不等关系与不等式(解析版)

合集下载

人教版高中数学必修二讲义专题03 不等关系与不等式(解析版)

人教版高中数学必修二讲义专题03 不等关系与不等式(解析版)

目录不等关系与不等式 ................................................................................................. 错误!未定义书签。

考点1:不等关系与不等式 (2)考点2:等式性质与不等式性质 (7)专题03 不等关系与不等式 考点1:不等关系与不等式知识点一 基本事实两个实数a ,b ,其大小关系有三种可能,即a >b ,a =b ,a <b .思考 x 2+1与2x 两式都随x 的变化而变化,其大小关系并不显而易见.你能想个办法,比较x 2+1与2x 的大小吗?正确答案 作差:x 2+1-2x =( x -1)2≥0,所以x 2+1≥2x . 知识点二 重要不等式∀a ,b ∈R ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.题型1:用不等式( 组)表示不等关系例1 《铁路旅行常识》规定:一、随同成人旅行,身高在1.2~1.5米的儿童享受半价客票( 以下称儿童票),超过1.5米的应买全价票,每一名成人旅客可免费带一名身高不足1.2米的儿童,超过一名时,超过的人数应买儿童票. ……十、旅客免费携带物品的体积和重量是每件物品的外部长、宽、高尺寸之和不得超过160厘米,杆状物品不得超过200厘米,重量不得超过20千克……设身高为h ( 米),物品外部长、宽、高尺寸之和为P ( 厘米),请用不等式表示下表中的不等关系.解 由题意可获取以下主要信息:( 1)身高用h ( 米)表示,物体长、宽、高尺寸之和为P ( 厘米);( 2)题中要求用不等式表示不等关系.参考解答本题应先理解题中所提供的不等关系,再用不等式表示.身高在1.2~1.5米可表示为1.2≤h ≤1.5, 身高超过1.5米可表示为h >1.5, 身高不足1.2米可表示为h <1.2,物体长、宽、高尺寸之和不得超过160厘米可表示为P ≤160.如下表所示:变式 某套试卷原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后试卷的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解 提价后销售的总收入为⎝ ⎛⎭⎪⎫8-x -2.50.1×0.2x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式⎝ ⎛⎭⎪⎫8-x -2.50.1×0.2x ≥20( 2.5≤x <6.5).题型2:作差法比较大小例2 已知a ,b 均为正实数.试利用作差法比较a 3+b 3与a 2b +ab 2的大小. 解 ∵a 3+b 3-( a 2b +ab 2)=( a 3-a 2b )+( b 3-ab 2) =a 2( a -b )+b 2( b -a )=( a -b )( a 2-b 2)=( a -b )2( a +b ). 当a =b 时,a -b =0,a 3+b 3=a 2b +ab 2; 当a ≠b 时,( a -b )2>0,a +b >0,a 3+b 3>a 2b +ab 2. 综上所述,a 3+b 3≥a 2b +ab 2.变式 已知x <1,试比较x 3-1与2x 2-2x 的大小. 解 ∵( x 3-1)-( 2x 2-2x )=x 3-2x 2+2x -1 =( x 3-x 2)-( x 2-2x +1)=x 2( x -1)-( x -1)2 =( x -1)( x 2-x +1)=( x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34, 又∵⎝⎛⎭⎫x -122+34>0,x -1<0, ∴( x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0,∴x 3-1<2x 2-2x .考点1:练习题1.下列说法正确的是( )A .某人月收入x 元不高于2 000元可表示为“x <2 000”B .小明的身高为x ,小华的身高为y ,则小明比小华矮可表示为“x >y ”C .变量x 不小于a 可表示为“x ≥a ”D .变量y 不超过a 可表示为“y ≥a ” 正确答案 C详细解析 对于A,x 应满足x ≤2 000,故A 错误;对于B,x ,y 应满足x <y ,故B 错误;C 正确;对于D,y 与a 的关系可表示为“y ≤a ”,故D 错误.2.在开山工程爆破时,已知导火索燃烧的速度是每秒0.5 cm,人跑开的速度为每秒4 m,为了使点燃导火索的人能够在爆破时跑到100 m 以外的安全区,导火索的长度x ( cm)应满足的不等式为( ) A .4×x0.5≥100B .4×x0.5≤100 C .4×x0.5>100D .4×x0.5<100正确答案 C详细解析 导火索燃烧的时间x 0.5秒,人在此时间内跑的路程为4×x0.5m .由题意可得4×x0.5>100. 3.设M =x 2,N =-x -1,则M 与N 的大小关系是( ) A .M >N B .M =N C .M <N D .与x 有关正确答案 A详细解析 ∵M -N =x 2+x +1=⎝⎛⎭⎫x +122+34>0, ∴M >N .4.若y 1=2x 2-2x +1,y 2=x 2-4x -1,则y 1与y 2的大小关系是( ) A .y 1>y 2 B .y 1=y 2C .y 1<y 2D .随x 值变化而变化 正确答案 A5.如图,在一个面积为200 m 2的矩形地基上建造一个仓库,四周是绿地,仓库的长a 大于宽b 的4倍,则表示上述的不等关系正确的是( )A .a >4bB .( a +4)( b +4)=200C.⎩⎪⎨⎪⎧a >4b ,(a +4)(b +4)=200 D.⎩⎪⎨⎪⎧a >4b ,4ab =200 正确答案 C详细解析 由题意知a >4b ,根据面积公式可以得到( a +4)( b +4)=200,故选C.6.某次数学智力测验,共有20道题,答对一题得5分,答错一题得-2分,不答得零分.某同学有一道题未答,设这个学生至少答对x 题,成绩才能不低于80分,列出其中的不等关系:________.( 不用化简)正确答案 5x -2( 19-x )≥80,x ∈N *详细解析 这个学生至少答对x 题,成绩才能不低于80分,即5x -2( 19-x )≥80,x ∈N *. 7.某商品包装上标有重量500±1克,若用x 表示商品的重量,则可用含绝对值的不等式表示该商品的重量的不等式为________. 正确答案 |x -500|≤1详细解析 ∵某商品包装上标有重量500±1克, 若用x 表示商品的重量, 则-1≤x -500≤1, ∴|x -500|≤1.8.若x ∈R ,则x 1+x 2与12的大小关系为________. 正确答案x 1+x 2≤12详细解析 ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0.∴x 1+x 2≤12. 9.已知a ,b ∈R ,x =a 3-b ,y =a 2b -a ,试比较x 与y 的大小. 解 因为x -y =a 3-b -a 2b +a =a 2( a -b )+a -b =( a -b )( a 2+1), 所以当a >b 时,x -y >0,所以x >y ; 当a =b 时,x -y =0,所以x =y ; 当a <b 时,x -y <0,所以x <y .10.已知甲、乙、丙三种食物的维生素A,B 含量及成本如下表:若用甲、乙、丙三种食物各x kg 、y kg 、z kg 配成100 kg 的混合食物,并使混合食物内至少含有56 000单位维生素A 和63 000单位维生素B.试用x ,y 表示混合食物成本c 元,并写出x ,y 所满足的不等关系. 解 依题意得c =11x +9y +4z , 又x +y +z =100,∴c =400+7x +5y ,由⎩⎪⎨⎪⎧600x +700y +400z ≥56 000,800x +400y +500z ≥63 000及z =100-x -y ,得⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130.∴x ,y 所满足的不等关系为⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130,x ≥0,y ≥0.11.已知0<a 1<1,0<a 2<1,记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( )A .M <NB .M >NC .M =ND .无法确定正确答案 B详细解析 ∵0<a 1<1,0<a 2<1,∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-( a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1( a 2-1)-( a 2-1)=( a 1-1)( a 2-1)>0, ∴M >N ,故选B.12.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ) A .a 1b 1+a 2b 2 B .a 1a 2+b 1b 2 C .a 1b 2+a 2b 1 D.12正确答案 A详细解析 令a 1=0.1,a 2=0.9;b 1=0.2,b 2=0.8.则A 项a 1b 1+a 2b 2=0.74;B 项,a 1a 2+b 1b 2=0.25;C 项,a 1b 2+a 2b 1=0.26,故最大值为A.13.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球的个数之和至少为55,则用不等式( 组)将题中的不等关系表示为________.正确答案 ⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55( x ,y ,z ∈N *)详细解析 由题意可得⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55( x ,y ,z ∈N *).14.若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2________a 1b 2+a 2b 1.( 填“>”“<”“=”) 正确答案 >详细解析 a 1b 1+a 2b 2-( a 1b 2+a 2b 1) =a 1( b 1-b 2)+a 2( b 2-b 1) =( b 1-b 2)( a 1-a 2), ∵a 1<a 2,b 1<b 2, ∴b 1-b 2<0,a 1-a 2<0, 即( b 1-b 2)( a 1-a 2)>0, ∴a 1b 1+a 2b 2>a 1b 2+a 2b 1.考点2:等式性质与不等式性质知识点一 等式的基本性质 ( 1)如果a =b ,那么b =a . ( 2)如果a =b ,b =c ,那么a =c . ( 3)如果a =b ,那么a ±c =b ±c . ( 4)如果a =b ,那么ac =bc . ( 5)如果a =b ,c ≠0,那么a c =bc .知识点二 不等式的性质题型1:利用不等式的性质判断或证明例1 ( 1)给出下列命题: ①若ab >0,a >b ,则1a <1b ;②若a >b ,c >d ,则a -c >b -d ;③对于正数a ,b ,m ,若a <b ,则a b <a +mb +m .其中真命题的序号是________.正确答案 ①③详细解析 对于①,若ab >0,则1ab >0,又a >b ,所以a ab >b ab ,所以1a <1b ,所以①正确;对于②,若a =7,b =6,c =0,d =-10, 则7-0<6-( -10),②错误; 对于③,对于正数a ,b ,m , 若a <b ,则am <bm , 所以am +ab <bm +ab , 所以0<a ( b +m )<b ( a +m ), 又1b (b +m )>0,所以a b <a +m b +m ,③正确.综上,真命题的序号是①③.( 2)已知a >b >0,c <d <0.求证:3ad<3b c. 证明 因为c <d <0,所以-c >-d >0. 所以0<-1c <-1d.又因为a >b >0,所以-a d >-bc>0.所以3-a d>3-bc,即-3a d>-3b c, 两边同乘-1,得3a d<3b c.变式 若1a <1b <0,有下面四个不等式:①|a |>|b |,②a <b ,③a +b <ab ,④a 3>b 3. 则不正确的不等式的个数是( ) A .0 B .1 C .2 D .3 正确答案 C详细解析 由1a <1b <0可得b <a <0,从而|a |<|b |,①②均不正确;a +b <0,ab >0,则a +b <ab 成立,③正确;a 3>b 3,④正确.故不正确的不等式的个数为2.题型2:利用性质比较大小例2 若P =a +6+a +7,Q =a +5+a +8( a >-5),则P ,Q 的大小关系为( ) A .P <Q B .P =Q C .P >Q D .不能确定正确答案 C详细解析 P 2=2a +13+2(a +6)(a +7),Q 2=2a +13+2(a +5)(a +8),因为( a +6)( a +7)-( a +5)( a +8)=a 2+13a +42-( a 2+13a +40)=2>0, 所以(a +6)(a +7)>(a +5)(a +8),所以P 2>Q 2,所以P >Q .变式 下列命题中一定正确的是( ) A .若a >b ,且1a >1b,则a >0,b <0B .若a >b ,b ≠0,则a b>1 C .若a >b ,且a +c >b +d ,则c >dD .若a >b ,且ac >bd ,则c >d正确答案 A详细解析 对于A,∵1a >1b ,∴b -a ab>0, 又a >b ,∴b -a <0,∴ab <0,∴a >0,b <0,故A 正确;对于B,当a >0,b <0时,有a b<1,故B 错; 对于C,当a =10,b =2时,有10+1>2+3,但1<3,故C 错;对于D,当a =-1,b =-2时,有( -1)×( -1)>( -2)×3,但-1<3,故D 错.题型3:利用性质比较大小例3 已知12<a <60,15<b <36.求a -b 和a b的取值范围. 解 ∵15<b <36,∴-36<-b <-15,∴12-36<a -b <60-15,即-24<a -b <45.又136<1b <115,∴1236<a b <6015,即13<a b<4. 故-24<a -b <45,13<a b<4.变式 已知0<a +b <2,-1<b -a <1,则2a -b 的取值范围是____________.正确答案 -32<2a -b <52详细解析 因为0<a +b <2,-1<-a +b <1,且2a -b =12( a +b )-32( -a +b ), 结合不等式的性质可得,-32<2a -b <52.考点2:练习题1.如果a <0,b >0,那么下列不等式中正确的是( )A.1a <1bB.-a <bC .a 2<b 2D .|a |>|b |正确答案 A详细解析 ∵a <0,b >0,∴1a <0,1b >0,∴1a <1b ,故选A.2.若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是() A .a +c ≥b -c B .ac >bcC.c 2a -b >0 D .( a -b )c 2≥0正确答案 D详细解析 ∵a >b ,∴a -b >0,∴( a -b )c 2≥0,故选D.3.已知a >b >c ,则1b -c +1c -a 的值是( )A .正数B .负数C .非正数D .非负数正确答案 A详细解析 1b -c +1c -a =c -a +b -c (b -c )(c -a )=b -a (b -c )(c -a ), ∵a >b >c ,∴b -c >0,c -a <0,b -a <0,∴1b -c +1c -a>0,故选A. 4.若x >1>y ,下列不等式不一定成立的是( )A .x -y >1-yB .x -1>y -1C .x -1>1-yD .1-x >y -x 正确答案 C详细解析 利用性质可得A,B,D 均正确,故选C.5.已知a <0,b <-1,则下列不等式成立的是( )A .a >a b >a b 2 B.a b 2>a b >a C.a b >a >a b 2 D.a b >a b 2>a 正确答案 D详细解析 ∵a <0,b <-1,∴a b>0,b 2>1, ∴0<1b 2<1,∴0>a b 2>a 1, ∴a b >a b 2>a . 6.不等式a >b 和1a >1b同时成立的条件是________. 正确答案 a >0>b详细解析 若a ,b 同号,则a >b ⇒1a <1b. 7.给出下列命题:①a >b ⇒ac 2>bc 2;②a >|b |⇒a 2>b 2;③a >b ⇒a 3>b 3;④|a |>b ⇒a 2>b 2.其中正确命题的序号是________.正确答案 ②③详细解析 ①当c 2=0时不成立;②一定成立;③当a >b 时,a 3-b 3=( a -b )( a 2+ab +b 2)=( a -b )·⎣⎡⎦⎤⎝⎛⎭⎫a +b 22+34b 2>0成立; ④当b <0时,不一定成立.如:|2|>-3,但22<( -3)2.8.设a >b >c >0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小顺序是________.正确答案 z >y >x详细解析 ∵a >b >c >0,y 2-x 2=b 2+( c +a )2-a 2-( b +c )2=2ac -2bc=2c ( a -b )>0,∴y 2>x 2,即y >x .同理可得z >y ,故z >y >x .9.判断下列各命题的真假,并说明理由.( 1)若a <b ,c <0,则c a <c b; ( 2)a c 3<b c 3,则a >b ; ( 3)若a >b ,且k ∈N *,则a k >b k ;( 4)若a >b ,b >c ,则a -b >b -c .解 ( 1)假命题.∵a <b ,不一定有ab >0,∴1a >1b不一定成立, ∴推不出c a <c b,∴是假命题. ( 2)假命题.当c >0时,c -3>0,则a <b ,∴是假命题.( 3)假命题.当a =1,b =-2,k =2时,显然命题不成立,∴是假命题.( 4)假命题.当a =2,b =0,c =-3时,满足a >b ,b >c 这两个条件,但是a -b =2<b -c =3,∴是假命题.10.若-1<a +b <3,2<a -b <4,求2a +3b 的取值范围.解 设2a +3b =x ( a +b )+y ( a -b ),则⎩⎪⎨⎪⎧ x +y =2,x -y =3,解得⎩⎨⎧ x =52,y =-12.因为-52<52( a +b )<152,-2<-12( a -b )<-1,所以-92<52( a +b )-12( a -b )<132, 所以-92<2a +3b <132. 11.下列命题正确的是( )A .若ac >bc ,则a >bB .若a 2>b 2,则a >bC .若1a >1b,则a <b D .若a <b ,则a <b正确答案 D详细解析 对于A,若c <0,其不成立;对于B,若a ,b 均小于0或a <0,其不成立;对于C,若a >0,b <0,其不成立;对于D,其中a ≥0,b >0,平方后显然有a <b .12.已知x >y >z ,x +y +z =0,则下列不等式中一定成立的是( )A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y | 正确答案 C详细解析 因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,3z <x +y +z =0,所以x >0,z <0. 所以由⎩⎪⎨⎪⎧x >0,y >z ,可得xy >xz . 13.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1bB .a 2>b 2 C.a c 2+1>b c 2+1D .a |c |>b |c | 正确答案 C详细解析 对于A,若a >0>b ,则1a >0,1b<0, 此时1a >1b,∴A 不成立; 对于B,若a =1,b =-2,则a 2<b 2,∴B 不成立;对于C,∵c 2+1≥1,且a >b ,∴a c 2+1>b c 2+1恒成立,∴C 成立;对于D,当c=0时,a|c|=b|c|,∴D不成立.14.有外表一样,重量不同的四个小球,它们的重量分别是a,b,c,d,已知a+b=c+d,a+d>b+c,a+c<b,则这四个小球由重到轻的排列顺序是( )A.d>b>a>c B.b>c>d>aC.d>b>c>a D.c>a>d>b正确答案A详细解析∵a+b=c+d,a+d>b+c,∴a+d+( a+b)>b+c+( c+d),即a>c.∴b<d.又a+c<b,∴a<b.综上可得,d>b>a>c.。

2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)不等关系与不等式(含解析)

2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)不等关系与不等式(含解析)

第一节不等关系与不等式[知识能否忆起]1.实数大小顺序与运算性质之间的关系a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b . 2.不等式的基本性质[小题能否全取]1.(教材习题改编)下列命题正确的是( ) A .若ac >bc ⇒a >b B .若a 2>b 2⇒a >b C .若1a >1b ⇒a <bD .若a <b ⇒a <b答案:D2.若x +y >0,a <0,ay >0,则x -y 的值( ) A .大于0B .等于0C .小于0D .不确定解析:选A 由a <0,ay >0知y <0,又x +y >0,所以x >0.故x -y >0. 3.已知a ,b ,c ,d 均为实数,且c >d ,则“a >b ”是“a -c >b -d ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 若a -c >b -d ,c >d , 则a >b .但c >d ,a >b ⇒/ a -c >b -d .如a =2,b =1,c =-1,d =-3时,a -c <b -d . 4.12-1________3+1(填“>”或“<”). 解析:12-1=2+1<3+1. 答案:<5.已知a ,b ,c ∈R ,有以下命题:①若a >b ,则ac 2>bc 2;②若ac 2>bc 2,则a >b ; ③若a >b ,则a ·2c >b ·2c .其中正确的是____________(请把正确命题的序号都填上). 解析:①若c =0则命题不成立.②正确.③中由2c >0知成立. 答案:②③1.使用不等式性质时应注意的问题:在使用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.如“同向不等式”才可相加,“同向且两边同正的不等式”才可相乘;可乘性中“c 的符号”等也需要注意.2.作差法是比较两数(式)大小的常用方法,也是证明不等式的基本方法.要注意强化化归意识,同时注意函数性质在比较大小中的作用.典题导入[例1] 已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,试比较S 3a 3与S 5a 5的大小.[自主解答] 当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5a 5;当q >0且q ≠1时,S 3a 3-S 5a 5=a 1(1-q 3)a 1q 2(1-q )-a 1(1-q 5)a 1q 4(1-q )=q 2(1-q 3)-(1-q 5)q 4(1-q )=-q -1q 4<0,所以S 3a 3<S 5a 5. 综上可知S 3a 3<S 5a 5.若本例中“q >0”改为“q <0”,试比较它们的大小. 解:由例题解法知当 q ≠1时,S 3a 3-S 5a 5=-q -1q 4.当-1<q <0时,S 3a 3-S 5a 5<0,即S 3a 3<S 5a 5;当q =-1时,S 3a 3-S 5a 5=0, 即S 3a 3=S 5a 5;当q <-1时,S 3a 3-S 5a 5>0,即S 3a 3>S 5a 5.由题悟法比较大小的常用方法 (1)作差法:一般步骤是:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法:一般步骤是:①作商;②变形;③判断商与1的大小;④结论. (3)特值法:若是选择题、填空题可以用特值法比较大小;若是解答题,可先用特值探究思路,再用作差或作商法判断.[注意] 用作商法时要注意商式中分母的正负,否则极易得出相反的结论.以题试法1.(2012·吉林联考)已知实数a 、b 、c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a 、b 、c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >b解析:选A c -b =4-4a +a 2=(2-a )2≥0, ∴c ≥b .将题中两式作差得2b =2+2a 2,即b =1+a 2. ∵1+a 2-a =⎝⎛⎭⎫a -122+34>0,∴1+a 2>a . ∴b =1+a 2>a .∴c ≥b >a .典题导入[例2] (1)(2011·大纲全国卷)下面四个条件中,使a >b 成立的充分而不必要的条件是( )A .a >b +1B .a >b -1C .a 2>b 2D .a 3>b 3(2)(2012·包头模拟)若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc <0;③a -c >b -d ;④a ·(d -c )>b (d -c )中成立的个数是( )A .1B .2C .3D .4[自主解答] (1)由a >b +1得a >b +1>b ,即a >b ;且由a >b 不能得出a >b +1.因此,使a >b 成立的充分不必要条件是a >b +1.(2)∵a >0>b ,c <d <0,∴ad <0,bc >0, ∴ad <bc ,故①错误.∵a >0>b >-a ,∴a >-b >0, ∵c <d <0,∴-c >-d >0, ∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd <0,故②正确.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ), a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ), 故④正确,故选C. [答案] (1)A (2)C由题悟法1.判断一个关于不等式的命题的真假时,先把要判断的命题与不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题的真假,当然判断的同时可能还要用到其他知识,比如对数函数、指数函数的性质.2.特殊值法是判断命题真假时常用到的一个方法,在命题真假未定时,先用特殊值试试,可以得到一些对命题的感性认识,如正好找到一组特殊值使命题不成立,则该命题为假命题.以题试法2.若a 、b 、c 为实数,则下列命题正确的是( ) A .若a >b ,c >d ,则ac >bd B .若a <b <0,则a 2>ab >b 2 C .若a <b <0,则1a <1bD .若a <b <0,则b a >ab解析:选B A 中,只有a >b >0,c >d >0时,才成立;B 中,由a <b <0,得a 2>ab >b 2成立;C ,D 通过取a =-2,b =-1验证均不正确.典题导入[例3] 已知函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4.求f (-2)的取值范围. [自主解答] f (-1)=a -b ,f (1)=a +b . f (-2)=4a -2b .设m (a +b )+n (a -b )=4a -2b .则⎩⎪⎨⎪⎧ m +n =4,m -n =-2,解得⎩⎪⎨⎪⎧m =1,n =3. ∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1). ∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤f (-2)≤10.即f (-2)的取值范围为[5,10].由题悟法利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.以题试法3.若α,β满足⎩⎪⎨⎪⎧-1≤α+β ≤1,1≤α+2β ≤3,试求α+3β的取值范围.解:设α+3β=x (α+β)+y (α+2β)=(x +y )α+(x +2y )β.则⎩⎪⎨⎪⎧ x +y =1,x +2y =3,解得⎩⎪⎨⎪⎧x =-1,y =2. ∵-1≤-(α+β)≤1,2≤2(α+2β)≤6, 两式相加,得1≤α+3β≤7. ∴α+3β的取值范围为[1,7].1.已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .不确定解析:选B 由题意得M -N =a 1a 2-a 1-a 2+1=(a 1-1)·(a 2-1)>0,故M >N . 2.若m <0,n >0且m +n <0,则下列不等式中成立的是( ) A .-n <m <n <-m B .-n <m <-m <n C .m <-n <-m <nD .m <-n <n <-m解析:选D 法一:(取特殊值法)令m =-3,n =2分别代入各选项检验即可. 法二:m +n <0⇒m <-n ⇒n <-m ,又由于m <0<n ,故m <-n <n <-m 成立. 3.“1≤x ≤4”是“1≤x 2≤16”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 由1≤x ≤4可得1≤x 2≤16,但由1≤x 2≤16可得1≤x ≤4或-4≤x ≤-1,所以“1≤x ≤4”是“1≤x 2≤16”的充分不必要条件.4.已知0<a <1b ,且M =11+a +11+b ,N =a 1+a +b 1+b ,则M 、N 的大小关系是( )A .M >NB .M <NC .M =ND .不能确定解析:选A ∵0<a <1b ,∴1+a >0,1+b >0,1-ab >0,∴M -N =1-a 1+a +1-b 1+b =2-2ab(1+a )(1+b )>0.5.若1a <1b <0,则下列结论不.正确的是( ) A .a 2<b 2 B .ab <b 2 C .a +b <0D .|a |+|b |>|a +b |解析:选D ∵1a <1b <0,∴0>a >b .∴a 2<b 2,ab <b 2,a +b <0,|a |+|b |=|a +b |.6.设a ,b 是非零实数,若a <b ,则下列不等式成立的是( ) A .a 2<b 2 B .ab 2<a 2b C.1ab 2<1a 2bD.b a <a b解析:选C 当a <0时,a 2<b 2不一定成立,故A 错. 因为ab 2-a 2b =ab (b -a ),b -a >0,ab 符号不确定, 所以ab 2与a 2b 的大小不能确定,故B 错. 因为1ab 2-1a 2b =a -b a 2b 2<0,所以1ab 2<1a 2b ,故C 正确.D 项中b a 与ab的大小不能确定.7.若1<α<3,-4<β <2,则α-|β|的取值范围是________. 解析:∵-4<β <2,∴0≤|β|<4. ∴-4<-|β|≤0.∴-3<α-|β|<3. 答案:(-3,3)8.(2012·深圳模拟)定义a *b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b . 已知a =30.3,b =0.33,c =log 30.3,则(a *b )*c=________.(结果用a ,b ,c 表示)解析:∵log 30.3<0<0.33<1<30.3,∴c <b <a , ∴(a *b )*c =b *c =c . 答案:c9.已知a +b >0,则a b 2+b a 2与1a +1b 的大小关系是________.解析:a b 2+ba 2-⎝⎛⎭⎫1a +1b =a -b b 2+b -a a 2 =(a -b )⎝⎛⎭⎫1b 2-1a 2 =(a +b )(a -b )2a 2b 2.∵a +b >0,(a -b )2≥0, ∴(a +b )(a -b )2a 2b 2≥0.∴a b 2+b a 2≥1a +1b . 答案:a b 2+b a 2≥1a +1b10.若a >b >0,c <d <0,e <0.求证:e (a -c )2>e(b -d )2. 证明:∵c <d <0,∴-c >-d >0. 又∵a >b >0,∴a -c >b -d >0. ∴(a -c )2>(b -d )2>0. ∴0<1(a -c )2<1(b -d )2. 又∵e <0,∴e (a -c )2>e (b -d )2. 11.已知b >a >0,x >y >0,求证:x x +a >y y +b .证明:x x +a -yy +b =x (y +b )-y (x +a )(x +a )(y +b )=bx -ay(x +a )(y +b ).∵b >a >0,x >y >0, ∴bx >ay ,x +a >0,y +b >0, ∴bx -ay(x +a )(y +b )>0,∴x x +a >y y +b. 12.已知函数f (x )=ax 2+bx +c 满足f (1)=0,且a >b >c ,求ca 的取值范围.解:∵f (1)=0,∴a +b +c =0, ∴b =-(a +c ).又a >b >c , ∴a >-(a +c )>c ,且a >0,c <0, ∴1>-a +c a >c a ,即1>-1-c a >ca.∴⎩⎨⎧2ca<-1,ca >-2,解得-2<c a <-12.1.已知a 、b 为实数,则“a >b >1”是“1a -1<1b -1”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A 由a >b >1⇒a -1>b -1>0⇒1a -1<1b -1,当a =0,b =2时,1a -1<1b -1,∴1a -1<1b -1⇒/ a >b >1,故选A. 2.(2012·洛阳模拟)若-1<a <b <1,-2<c <3则(a -b )·c 的取值范围是________. 解析:∵-1<a <b <1,∴-2<a -b <0,∴2>-(a -b )>0. 当-2<c <0时,2>-c >0, ∴4>(-c )[-(a -b )]>0, 即4>c ·(a -b )>0; 当c =0时,(a -b )·c =0;当0<c <3时,0<c ·[-(a -b )]<6, ∴-6<(a -b )·c <0.综上得,当-2<c <3时,-6<(a -b )·c <4. 答案:(-6,4)3.某企业去年年底给全部的800名员工共发放2 000万元年终奖,该企业计划从今年起,10年内每年发放的年终奖都比上一年增加60万元,企业员工每年净增a 人.(1)若a =10,在计划时间内,该企业的人均年终奖是否会超过3万元? (2)为使人均年终奖年年有增长,该企业每年员工的净增量不能超过多少人? 解:(1)设从今年起的第x 年(今年为第1年)该企业人均发放年终奖为y 万元. 则y =2 000+60x 800+ax (a ∈N *,1≤x ≤10).假设会超过3万元,则2 000+60x800+10x >3,解得x >403>10.所以,10年内该企业的人均年终奖不会超过3万元. (2)设1≤x 1<x 2≤10, 则f (x 2)-f (x 1)=2 000+60x 2800+ax 2-2 000+60x 1800+ax 1=(60×800-2 000a )(x 2-x 1)(800+ax 2)(800+ax 1)>0,所以60×800-2 000a >0,得a <24.所以,为使人均年终奖年年有增长,该企业每年员工的净增量不能超过23人.1.已知0<a <b ,且a +b =1,下列不等式成立的是( ) A .log 2a >0 B .2a -b >1C .2ab >2D .log 2(ab )<-2解析:选D 由已知,0<a <1,0<b <1,a -b <0,0<ab <14,log 2(ab )<-2.2.若a >b >0,则下列不等式中一定成立的是( ) A .a +1b >b +1aB.b a >b +1a +1 C .a -1b >b -1aD.2a +b a +2b >a b解析:选A 取a =2,b =1,排除B 与D ;另外,函数f (x )=x -1x 是(0,+∞)上的增函数,但函数g (x )=x +1x 在(0,1]上递减,在[1,+∞)上递增,所以,当a >b >0时,f (a )>f (b )必定成立,但g (a )>g (b )未必成立,可得,a -1a >b -1b ⇒a +1b >b +1a.3.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,则 ( )A .甲先到教室B .乙先到教室C .两人同时到教室D .谁先到教室不确定解析:选B 设甲用时间为T ,乙用时间为2t ,步行速度为a ,跑步速度为b ,距离为s ,则T =s 2a +s2b =s 2a +s 2b =s (a +b )2ab ,ta +tb =s ⇒2t =2s a +b,T -2t =s (a +b )2ab -2s a +b =s ×(a +b )2-4ab 2ab (a +b )=s (a -b )22ab (a +b )>0,即乙先到教室.4.若x >y, a >b ,则在①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤ay >bx这五个式子中,恒成立的所有不等式的序号是________. 解析:令x =-2,y =-3,a =3,b =2,符合题设条件x >y ,a >b ,∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y ,因此 ①不成立.又∵ax =-6,by =-6,∴ax =by ,因此③也不正确.又∵a y =3-3=-1,b x =2-2=-1, ∴a y =b x,因此⑤不正确. 由不等式的性质可推出 ②④成立.答案:②④。

不等关系与不等式(含解析)

不等关系与不等式(含解析)

不等关系与不等式班级___________ 姓名_____________ 学号__________层级一 学业水平达标1.李辉准备用自己节省的零花钱买一台学习机,他现在已存60元.计划从现在起以后每个月节省30元,直到他至少有400元.设x 个月后他至少有400元,则可以用于计算所需要的月数x 的不等式是( )A .30x -60≥400B .30x +60≥400C .30x -60≤400D .30x +40≤4002.若abcd <0,且a >0,b >c ,d <0,则( ) A .b <0,c <0 B .b >0,c >0 C .b >0,c <0D .0<c <b 或c <b <03.已知:a ,b ,c ,d ∈R ,则下列命题中必成立的是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,c <d ,则a c >bdD .若a 2>b 2,则-a <-b4.设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,则2α-β3的范围是( ) A.⎝⎛⎭⎫0,56π B.⎝⎛⎭⎫-π6,56π C.()0,πD.⎝⎛⎭⎫-π6,π 5.已知M =2x +1,N =11+x 2,则M ,N 的大小关系为( ) A .M >N B .M <N C .M =ND .不确定6.某校高一年级的213名同学去科技馆参观,租用了某公交公司的x 辆公共汽车.如果每辆车坐30人,则最后一辆车不空也不满.则题目中所包含的不等关系为________.7.比较大小:a 2+b 2+c 2________2(a +b +c )-4.8.已知-1≤x +y ≤4,且2≤x -y ≤3,则z =2x -3y 的取值范围是________(用区间表示).9.(1)若a <b <0,求证:b a <ab ; (2)已知a >b ,1a <1b ,求证:ab >0.层级二 应试能力达标1.若x ∈R ,y ∈R ,则( ) A .x 2+y 2>2xy -1 B .x 2+y 2=2xy -1 C .x 2+y 2<2xy -1D .x 2+y 2≤2xy -12.已知a 1∈(0,1),a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .M ≥N3.若-1<α<β<1,则下列各式中恒成立的是( ) A .-2<α-β<0 B .-2<α-β<-1 C .-1<α-β<0D .-1<α-β<14.有一家三口的年龄之和为65岁,设父亲、母亲和小孩的年龄分别为x ,y ,z ,则下列选项中能反映x ,y ,z 关系的是( )A .x +y +z =65B.⎩⎪⎨⎪⎧x +y +z =65,x >y >z ,x ,y ,z ∈N *C.⎩⎪⎨⎪⎧x +y +z =65,x >z >0,y >z >0,x ,y ,z ∈N*D.⎩⎪⎨⎪⎧x +y +z =65,x <65,y <65,z <65,x ,y ,z ∈N*5.已知|a |<1,则11+a与1-a 的大小关系为________. 6.设a ,b 为正实数,有下列命题: ①若a 2-b 2=1,则a -b <1; ②若1b -1a =1,则a -b <1; ③若|a -b |=1,则|a -b |<1; ④若|a 3-b 3|=1,则|a -b |<1.其中正确的命题为________(写出所有正确命题的序号). 7.比较a 2+b 2与2(2a -b )-5的大小;答案解析1.李辉准备用自己节省的零花钱买一台学习机,他现在已存60元.计划从现在起以后每个月节省30元,直到他至少有400元.设x 个月后他至少有400元,则可以用于计算所需要的月数x 的不等式是( )A .30x -60≥400B .30x +60≥400C .30x -60≤400D .30x +40≤400解析:选B x 月后他至少有400元,可表示成30x +60≥400. 2.若abcd <0,且a >0,b >c ,d <0,则( ) A .b <0,c <0 B .b >0,c >0 C .b >0,c <0D .0<c <b 或c <b <0解析:选D 由a >0,d <0,且abcd <0,知bc >0, 又∵b >c ,∴0<c <b 或c <b <0.3.已知:a ,b ,c ,d ∈R ,则下列命题中必成立的是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,c <d ,则a c >bd D .若a 2>b 2,则-a <-b解析:选B 选项A ,若a =4,b =2,c =5,显然不成立,选项C 不满足倒数不等式的条件,如a >b >0,c <0<d 时,不成立;选项D 只有a >b >0时才可以.否则如a =-1,b =0时不成立,故选B.4.设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,则2α-β3的范围是( ) A.⎝⎛⎭⎫0,56π B.⎝⎛⎭⎫-π6,56π C.()0,πD.⎝⎛⎭⎫-π6,π 解析:选D 0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,由同向不等式相加得到-π6<2α-β3<π.5.已知M =2x +1,N =11+x 2,则M ,N 的大小关系为( ) A .M >N B .M <N C .M =ND .不确定 解析:选A ∵2x >0,∴M =2x +1>1,而x 2+1≥1, ∴11+x 2≤1,∴M >N ,故选A. 6.某校高一年级的213名同学去科技馆参观,租用了某公交公司的x 辆公共汽车.如果每辆车坐30人,则最后一辆车不空也不满.则题目中所包含的不等关系为________.解析:根据题意得:⎩⎪⎨⎪⎧30(x -1)<213,30x >213.答案:⎩⎪⎨⎪⎧30(x -1)<213,30x >2137.比较大小:a 2+b 2+c 2________2(a +b +c )-4. 解析:a 2+b 2+c 2-[2(a +b +c )-4] =a 2+b 2+c 2-2a -2b -2c +4=(a -1)2+(b -1)2+(c -1)2+1≥1>0, 故a 2+b 2+c 2>2(a +b +c )-4. 答案:>8.已知-1≤x +y ≤4,且2≤x -y ≤3,则z =2x -3y 的取值范围是________(用区间表示).解析:∵z =-12(x +y )+52(x -y ),-2≤-12(x +y )≤12,5≤52(x -y )≤152,∴3≤-12(x +y )+52(x -y )≤8,∴z 的取值范围是[3,8]. 答案:[3,8]9.(1)若a <b <0,求证:b a <ab ;(2)已知a >b ,1a <1b ,求证:ab >0. 证明:(1)由于b a -a b =b 2-a 2ab =(b +a )(b -a )ab , ∵a <b <0,∴b +a <0,b -a >0,ab >0, ∴(b +a )(b -a )ab <0,故b a <ab .(2)∵1a <1b ,∴1a -1b<0,即b -aab <0,而a >b ,∴b -a <0,∴ab >0.层级二 应试能力达标1.若x ∈R ,y ∈R ,则( ) A .x 2+y 2>2xy -1 B .x 2+y 2=2xy -1 C .x 2+y 2<2xy -1D .x 2+y 2≤2xy -1解析:选A 因为x 2+y 2-(2xy -1)=x 2-2xy +y 2+1=(x -y )2+1>0,所以x 2+y 2>2xy-1,故选A.2.已知a 1∈(0,1),a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .M ≥N解析:选B ∵a 1∈(0,1),a 2∈(0,1),∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1)>0,∴M >N ,故选B.3.若-1<α<β<1,则下列各式中恒成立的是( ) A .-2<α-β<0 B .-2<α-β<-1 C .-1<α-β<0D .-1<α-β<1解析:选A 由-1<α<1,-1<β<1,得-1<-β<1, ∴-2<α-β<2.又∵α<β,故知-2<α-β<0.4.有一家三口的年龄之和为65岁,设父亲、母亲和小孩的年龄分别为x ,y ,z ,则下列选项中能反映x ,y ,z 关系的是( )A .x +y +z =65B.⎩⎪⎨⎪⎧x +y +z =65,x >y >z ,x ,y ,z ∈N *C.⎩⎪⎨⎪⎧x +y +z =65,x >z >0,y >z >0,x ,y ,z ∈N*D.⎩⎪⎨⎪⎧x +y +z =65,x <65,y <65,z <65,x ,y ,z ∈N*解析:选C 由题意得x +y +z =65,x >z >0,y >z >0,x ,y ,z ∈N *.故选C. 5.已知|a |<1,则11+a与1-a 的大小关系为________. 解析:由|a |<1,得-1<a <1. ∴1+a >0,1-a >0. 即11+a 1-a =11-a 2∵0<1-a 2≤1,∴11-a 2≥1,∴11+a≥1-a . 答案:11+a≥1-a 6.设a ,b 为正实数,有下列命题:①若a 2-b 2=1,则a -b <1; ②若1b -1a =1,则a -b <1;③若|a -b |=1,则|a -b |<1; ④若|a 3-b 3|=1,则|a -b |<1.其中正确的命题为________(写出所有正确命题的序号).解析:对于①,由题意a ,b 为正实数,则a 2-b 2=1⇒a -b =1a +b ⇒a -b >0⇒a >b >0,故a +b >a -b >0.若a -b ≥1,则1a +b ≥1⇒a +b ≤1≤a -b ,这与a +b >a -b >0矛盾,故a-b <1成立.对于②,取特殊值,a =3,b =34,则a -b >1.对于③,取特殊值,a =9,b =4时,|a -b |>1. 对于④,∵|a 3-b 3|=1,a >0,b >0, ∴a ≠b ,不妨设a >b >0. ∴a 2+ab +b 2>a 2-2ab +b 2>0, ∴(a -b )(a 2+ab +b 2)>(a -b )(a -b )2. 即a 3-b 3>(a -b )3>0, ∴1=|a 3-b 3|>(a -b )3>0, ∴0<a -b <1, 即|a -b |<1.因此正确. 答案:①④7.(1)比较a 2+b 2与2(2a -b )-5的大小; (2)已知a ,b ∈(0,+∞),求证:a a b b ≥(ab )2+a b ,当且仅当a =b 时等号成立.解:(1)∵a 2+b 2-[2(2a -b )-5]=(a -2)2+(b +1)2≥0, ∴a 2+b 2≥2(2a -b )-5,当且仅当a =2,b =-1时,等号成立.。

第1讲 不等关系与不等式 课件(共63张PPT)

第1讲 不等关系与不等式  课件(共63张PPT)
解析
解决此类题目常用的三种方法 (1)直接利用不等式的性质逐个验证,利用不等式的性质判断不等式是 否成立时要特别注意前提条件. (2)利用特殊值法排除错误答案. (3)利用函数的单调性,当直接利用不等式的性质不能比较大小时,可 以利用指数函数、对数函数、幂函数等函数的单调性进行判断.
1.如果 a>0>b 且 a2>b2,那么以下不等式中正确的个数是
解析 答案
角度 2 作商法 例 3 设 a,b 都是正数,且 a≠b,则 aabb 与 abba 的大小关系是________. 答案 aabb>abba 解析 aaabbbba=aa-b·bb-a=aba-b.若 a>b,则ab>1,a-b>0,∴aba-b>1,∴ aabb>abba;若 a<b,则 0<ab<1,a-b<0,∴aba-b>1,∴aabb>abba.
解析 答案
作商法的步骤 (1)作商;(2)变形;(3)判断商与 1 的大小;(4)结论.
4.若 a>0,且 a≠7,则( ) A.77aa<7aa7 B.77aa=7aa7 C.77aa>7aa7 D.77aa 与 7aa7 的大小不确定 解析 777aaaa7=77-aaa-7=7a7-a,则当 a>7 时,0<7a<1,7-a<0,则7a7-a>1, ∴77aa>7aa7;当 0<a<7 时,7a>1,7-a>0,则7a7-a>1,∴77aa>7aa7.综上, 77aa>7aa7.
6.若 0<a<b<1,则 ab,logba,log b 的大小关系是________. 答案 log b<ab<logba 解析 ∵0<a<1,∴1a>1.又 0<b<1, ∴log b<log 1=0.∵0<ab<a0=1,logba>logbb=1, ∴log b<ab<logba.

高中数学: 不等关系与不等式含解析

高中数学: 不等关系与不等式含解析

∴a1b2+a2b1≥a1a2+b1b2.
∵(a1b1+a2b2)-(a1b2+a2b1)=4a1b1+1-2a1-2b1
=1-2a1+2b1(2a1-1)=(2a1-1)(2b1-1)
( )( ) 1
1
a1- b1-
=4 2
2 >0,
∴a1b1+a2b2>a1b2+a2b1.
1
1
∵(a1b1+a2b2)-2=2a1b1+2-a1-b1
当 x=3时,f(x)=g(x); 4
当 0<x<1,或 x>3时,f(x)>g(x).
能力提升
13.若 0<a1<a2,0<b1<b2,且 a1+a2=b1+b2=1,则下列代数式中值最大的是( )
A.a1b1+a2b2
B.a1a2+b1b2
1
C.a1b2+a2b1
D.2
答案 A
解析 方法一 特殊值法.
∴a2=1-a1>a1,b2=1-b1>b1,
1
1
∴0<a1<2,0<b1<2. 又 a1b1+a2b2=a1b1+(1-a1)(1-b1)=2a1b1+1-a1-b1, a1a2+b1b2=a1(1-a1)+b1(1-b1)=a1+b1-a21-b21,
a1b2+a2b1=a1(1-b1)+b1(1-a1)=a1+b1-2a1b1, ∴(a1b2+a2b1)-(a1a2+b1b2)=a21+b21-2a1b1 =(a1-b1)2≥0,
4.若 x∈(e-1,1),a=ln x,b=2ln x,c=ln3x,则( )
A.a<b<c
B.c<a<b
C.b<a<c

高二数学不等关系与不等式

高二数学不等关系与不等式

的简报中医师名录听者莫不撕小纸片记录……。彷佛太平盛世就应该这样,每件事都跟昨天、前天没什么差别。一位迟到妈妈拉著尚未换穿球衣、头发睡歪一边的儿子小跑步而来,手上还捧著纸碗装蚵仔面线,由於限塑政策推行彻底,一支小汤匙只好含在嘴里,就这么快快快抵达树荫下,
立刻有几只妈妈手围上来替男孩剥衣换服下一秒钟他就像走出电话亭的超人,直接上场了。 ? 唉,在太平盛世的范围,早起算是相当痛苦的。 ? 你坐在布满粉紫草花的草地上,看这浮世一角看得趣味盎然,甚至还不想打开手中诗集。你不禁想,浮生之所以有趣,在於允许你隐身於安全
一粒吃又揣了一粒在口袋,再将它放回原处,装作啥事都不知晓。过不了几日,便会听到她的抱怨:“半包软糖仔那是你们阿姑买给我的,放在棉被堆里也给你们偷拿去呷。看看,剩三粒,比日本仔还野!夭鬼囡仔,我藏到无路啰!--喏,敏嫃,剩这粒给你。”
?我
的确是特权了,可以分享到阿嬷的卷仔饼,及她那个年代的甜处。于是,公事包里常常有些奇怪的东西:五条卷仔饼、一把纽仔饼、六粒龙眼球、两块爆米香、一块红龟仔果......我便拿着去普渡众生,遇到谁就给谁。回到家,阿嬷还要问食后心得:“好呷莫?”我说:“马马虎虎啦,
气息。扑蝶事件将成为他生命中的奇异点,此後因不断被引述、传诵而有了亮度。浮生甚暖,一陌生男孩抓到奇异光点时,你正好在现场。 ? 中场休息。孩子奔来,肥鸭们赶忙递水、擦汗、喂面包、抹驱蚊膏。你打开波兰女诗人辛波丝卡诗集,阳光捆著你的眼眸放在〈越南〉那页: ?
妇人,你叫什么名字?── 我不知道。 ? 你生於何时,来自何处?──我不知道。 ? 你为什么在地上挖洞?──我不知道。 ? 你在这里多久?」──我不知道。 ? 你看著树荫下十多个家庭的寻常早晨,相信太平盛世里所有的缺口都有办法弥补,即使「挖洞」这讨人厌的事,也能找

数学(文)一轮复习:第六章 不等式 第讲不等关系与不等式

数学(文)一轮复习:第六章 不等式 第讲不等关系与不等式

知识点考纲下载不等关系与不等式了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.二元一次不等式(组)与简单的线性规划问题1。

会从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.基本不等式错误!≤错误! (a≥0,b≥0)1。

了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.第1讲不等关系与不等式,)1.实数大小顺序与运算性质之间的关系a-b〉0⇔a〉b;a-b=0⇔a=b;a-b〈0⇔a<b.2.不等式的基本性质(1)对称性:a>b⇔b<a;(2)传递性:a>b,b>c⇒a>c;(3)可加性:a>b⇒a+c>b+c;a>b,c>d⇒a+c>b+d;(4)可乘性:a>b,c>0⇒ac>bc,a>b>0,c>d>0⇒ac>bd;(5)可乘方:a>b>0⇒a n>b n(n∈N,n≥2);(6)可开方:a>b>0⇒na>错误!(n∈N,n≥2).1.辨明两个易误点(1)在应用传递性时,注意等号是否传递下去,如a≤b,b〈c⇒a〈c;(2)在乘法法则中,要特别注意“乘数c的符号”,例如当c≠0时,有a〉b⇒ac2〉bc2;若无c≠0这个条件,a>b⇒ac2〉bc2就是错误结论(当c=0时,取“=”).2.不等式中的倒数性质(1)a〉b,ab>0⇒错误!<错误!;(2)a〈0<b⇒错误!〈错误!;(3)a〉b〉0,0<c〈d⇒错误!>错误!;(4)0〈a〈x〈b或a<x〈b<0⇒错误!〈错误!<错误!。

3.不等式恒成立的条件(1)不等式ax2+bx+c〉0对任意实数x恒成立⇔错误!或错误!(2)不等式ax2+bx+c〈0对任意实数x恒成立⇔错误!或错误!1。

错误!若a<b〈0,则下列不等式不成立的是( )A.错误!〉错误!B.错误!〉错误!C.|a|>|b| D.a2>b2A 由a<b<0,可用特殊值法,取a=-2,b=-1,则错误!〉错误!不成立.2.错误!设A=(x-3)2,B=(x-2)(x-4),则A与B的大小为( )A.A≥B B.A〉BC.A≤B D.A〈BB A-B=(x2-6x+9)-(x2-6x+8)=1〉0,所以A〉B.故选B.3.错误!若a〉b,则下列不等式一定成立的是( )A.ac2>bc2B.错误!<错误!C.ac2≥bc2D.错误!≤错误!C 当c=0时,A、B错误;当a〉0,b<0时,D错误,故选C.4.错误!下列四个结论,正确的是()①a〉b,c〈d⇒a-c>b-d;②a>b〉0,c<d〈0⇒ac>bd;③a〉b〉0⇒错误!>错误!;④a〉b>0⇒错误!>错误!.A.①②B.②③C.①④D.①③D 对于①,因为a〉b,c<d,所以-c>-d,所以a-c>b-d。

§1-1.1 不等关系 1.2 不等关系与不等式

§1-1.1  不等关系   1.2 不等关系与不等式

(1)以下结论一定能推出 a<b 的是( )
A.(a-b)a2<0
B.a2<b2
C.1a>1b
D.ac<bc
(2)若 bc-ad≥0,bd>0.求证:a+b b≤c+d d.
栏目 导引
第三章 不等式
【解】 (1)选 A.对于 A 项,显然 a2>0,必有 a<b;对于 B 项, a2<b2⇔|a|<|b|,当 a,b 均为负值时,有 a>b;对于 C 项,若 a>0, b<0,有1a>1b,但不能推出 a<b;对于 D 项,若 c<0,显然有 a>b. (2)证明:因为 bc-ad≥0,所以 ad≤bc, 因为 bd>0,所以ab≤dc, 所以ab+1≤dc+1,所以a+b b≤c+d d.
<α+|β|<7.故选 C. (2)由 4≤xy2≤9,得 16≤xy24≤81. 又 3≤xy2≤8,
所以18≤x1y2≤13, 所以 2≤xy43≤27. 所以xy43的最大值是 27. 答案:(1)C (2)27
栏目 导引
第三章 不等式
思想方法 分类讨论思想在比较两代数式大小中的应用
已知
a,b>0,试比较
栏目 导引
第三章 不等式
3.(1)已知 a+b>0,b<0,那么 a,b,-a,
-b 的大小关系是( )
A.a>b>-b>-a
B.a>-b>-a>b
C.a>-b>b>-a
D.a>b>-a>-b
(2)已知 a>b>0,c<d<0,e<0,求证:a-e c>b-e d.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§7.1不等关系与不等式题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.( √ )(2)若a b>1,则a >b .( × ) (3)一个不等式的两边同加上或同乘以同一个数,不等号方向不变.( × )(4)a >b >0,c >d >0⇒a d >b c.( √ ) (5)若ab >0,则a >b ⇔1a <1b.( √ ) 题组二 教材改编2.若0<a <b ,且a +b =1,则将a ,b ,12,2ab ,a 2+b 2从小到大排列为________________. 答案 a <2ab <12<a 2+b 2<b 解析 ∵0<a <b 且a +b =1,∴a <12<b <1,∴2b >1且2a <1, ∴a <2b ·a =2a (1-a )=-2a 2+2a =-2⎝⎛⎭⎫a -122+12<12. 即a <2ab <12, 又a 2+b 2=(a +b )2-2ab =1-2ab >1-12=12, 即a 2+b 2>12, a 2+b 2-b =(1-b )2+b 2-b =(2b -1)(b -1),又2b -1>0,b -1<0,∴a 2+b 2-b <0,∴a 2+b 2<b ,综上,a <2ab <12<a 2+b 2<b . 题组三 易错自纠4.若a >b >0,c <d <0,则一定有( )A.a c -b d >0B.a c -b d <0C.a d >b cD.a d <b c答案 D解析 ∵c <d <0,∴0<-d <-c ,又0<b <a ,∴-bd <-ac ,即bd >ac ,又∵cd >0,∴bd cd >ac cd ,即b c >a d. 5.若-π2<α<β<π2,则α-β的取值范围是__________. 答案 (-π,0)解析 由-π2<α<π2,-π2<-β<π2,α<β, 得-π<α-β<0.题型一 比较两个数(式)的大小1.已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >b答案 A解析 ∵c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b .又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1,∴b -a =a 2-a +1=⎝⎛⎭⎫a -122+34>0, ∴b >a ,∴c ≥b >a .2.若a =ln 33,b =ln 44,c =ln 55,则( ) A .a <b <c B .c <b <a C .c <a <b D .b <a <c答案 B解析 方法一 易知a ,b ,c 都是正数,b a =3ln 44ln 3=log 8164<1, 所以a >b ;b c =5ln 44ln 5=log 6251 024>1, 所以b >c .即c <b <a .方法二 对于函数y =f (x )=ln x x ,y ′=1-ln x x 2, 易知当x >e 时,函数f (x )单调递减.因为e<3<4<5,所以f (3)>f (4)>f (5),思维升华 比较大小的常用方法(1)作差法一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法一般步骤:①作商;②变形;③判断商与1的大小关系;④结论.(3)函数的单调性法:将要比较的两个数作为一个函数的两个函数值,根据函数的单调性得出大小关系.题型二 不等式的性质典例 (1)已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中一定成立的是( )A .ab >acB .c (b -a )<0C .cb 2<ab 2D .ac (a -c )>0答案 A解析 由c <b <a 且ac <0,知c <0且a >0.由b >c ,得ab >ac 一定成立.(2)设a >b >1,c <0,给出下列三个结论:①c a >c b;②a c <b c ;③log b (a -c )>log a (b -c ). 其中所有正确结论的序号是( )A .①B .①②C .②③D .①②③答案 D解析 由不等式性质及a >b >1,知1a <1b, 又c <0,∴c a >c b,①正确; 构造函数y =x c ,∵c <0,∴y =x c 在(0,+∞)上是单调递减的,又a >b >1,∴a c <b c ,②正确;∵a >b >1,c <0,∴a -c >b -c >1,∴log b (a -c )>log a (a -c )>log a (b -c ),③正确.思维升华 解决此类问题常用两种方法:一是直接使用不等式的性质逐个验证;二是利用特殊值法排除错误答案.利用不等式的性质判断不等式是否成立时要特别注意前提条件.跟踪训练 若1a <1b <0,给出下列不等式:①1a +b <1ab;②|a |+b >0;③a -1a >b -1b ;④ln a 2>ln b 2. 其中正确的不等式是( )A .①④B .②③C .①③D .②④解析 方法一 因为1a <1b<0,故可取a =-1,b =-2. 显然|a |+b =1-2=-1<0,所以②错误;因为ln a 2=ln(-1)2=0,ln b 2=ln(-2)2=ln 4>0,所以④错误.综上所述,可排除A ,B ,D.方法二 由1a <1b<0,可知b <a <0. ①中,因为a +b <0,ab >0,所以1a +b<0,1ab >0. 故有1a +b <1ab,即①正确; ②中,因为b <a <0,所以-b >-a >0.故-b >|a |,即|a |+b <0,故②错误;③中,因为b <a <0,又1a <1b <0,则-1a >-1b>0, 所以a -1a >b -1b,故③正确; ④中,因为b <a <0,根据y =x 2在(-∞,0)上为减函数,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上为增函数,所以ln b 2>ln a 2,故④错误.由以上分析,知①③正确.题型三 不等式性质的应用命题点1 应用性质判断不等式是否成立典例 已知a >b >0,给出下列四个不等式:①a 2>b 2;②2a >2b -1;③a -b >a -b ; ④a 3+b 3>2a 2b .其中一定成立的不等式为( )A .①②③B .①②④C .①③④D .②③④答案 A解析 方法一 由a >b >0可得a 2>b 2,①成立;由a >b >0可得a >b -1,而函数f (x )=2x 在R 上是增函数,∴f (a )>f (b -1),即2a >2b -1,②成立;∵a >b >0,∴a >b ,∴(a -b )2-(a -b )2=2ab -2b =2b (a -b )>0, ∴a -b >a -b ,③成立;若a =3,b =2,则a 3+b 3=35,2a 2b =36,a 3+b 3<2a 2b ,④不成立.故选A.方法二 令a =3,b =2,可以得到①a 2>b 2,②2a >2b -1,③a -b >a -b 均成立,而④a 3+b 3>2a 2b 不成立,故选A. 命题点2 求代数式的取值范围典例 已知-1<x <4,2<y <3,则x -y 的取值范围是________,3x +2y 的取值范围是________. 答案 (-4,2) (1,18)解析 ∵-1<x <4,2<y <3,∴-3<-y <-2,∴-4<x -y <2.由-1<x <4,2<y <3,得-3<3x <12,4<2y <6,∴1<3x +2y <18.思维升华 (1)判断不等式是否成立的方法①判断不等式是否成立,需要逐一给出推理判断或反例说明.②在判断一个关于不等式的命题的真假时,可结合不等式的性质,对数函数、指数函数的性质进行判断.(2)求代数式的取值范围利用不等式性质求某些代数式的取值范围时,一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围,是避免错误的有效途径.跟踪训练 (1)若a <b <0,则下列不等式一定成立的是( )A.1a -b >1b B .a 2<ab C.|b ||a |<|b |+1|a |+1D .a n >b n 答案 C解析 (特值法)取a =-2,b =-1,逐个检验,可知A ,B ,D 项均不正确;C 项,|b ||a |<|b |+1|a |+1⇔|b |(|a |+1)<|a |(|b |+1)⇔|a ||b |+|b |<|a ||b |+|a |⇔|b |<|a |, ∵a <b <0,∴|b |<|a |成立,故选C.(2)已知-1<x <y <3,则x -y 的取值范围是________.答案 (-4,0)解析 ∵-1<x <3,-1<y <3,∴-3<-y <1,∴-4<x -y <4.又∵x <y ,∴x -y <0,∴-4<x -y <0,故x -y 的取值范围为(-4,0).利用不等式变形求范围典例 设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是________. 错解展示:由⎩⎪⎨⎪⎧ 1≤f (-1)≤2,2≤f (1)≤4, 得⎩⎪⎨⎪⎧1≤a -b ≤2,①2≤a +b ≤4. ② ①+②得32≤a ≤3,②-①得12≤b ≤1. 由此得4≤f (-2)=4a -2b ≤11.所以f (-2)的取值范围是[4,11].错误答案 [4,11]现场纠错解析 方法一 设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数),则4a -2b =m (a -b )+n (a +b ), 即4a -2b =(m +n )a +(n -m )b .于是得⎩⎪⎨⎪⎧ m +n =4,n -m =-2,解得⎩⎪⎨⎪⎧m =3,n =1. ∴f (-2)=3f (-1)+f (1).又∵1≤f (-1)≤2,2≤f (1)≤4.∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.方法二 由⎩⎪⎨⎪⎧f (-1)=a -b ,f (1)=a +b , 得⎩⎨⎧ a =12[f (-1)+f (1)],b =12[f (1)-f (-1)],∴f (-2)=4a -2b =3f (-1)+f (1).又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.方法三 由⎩⎪⎨⎪⎧1≤a -b ≤2,2≤a +b ≤4确定的平面区域如图阴影部分所示,当f (-2)=4a -2b 过点A ⎝⎛⎭⎫32,12时,取得最小值4×32-2×12=5, 当f (-2)=4a -2b 过点B (3,1)时,取得最大值4×3-2×1=10,∴5≤f (-2)≤10.答案 [5,10]纠错心得 在求式子的范围时,如果多次使用不等式的可加性,式子中的等号不能同时取到,会导致范围扩大.1.(2018·济宁模拟)若a <0,ay >0,且x +y >0,则x 与y 之间的不等关系是( )A .x =yB .x >yC .x <yD .x ≥y答案 B解析 由a <0,ay >0,可知y <0,又由x +y >0,可知x >0,所以x >y .2.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x ),g (x )的大小关系是( )A .f (x )=g (x )B .f (x )>g (x )C .f (x )<g (x )D .随x 值的变化而变化答案 B解析 f (x )-g (x )=x 2-2x +2=(x -1)2+1>0,则f (x )>g (x ).3.若a ,b ∈R ,且a +|b |<0,则下列不等式中正确的是( )A .a -b >0B .a 3+b 3>0C .a 2-b 2<0D .a +b <0答案 D解析 由a +|b |<0知,a <0,且|a |>|b |,当b ≥0时,a +b <0成立,当b <0时,a +b <0成立,∴a +b <0成立.故选D.4.(2018·乐山调研)若6<a <10,a 2≤b ≤2a ,c =a +b ,那么c 的取值范围是( ) A .9≤c ≤18 B .15<c <30 C .9≤c ≤30 D .9<c <30答案 D解析 ∵c =a +b ≤3a 且c =a +b ≥3a 2, ∴9<3a 2≤a +b ≤3a <30. 5.设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,那么2α-β3的取值范围是( ) A.⎝⎛⎭⎫0,5π6 B.⎝⎛⎭⎫-π6,5π6 C .(0,π) D.⎝⎛⎭⎫-π6,π 答案 D解析 由题设得0<2α<π,0≤β3≤π6, ∴-π6≤-β3≤0,∴-π6<2α-β3<π. 6.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m 2)分别为x ,y ,z ,且x <y <z ,三种颜色涂料的粉刷费用(单位:元/m 2)分别为a ,b ,c ,且a <b <c .在不同的方案中,最低的总费用(单位:元)是( )A .ax +by +czB .az +by +cxC .ay +bz +cxD .ay +bx +cz答案 B解析 令x =1,y =2,z =3,a =1,b =2,c =3.A 项:ax +by +cz =1+4+9=14;B 项:az +by +cx =3+4+3=10;C 项:ay +bz +cx =2+6+3=11;D 项:ay +bx +cz =2+2+9=13.故选B.7.(2018·济南调研)若a >b >0,则下列不等式中一定成立的是( )A .a +1b >b +1a B.b a >b +1a +1 C .a -1b >b -1a D.2a +b a +2b >a b答案 A解析 取a =2,b =1,排除B 与D ;另外,函数f (x )=x -1x是(0,+∞)上的增函数,但函数g (x )=x +1x在(0,1]上单调递减,在[1,+∞)上单调递增,所以,当a >b >0时,f (a )>f (b )必定成立,即a -1a >b -1b ⇔a +1b >b +1a,但g (a )>g (b )未必成立,故选A. 8.已知a 1≤a 2,b 1≥b 2,则a 1b 1+a 2b 2与a 1b 2+a 2b 1的大小关系是__________________. 答案 a 1b 1+a 2b 2≤a 1b 2+a 2b 1解析 a 1b 1+a 2b 2-(a 1b 2+a 2b 1)=(a 1-a 2)(b 1-b 2),因为a 1≤a 2,b 1≥b 2,所以a 1-a 2≤0,b 1-b 2≥0,于是(a 1-a 2)(b 1-b 2)≤0,故a 1b 1+a 2b 2≤a 1b 2+a 2b 1.9.已知a ,b ,c ,d 均为实数,有下列命题:①若ab >0,bc -ad >0,则c a -d b>0; ②若ab >0,c a -d b >0,则bc -ad >0;③若bc -ad >0,c a -d b>0,则ab >0. 其中正确的命题是________.(填序号)答案 ①②③解析 ∵ab >0,bc -ad >0,∴c a -d b =bc -ad ab>0,∴①正确; ∵ab >0,又c a -d b >0,即bc -ad ab>0, ∴bc -ad >0,∴②正确;∵bc -ad >0,又c a -d b >0,即bc -ad ab>0, ∴ab >0,∴③正确.故①②③都正确.10.(2018·青岛调研)设a >b >c >0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小关系是________.(用“>”连接)答案 z >y >x解析 方法一 y 2-x 2=2c (a -b )>0,∴y >x .同理,z >y ,∴z >y >x .方法二 令a =3,b =2,c =1,则x =18,y =20,z =26,故z >y >x .11.已知-1<x +y <4,2<x -y <3,则3x +2y 的取值范围是____________.答案 ⎝⎛⎭⎫-32,232 解析 设3x +2y =m (x +y )+n (x -y ),则⎩⎪⎨⎪⎧ m +n =3,m -n =2,∴⎩⎨⎧ m =52,n =12.即3x +2y =52(x +y )+12(x -y ), 又∵-1<x +y <4,2<x -y <3,∴-52<52(x +y )<10,1<12(x -y )<32,∴-32<52(x +y )+12(x -y )<232, 即-32<3x +2y <232, ∴3x +2y 的取值范围为⎝⎛⎭⎫-32,232.12.设实数x ,y 满足0<xy <4,且0<2x +2y <4+xy ,则x ,y 的取值范围是( )A .x >2且y >2B .x <2且y <2C .0<x <2且0<y <2D .x >2且0<y <2 答案 C解析 由题意得⎩⎪⎨⎪⎧ xy >0,x +y >0,则⎩⎪⎨⎪⎧x >0,y >0, 由2x +2y -4-xy =(x -2)·(2-y )<0,得⎩⎪⎨⎪⎧x >2,y >2或⎩⎪⎨⎪⎧ 0<x <2,0<y <2, 又xy <4,可得⎩⎪⎨⎪⎧0<x <2,0<y <2. 13.若x >y ,a >b ,则在①a -x >b -y ;②a +x >b +y ;③ax >by ;④x -b >y -a ;⑤a y >b x这五个式子中,恒成立的不等式的序号是________.答案 ②④解析 令x =-2,y =-3,a =3,b =2.符合题设条件x >y ,a >b .∵a -x =3-(-2)=5,b -y =2-(-3)=5.∴a -x =b -y ,因此①不成立.∵ax =-6,by =-6,∴ax =by ,因此③不成立.∵a y =3-3=-1,b x =2-2=-1, ∴a y =b x,因此⑤不成立. 由不等式的性质可推出②④成立.14.(2018·江门模拟)设a ,b ∈R ,定义运算“⊗”和“”如下:a ⊗b =⎩⎪⎨⎪⎧ a ,a ≤b ,b ,a >b ,a b =⎩⎪⎨⎪⎧ b ,a ≤b ,a ,a >b .若m ⊗n ≥2,p q ≤2,则( )。

相关文档
最新文档