <a <0,又1a <1b <0,则-1a >-1b>0, 所以a -1a >b -1b,故③正确; ④中,因为b <a <0,根据y =x 2在(-∞,0)上为减函数,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上为增函数,所以ln b 2>ln a 2,故④错误.由以上分析,知①③正确.题型三 不等式性质的应用命题点1 应用性质判断不等式是否成立典例 已知a >b >0,给出下列四个不等式:①a 2>b 2;②2a >2b -1;③a -b >a -b ; ④a 3+b 3>2a 2b .其中一定成立的不等式为( )A .①②③B .①②④C .①③④D .②③④答案 A解析 方法一 由a >b >0可得a 2>b 2,①成立;由a >b >0可得a >b -1,而函数f (x )=2x 在R 上是增函数,∴f (a )>f (b -1),即2a >2b -1,②成立;∵a >b >0,∴a >b ,∴(a -b )2-(a -b )2=2ab -2b =2b (a -b )>0, ∴a -b >a -b ,③成立;若a =3,b =2,则a 3+b 3=35,2a 2b =36,a 3+b 3<2a 2b ,④不成立.故选A.方法二 令a =3,b =2,可以得到①a 2>b 2,②2a >2b -1,③a -b >a -b 均成立,而④a 3+b 3>2a 2b 不成立,故选A. 命题点2 求代数式的取值范围典例 已知-1<x <4,2<y <3,则x -y 的取值范围是________,3x +2y 的取值范围是________. 答案 (-4,2) (1,18)解析 ∵-1<x <4,2<y <3,∴-3<-y <-2,∴-4<x -y <2.由-1<x <4,2<y <3,得-3<3x <12,4<2y <6,∴1<3x +2y <18.思维升华 (1)判断不等式是否成立的方法①判断不等式是否成立,需要逐一给出推理判断或反例说明.②在判断一个关于不等式的命题的真假时,可结合不等式的性质,对数函数、指数函数的性质进行判断.(2)求代数式的取值范围利用不等式性质求某些代数式的取值范围时,一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围,是避免错误的有效途径.跟踪训练 (1)若a <b <0,则下列不等式一定成立的是( )A.1a -b >1b B .a 2<ab C.|b ||a |<|b |+1|a |+1D .a n >b n 答案 C解析 (特值法)取a =-2,b =-1,逐个检验,可知A ,B ,D 项均不正确;C 项,|b ||a |<|b |+1|a |+1⇔|b |(|a |+1)<|a |(|b |+1)⇔|a ||b |+|b |<|a ||b |+|a |⇔|b |<|a |,∵a <b <0,∴|b |<|a |成立,故选C.(2)已知-1<x <y <3,则x -y 的取值范围是________.答案 (-4,0)解析 ∵-1<x <3,-1<y <3,∴-3<-y <1,∴-4<x -y <4.又∵x <y ,∴x -y <0,∴-4<x -y <0,故x -y 的取值范围为(-4,0).利用不等式变形求范围典例 设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是________. 错解展示:由⎩⎪⎨⎪⎧ 1≤f (-1)≤2,2≤f (1)≤4,得⎩⎪⎨⎪⎧1≤a -b ≤2,①2≤a +b ≤4. ② ①+②得32≤a ≤3,②-①得12≤b ≤1. 由此得4≤f (-2)=4a -2b ≤11.所以f (-2)的取值范围是[4,11].错误答案 [4,11]现场纠错解析 方法一 设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数),则4a -2b =m (a -b )+n (a +b ), 即4a -2b =(m +n )a +(n -m )b .于是得⎩⎪⎨⎪⎧ m +n =4,n -m =-2,解得⎩⎪⎨⎪⎧m =3,n =1. ∴f (-2)=3f (-1)+f (1).又∵1≤f (-1)≤2,2≤f (1)≤4.∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.方法二 由⎩⎪⎨⎪⎧f (-1)=a -b ,f (1)=a +b , 得⎩⎨⎧ a =12[f (-1)+f (1)],b =12[f (1)-f (-1)],∴f (-2)=4a -2b =3f (-1)+f (1).又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.方法三 由⎩⎪⎨⎪⎧1≤a -b ≤2,2≤a +b ≤4确定的平面区域如图阴影部分所示,当f (-2)=4a -2b 过点A ⎝⎛⎭⎫32,12时,取得最小值4×32-2×12=5, 当f (-2)=4a -2b 过点B (3,1)时,取得最大值4×3-2×1=10,∴5≤f (-2)≤10.答案 [5,10]纠错心得在求式子的范围时,如果多次使用不等式的可加性,式子中的等号不能同时取到,会导致范围扩大.1.(2018·济宁模拟)若a<0,ay>0,且x+y>0,则x与y之间的不等关系是()A.x=y B.x>y C.x<y D.x≥y答案B解析由a<0,ay>0,可知y<0,又由x+y>0,可知x>0,所以x>y.2.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x),g(x)的大小关系是()A.f(x)=g(x) B.f(x)>g(x) C.f(x)<g(x) D.随x值的变化而变化答案B解析f(x)-g(x)=x2-2x+2=(x-1)2+1>0,则f(x)>g(x).3.若a ,b ∈R ,且a +|b |<0,则下列不等式中正确的是( )A .a -b >0B .a 3+b 3>0C .a 2-b 2<0D .a +b <0答案 D解析 由a +|b |<0知,a <0,且|a |>|b |,当b ≥0时,a +b <0成立,当b <0时,a +b <0成立,∴a +b <0成立.故选D.4.(2018·乐山调研)若6<a <10,a 2≤b ≤2a ,c =a +b ,那么c 的取值范围是( ) A .9≤c ≤18 B .15<c <30 C .9≤c ≤30 D .9<c <30答案 D解析 ∵c =a +b ≤3a 且c =a +b ≥3a 2, ∴9<3a 2≤a +b ≤3a <30. 5.设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,那么2α-β3的取值范围是( ) A.⎝⎛⎭⎫0,5π6 B.⎝⎛⎭⎫-π6,5π6 C .(0,π) D.⎝⎛⎭⎫-π6,π 答案 D解析 由题设得0<2α<π,0≤β3≤π6, ∴-π6≤-β3≤0,∴-π6<2α-β3<π. 6.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m 2)分别为x ,y ,z ,且x <y <z ,三种颜色涂料的粉刷费用(单位:元/m 2)分别为a ,b ,c ,且a <b <c .在不同的方案中,最低的总费用(单位:元)是( )A .ax +by +czB .az +by +cxC .ay +bz +cxD .ay +bx +cz答案 B解析 令x =1,y =2,z =3,a =1,b =2,c =3.A 项:ax +by +cz =1+4+9=14;B 项:az +by +cx =3+4+3=10;C 项:ay +bz +cx =2+6+3=11;D 项:ay +bx +cz =2+2+9=13.故选B.7.(2018·济南调研)若a >b >0,则下列不等式中一定成立的是( )A .a +1b >b +1a B.b a >b +1a +1 C .a -1b >b -1a D.2a +b a +2b >a b答案 A解析 取a =2,b =1,排除B 与D ;另外,函数f (x )=x -1x 是(0,+∞)上的增函数,但函数g (x )=x +1x 在(0,1]上单调递减,在[1,+∞)上单调递增,所以,当a >b >0时,f (a )>f (b )必定成立,即a -1a >b -1b ⇔a +1b >b +1a,但g (a )>g (b )未必成立,故选A.8.已知a 1≤a 2,b 1≥b 2,则a 1b 1+a 2b 2与a 1b 2+a 2b 1的大小关系是__________________. 答案 a 1b 1+a 2b 2≤a 1b 2+a 2b 1解析 a 1b 1+a 2b 2-(a 1b 2+a 2b 1)=(a 1-a 2)(b 1-b 2),因为a 1≤a 2,b 1≥b 2,所以a 1-a 2≤0,b 1-b 2≥0,于是(a 1-a 2)(b 1-b 2)≤0,故a 1b 1+a 2b 2≤a 1b 2+a 2b 1.9.已知a ,b ,c ,d 均为实数,有下列命题:①若ab >0,bc -ad >0,则c a -db >0;②若ab >0,c a -d b >0,则bc -ad >0;③若bc -ad >0,c a -db >0,则ab >0.其中正确的命题是________.(填序号) 答案 ①②③解析 ∵ab >0,bc -ad >0, ∴c a -d b =bc -adab >0,∴①正确; ∵ab >0,又c a -db >0,即bc -ad ab >0,∴bc -ad >0,∴②正确;∵bc -ad >0,又c a -db >0,即bc -ad ab >0,∴ab >0,∴③正确.故①②③都正确.10.(2018·青岛调研)设a >b >c >0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小关系是________.(用“>”连接) 答案 z >y >x解析 方法一 y 2-x 2=2c (a -b )>0,∴y >x . 同理,z >y ,∴z >y >x .方法二 令a =3,b =2,c =1,则x =18,y =20, z =26,故z >y >x .11.已知-1<x +y <4,2<x -y <3,则3x +2y 的取值范围是____________. 答案 ⎝⎛⎭⎫-32,232 解析 设3x +2y =m (x +y )+n (x -y ),则⎩⎪⎨⎪⎧m +n =3,m -n =2,∴⎩⎨⎧m =52,n =12.即3x +2y =52(x +y )+12(x -y ),又∵-1<x +y <4,2<x -y <3, ∴-52<52(x +y )<10,1<12(x -y )<32,∴-32<52(x +y )+12(x -y )<232,即-32<3x +2y <232,∴3x +2y 的取值范围为⎝⎛⎭⎫-32,232.12.设实数x ,y 满足0<xy <4,且0<2x +2y <4+xy ,则x ,y 的取值范围是( ) A .x >2且y >2 B .x <2且y <2 C .0<x <2且0<y <2 D .x >2且0<y <2 答案 C解析 由题意得⎩⎪⎨⎪⎧ xy >0,x +y >0,则⎩⎪⎨⎪⎧x >0,y >0,由2x +2y -4-xy =(x -2)·(2-y )<0,得⎩⎪⎨⎪⎧x >2,y >2或⎩⎪⎨⎪⎧ 0<x <2,0<y <2,又xy <4,可得⎩⎪⎨⎪⎧0<x <2,0<y <2.13.若x >y ,a >b ,则在①a -x >b -y ;②a +x >b +y ;③ax >by ;④x -b >y -a ;⑤a y >bx 这五个式子中,恒成立的不等式的序号是________. 答案 ②④解析 令x =-2,y =-3,a =3,b =2. 符合题设条件x >y ,a >b .∵a -x =3-(-2)=5,b -y =2-(-3)=5. ∴a -x =b -y ,因此①不成立.∵ax =-6,by =-6,∴ax =by ,因此③不成立. ∵a y =3-3=-1,b x =2-2=-1, ∴a y =bx ,因此⑤不成立. 由不等式的性质可推出②④成立.14.(2018·江门模拟)设a ,b ∈R ,定义运算“⊗”和“”如下:a ⊗b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,ab =⎩⎪⎨⎪⎧b ,a ≤b ,a ,a >b .若m ⊗n ≥2,p q ≤2,则( )A .mn ≥4且p +q ≤4B .m +n ≥4且pq ≤4C .mn ≤4且p +q ≥4D .m +n ≤4且pq ≤4答案 A解析 结合定义及m ⊗n ≥2可得⎩⎪⎨⎪⎧ m ≥2,m ≤n 或⎩⎪⎨⎪⎧n ≥2,m >n ,即n ≥m ≥2或m >n ≥2,所以mn ≥4;结合定义及p q ≤2,可得⎩⎪⎨⎪⎧ p ≤2,p >q 或⎩⎪⎨⎪⎧q ≤2,p ≤q ,即q <p ≤2或p ≤q ≤2, 所以p +q ≤4.15.(2017·合肥质检)已知△ABC 的三边长分别为a ,b ,c ,且满足b +c ≤3a ,则ca 的取值范围为( )A .(1,+∞)B .(0,2)C .(1,3)D .(0,3) 答案 B解析 由已知及三角形三边关系得⎩⎪⎨⎪⎧a <b +c ≤3a ,a +b >c ,a +c >b ,∴⎩⎪⎨⎪⎧1<b a +ca≤3,1+b a >ca ,1+c a >b a,∴⎩⎨⎧1<b a +ca ≤3,-1<c a -ba <1,两式相加,得0<2×ca <4,∴ca的取值范围为(0,2). 16.(2018·天一测试)已知实数a ∈(1,3),b ∈⎝ ⎛⎭⎪⎫18,14,则a b 的取值范围是________.解析:依题意可得4<1b <8,又1<a <3,所以4<ab <24.17.已知0<a <b ,且a +b =1,则下列不等式中正确的是( ) A.log 2a >0 B.2a -b <12 C.log 2a +log 2b <-2 D.2a b +b a <12解析 由题意知0<a <1,此时log 2a <0,A 错误;由已知得0<a <1,0<b <1,所以-1<-b <0,又a <b ,所以-1<a -b <0,所以12<2a -b <1,B 错误;因为0<a <b ,所以a b +b a >2a b ·b a =2,所以2a b +b a >22=4,D 错误;由a +b =1>2ab ,得ab <14,因此log 2a +log 2b =log 2(ab )<log 214=-2,C 正确. 答案 C18.(2019·保定调研)已知定义在R 上的奇函数f (x )满足:当x ≥0时,f (x )=x 3,若不等式f (-4t )>f (2m +mt 2)对任意实数t 恒成立,则实数m 的取值范围是( ) A.(-∞,-2) B.(-2,0)C.(-∞,0)∪(2,+∞)D.(-∞,-2)∪(2,+∞)解析 因为f (x )在R 上为奇函数,且在[0,+∞)上为增函数,所以f (x )在R 上是增函数,结合题意得-4t >2m +mt 2对任意实数t 恒成立⇒mt 2+4t +2m <0对任意实数t 恒成立⇒⎩⎨⎧m <0,Δ=16-8m 2<0⇒m ∈(-∞,-2). 答案 A19.(2019·济南质检)已知f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=e x .若对任意x ∈[a ,a +1],恒有f (x +a )≥f (2x )成立,求实数a 的取值范围. 解析: 因为函数f (x )是偶函数,故函数图象关于y 轴对称,且在(-∞,0]上单调递减,在[0,+∞)上单调递增. 所以由f (x +a )≥f (2x )可得|x +a |≥2|x |在[a ,a +1]上恒成立, 从而(x +a )2≥4x 2在[a ,a +1]上恒成立, 化简得3x 2-2ax -a 2≤0在[a ,a +1]上恒成立, 设h (x )=3x 2-2ax -a 2,则有⎩⎨⎧h (a )=0≤0,h (a +1)=4a +3≤0,解得a ≤-34. 故实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,-34.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等关系与不等式(3.1作业)
班级 姓名 座号
一、选择题:
1、不等式:⑴x 3+3>2x ;⑵a 5+b 5<a 3b 2+a 2b 3;⑶a 2+b 2≥2(a +b -1);⑷2
||≥+
a
b b
a 恒成立的有( )
(A )⑴、⑵ B ) ⑴、⑶ (C ) ⑶、⑷ (D ) ⑴、⑵、⑶、⑷
2、 对x R +∈都成立的不等式是…………………………………………… ( ) (A )x x 2lg )1lg(2≥+ (B ) x x 212>+ (C ) 11
12
<+x (D )x x 442≥+
3、0<a <1,F=a 2,G=a +1,H=
a
-11,那么F 、G 、H 中最小的是………( )
(A )F (B ) G (C ) H (D ) 不能确定 4、a >b >0,则下列不等式恒成立的是………………………………( ) (A )
a
b b
a b a >++22 (B )
2
22
2
1
1a
b a b >
++ (C )b
b a
a 11+
>+
(D ) a a >b a
5、已知a 1>a 2>a 3>0,则使得(1-a i x )2<1(i =1,2,3)都成立的x 取值范围是( )
A .(0,1
a 1)
B .(0,2
a 1)
C .(0,1
a 3
)
D .(0,2
a 3
)
6、若1a <1
b
<0,则下列结论不正确的是( )
A .a 2>b 2
B .ab <b 2 C.a b +b
a
>2 D .|a |+|b |>|a +b |
7、[2011·北京卷]如果112
2
log log 0x y <<,那么( )
A . 1y x <<
B . 1x y <<
C .1x y <<
D .1y x <<
二、填空题:
8、一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成任务,则以后几天平均每天至少要完成的土方数x 应满足的不等式为 。
9、限速40km ∕h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km ∕h ,写成不等式就是 。
10、x >100,那么lg 2x ,lg x 2,lglg x 从大到小的顺序为 . 11、若x 、y 满足2x y =,则式27log (22)8
x y +-
的符号是________。
12、(2010年辽宁高考)已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是_____.(答案用区间表示)
13、设a >b >c >0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小顺序是________.
14、(2011年福建省福州屏东中学高三第二次月考)若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是________(写出所有正确命题的编号).
①ab ≤1;②a +b ≤2;③a 2+b 2≥2;④a 3+b 3≥3;⑤1a +1
b
≥2
三、解答题:
15.将若干只鸡放入若干个笼,若每个笼里放4只,则有一鸡无笼可放:若每个笼里放5只,则有一笼无鸡可放。
设现有笼x 个,试列出x 满足的不等关系,并说明至少有多少只鸡多少个笼?至多有多少只鸡多少个笼?。