概率论 第6章 数理统计的基本知识
概率论与数理统计各章重点知识整理

概率论与数理统计各章重点知识整理 第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A I Y = B A B A Y I = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121Y ΛY Y…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,当P(A)>0, P(B i )>0时,. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P ΛΛ2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1)(3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2 )参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称P{X=x i |Y=y j } 为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称 P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛),}{},{jji j j i p p y Y P y Y x X P •=====,}{},{•=====i j i i j i p p x X P y Y x X P函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n pn p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i iX X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2). ③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P Y 的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X ~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2)时, nS X μ-~ t (n-1) .③两个正态总体 相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P Y的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμΛΛΛ解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθΛΛΛ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A ΛΛΛθθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθΛΛ为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21Λ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量. 二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定. (2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α. (3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求. 2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知 nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 nS X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知 22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ 3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。
数理统计基本概念

P{6.262 χ 2 24.996}
2 2
P{χ 6.262} P{χ 24.996}
0.975 0.05 0.925
注意 应注意分布表的定义与查法!
#
数理统计基本概念
3.自由度为 n的 t 分布 作笔名发表文章.
T~t(n)
又称学生氏分布--第一个研究者以Student
( X 1 , X 2 , , X n ) ~ ( 2 ) e
n 2 2
i 1
( xi )2 2 2
n
数理统计基本概念
四、统计量 定义6.1.2 设X1 , X2 , ·, Xn是总体X的样本, · · T为n元实值函数,若样本的函数 T=T(X1 , X2 , ·, Xn) · · 是随机变量且不含未知参数,称 T为统计量. 对相应的样本值( x1 , x2 , … , xn ) ,称 t =T( x1 , x2 , … , xn )
理
统
计
的
引
入
数理统计基本概念
某厂生产的一批产品中次品率为 p 。从中 抽取10件产品装箱。 概
1)没有次品的概率 2)平均有几件次品
率
3)为以 0.95的概率保证箱中 有10件正品,箱中至少要装多 少件产品。
数
理
统
计
的
引
入
数理统计基本概念
所有这些问题的关键是 p 是已知的! 如何获取 p ? 这就是数理统计的任务了!
定的α(0<α<1),数uα满足
P{ X u } ,
(C ) u1 ;
概率论与数理统计 第六章--数理统计的基本概念

F分布性质2 若X ~t(n),则X2~F(1,n)
例4.设X1,X2, …,Xn是来自正态总体N(0,1) 的样本,试问c=( )统计量
c
2 X i 3 i 1 n
X
i 4
2 i
服从F分布?
抽样分布的分位点
设α为给定的常数,且0<α<1.若存在χα2(n)使
P ( n)
分位点的性质
(1) u1 u (2)
t1 (n) t (n)
1 (3) F (m, n) F1 (n, m)
回顾1. 设X1 ,X2 ,X3, X4是来自总体N(0,4)的简单 随机样本,X=a(X1-2 X2)2+b(3X3 -4X4)2,问当 a,b为何值时,统计量X服从 2分布 .
Max=1572, Min=738, 组数=6 组距=(Max-Min)/6=139140 取a0=735, 则分组区间及相关数据如下
组序 1 2 分区区间 (735,875] (875,1015] 频数 6 8 频率 0.2 0.27 累计频率 0.2 0.47
3
4 5 6 合计
(1015,1155]
2
所服从的分布为自由度为 n 的 分布 记为
2
~ (n)
2 2
分布的密度函数为
2
n x 1 1 n2 x2 e 2 f ( x; n ) 2 ( n 2 ) 0
x0 x0
其中伽玛函数 ( x )通过积分
( x ) e t dt, x 0 0 来定义.
(1155,1295] (1295,1435] (1435,1575]
9
4 2 1 30
0.3
概率论与数理统计(叶慈南 刘锡平 科学出版社)第6章 数理统计的基本概念教程

3.样本k阶(原点)矩 Ak = 样本k阶中心矩
Bk =
1 n k ∑ X i 反映总体k阶矩E(Xk)的信息 n i =1 P E ( X k ) = k , k = 1, 2, L →
反映总体k
9
1 n P → ∑ ( X i X )k E {[ X E ( X )]k } = mk n i =1 k=1,2,…
1o
X ~ N ( ,
σ2 ) n
即
X ~ N (0,1) σ/ n
2o 3o
(n 1) S 2 ~ χ 2 ( n 1) σ2 X 与 S 2 相互独立 4o X ~ t ( n 1) S/ n
23
24
4
1o
X ~ N ( , X=
σ2 ) n
即
X ~ N ( 0, 1) σ/ n
4o
正态总体的抽样分布定理
例 设 X1,…,X10 是取自N(0,0.32)的样本,求
P{∑ X i > 1.44}
2 i =1 10
定理一,二,三
2 2 设 X 1 ,..., X n 是来总体 N ( , σ ) 的样本, X , S 分别为样
本均值和样本方差,则
例 设 X 1 , X 2 , L , X 15 是来自总体 N (0,1)的一个简单随 2 2 X 12 + X 2 + L + X 10 机样本, Y= 则 服从 分布. 2 2 2 2( X 11 + X 12 + L + X 15 )
4
个体:组成总体的元素(如:某一个灯泡的寿命)
每个可能的观察值
有限总体 无限总体 如:考察某大学大一2000名男生的身高 如:考察某大学大一2000名男生的身高 如:测量一湖泊任一地点的深度
概率论与数理统计A第6章

几个常见统计量
样本平均值
样本方差
它反映了总体 方差的信息
X
1 n
n i1
Xi
它反映了 总体均值 的信息
S2n11in1(Xi X)2
n1 1i n1Xi2nX2
样本标准差 S n1 1i n1(Xi X)2
样本k阶原点矩
Ak
1 n
n i1
Xik
k=1,2,…
样本k阶中心矩
Mk
1 n n i1
(1)
(n1)S2
2
~2(n1)
(2) X与S2独立 .
n取不同值时 (n 1)S 2
2
的分布
推论1 (样本均值的分布)
设X1,X2,…,Xn是取自正态总体 N(,2)
的样本, X和S2 分别为样本均值和样本方差,
则有
X ~t(n1)
Sn
证由定 1、 2理 t,分布的定义可得
X~N(0,1), n
X ~ N(,2) n
即 X~N(0,1) n
X ~ N(,2) X ~ N(0,1) n n
请注意 : 在已知总体,2时, 可用本定理计算样 本均值X.
n取不同值时样本
均值 X 的分布
定理 5 (样本方差的分布)
设X1,X2,…,Xn是来自正态总体 N(,2)的样本,
X和S2分别为样本均值和样本方差, 则有
的 点 t ( n ) 为 t ( n ) 分 布 的 上 分 位 数 。 如 图 所 示 .
t ( n )
t分布的上分位点的性质: t1(n)t(n)
t分 布 的 左 侧 分 位 点 t(n)可 查 表 求 得 , 例 t0.975(15)6.262.
当n45时,对于常 的 用值 的,可用正态近
概率论与数理统计第六章样本及抽样分析

期望与方差:E(Y) = n, D(Y) = 2n
X1, X2,……, Xn 来自标准正态总体 X 的样本,那么
Y (X1 X2 )2 (X3 X4 )2 (X5 X6 )2
是否服从卡方分布?若 kY ~ χ2( n ),求 k,n
第六章 样本及抽样分析
… 19.675 2… 21.026 23.337 26.217 28.299
… 22.362 24.736 27.688 29.819
… 23.685 26.119 29.141 30.319
…
…
…
…
…
…
…
…
…
…
查表练习: 求下列各式中的 C 值
1. Y ~ 2(24), P(Y C ) 0.1 2. Y ~ 2(40), P(Y C ) 0.95
样本可看成 n 维随机变量(X1, X 2 ,, X n), 则有 P( x1, x2 ,, xn ) = P( x1)P( x2 ) P( xn )
或 f ( x1, x2 ,, xn ) = f ( x1) f ( x2 ) f ( xn )
身高总体
178.4 161.5 174.9 182.7 171.0 165.3 172.8 182.1 180.2 176.8 181.7 175.7 177.3 180.0 179.4 177.0 181.3 176.5 176.0 175.7 168.1 184.6 169.1 177.8 175.1 161.8 174.3 176.0 163.7 176.8 177.3 175.3 180.2 176.8 181.9 178.4 181.5 177.6 179.9 178.2 174.7 176.0 175.7 180.3 166.2 177.2 171.9 182.9 176.8 179.5 167.0 174.8 182.7 174.9 178.1 179.9 175.4 184.4 175.1 179.4 173.2 176.1 177.6 180.5 164.3 170.5 177.5 168.3 173.0 176.8 173.9 180.7 166.5 180.0 165.6 179.4 182.2 176.3 177.4 183.4 167.9 176.1 177.4 183.4 176.9 168.0 179.0 178.8 173.1 173.2 162.2 179.9 178.2 183.0 174.0 180.8 173.1 173.2 176.8 171.1 169.0 178.3 171.6 181.2 167.6 161.1 166.0 190.2 180.3 166.2 174.9 175.8 176.5 164.2 173.0 176.8 170.5 180.5 177.3 175.3 163.7 176.8 171.1 168.5 171.2 170.2 177.1 169.4 175.7 177.3 183.2 168.6 175.1 179.4 169.1 169.9 168.5 180.2 174.9 171.0 171.0 168.8 177.7 168.6 176.6 175.9 176.8 179.5 174.3 176.0
第六章 数理统计的基本概念(1)

XK
1 n
n i 1
X
k i
(4)样本k阶中心矩:
1 n
n i 1
(Xi
X )k
(5)顺序统计量: X(1) X(2) X(n) . 其中 X(k) 为将 X1, X2 , , Xn 从小到大排列第 k 位值.
18 September 2020
概率论与数理统计
理学院数学系
2、离散型 设总体X的分布律为 P{ X x} p( x)
则样本X1, X2 ,的, 联Xn合分布律为 P{ X1 x1, X2 x2 ,, Xn xn } p( x1 ) p{ x2 ) p( xn )
18 September 2020
概率论与数理统计
理学院数学系
样本分布
第六章 数理统计的基本概念
(1)样本均值:
X
1 n
n i 1
Xi
(2)样本方差:
Sn2
1 n
n
(Xi
i 1
X )2
修正样本方差:
Sn*2
1 n1
n i 1
(Xi
X )2
nSn2 (n 1)Sn*2
18 September 2020
概率论与数理统计
理学院数学系
第六章 数理统计的基本概念
第22页
(3)样本k阶原点矩:
第13页
1、样本的联合分布函数 设总体 X 的分布函数为 FX (., ), (X1, X2 ,
则样本的联合分布函数为
, Xn ) 为样本.
FX1,X2 , ,Xn ( x1, x2 , , xn ; ) FX ( x1, )FX ( x2 , ) FX ( xn , )
数理统计的基本知识

• 这些观测值仍分别称为样本均值,样本方差,样本标准差,样本k阶原 点矩,样本k阶中心矩。 记作 k 存在,则当n→∞时 • 我们指出,若总体X的k阶原点距 E ( X k ) , p A k , k 1,2,... k • • 即:样本的k阶原点距依概率收敛于总体的k阶原点距。 • 事实上,由于X1,X2,...,Xn相互独立,且与X同分布,故 X1k,X2k,...,Xnk相互独立,且与Xk同分布,故有 • E(X1k)=E(X2k)=E(Xnk)=μk,k=1,2,... • 由第五章的辛钦大数定律知
二· 常用的统计量
• 样本均值
• 样本方差 • 样本标准差
1 n X Xi n i 1 2 n n 2 2 1 1 2 S ( Xi nX ) (Xi X ) n 1 i 1 n 1 i 1 S S2 1 n 2 (Xi X ) n 1 i 1
F (n , n ) f ( x)dx 1 2
• 的点Fɑ(n1,n2)为F(n1,n2)分布的上ɑ分位点 。 • 如图
f(x)
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0
ɑ
x
0.5 1 1.5
1 • F分布的上分位点具有如下性质:F1 (n1, n2 ) F (n2 , n1 )
如果总体X的分布函数为F(x),则样本X1,X2,...Xn的联合分布函数为 F*(x1,x2,...xn)=F(x1)F(x2)· · · F(xn)= n 如果总体X是离散型随机变量,且概率密度为 F ( xi ) P{X=xi},i=1,2,... i 1 则样本X1,X2,...Xn的联合概率密度为 P*{X1=x1,X2=x2,...Xn=xn}=P{X1=x1}P{X2=x2}· · · P{Xn=xn}=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例如:某厂生产的电视机显像管的寿命是一个总体,
欧启通主编. 概率论与数理统计. 浙江大学出版社, 2014.2
4
抽样:从总体 X 中抽取一部分个体的过程. 抽样结果得到 X 的一组试验数据(观测值). 样本: 样本容量: 样本中包含的个体的数量. 简单随机样本:从总体中抽取样本必须满足: (1) 随机性;(2) 独立性; 由此得到的样本称为简单 随机样本.
n 1 2 S2 ( X X ) , i n 1 i 1 1 n 2 2 s ( xi x ) . n 1 i 1
其观测值记作
1 n 2 通主编. 概率论与数理统计. 浙江大学出版社, 2014.2
17
4.样本 k 阶原点矩
1 n Vk X i k n i 1
其观测值记作 vk . 特别地, V1 X .
1 n k 5.样本 k 阶中心矩 U k ( X i X ) n i 1 n 1 2 S , 其观测值记作 uk . 特别地, U1 0 , U 2 n n 1 2 2 ~ s . 记样本二阶中心矩的观测值为 u2 n 2 2 ~ n s . 若 充分大,
欧启通主编. 概率论与数理统计. 浙江大学出版社, 2014.2
5
样本具有二重性
(1)设 n次抽样的结果为 X1 , X 2 , , X n , 它们是相互 独立的随机变量,且与总体 X 服从相同的分布;
(2)实际抽样的结果得到的是具体试验数据(样本观
测值) x1 , x2 ,, xn ; 抽样的结果是: n个独立的事件 X1 x1 , X 2 x2 ,,
fi ti 为高
欧启通主编. 概率论与数理统计. 浙江大学出版社, 2014.2
10
例: 从某种机械零件中抽取100个零件,测得它们的 直径(mm )的数据如下:
34.6 35.1 35.9 35.4 34.6 35.3 33.7 35.2 35.0 35.1 34.9 34.4 34.9 34.4 34.3 34.6 35.6 34.7 35.2 35.2 35.0 34.7 35.5 34.9 34.7 35.2 35.2 34.2 34.5 34.0 36.0 36.3 35.4 34.0 35.5 35.0 35.6 34.6 34.9 35.3 34.6 35.5 34.4 34.5 35.7 35.2 35.0 34.9 35.5 34.8 35.8 34.2 35.2 35.9 34.9 34.4 35.1 35.0 34.1 35.3 35.0 34.6 36.5 35.0 34.7 35.2 34.9 35.6 35.3 34.5 34.7 35.4 34.8 35.8 35.1 34.8 35.1 35.5 34.9 35.1 34.9 35.2 35.4 34.6 35.0 35.1 34.7 35.3 35.2 35.5 35.4 34.7 35.2 35.7 35.8 34.7 35.2 36.4 34.8 34.4
欧启通主编. 概率论与数理统计. 浙江大学出版社, 2014.2
14
例如:
X ~ N ( , 2 ) , , 是未知参数,X 1 , X 2 , , X n 是一
则 组样本,
1 n X Xi n i 1
X1
是统计量.
不是统计量.
欧启通主编. 概率论与数理统计. 浙江大学出版社, 2014.2
根据大数定律,可以依据样本来推断总体.
欧启通主编. 概率论与数理统计. 浙江大学出版社, 2014.2
9
6.1.4 频率直方图 作图步骤 : 样本观测值x1 , x2 , x3 ,, xn . (1)确定观测值范围 ; (2)选分点把观测区间分为若干个子区间 ti ; (3)计算样本观测值落在各子区间内的频数 mi 及频率 fi ; (4)在平面直角坐标内以子区间为底,以 作小矩形,构成直方图.
x( 2 ) m2
(l n) ,
l i 1
x(l ) ml
总计 n
f1
f2
fl
l
1
其中 x(1) x( 2) x(l )
mi fi n
( i 1, 2,, l ) ,
mi n , fi 1 .
i 1
7
欧启通主编. 概率论与数理统计. 浙江大学出版社, 2014.2
观测值
频 则 数
x(1) m1
x( 2 ) m2
x(l ) ml
总计 n
1 l x mi x(i ) , n i 1
~2
l 1 2 s2 m ( x x ) , i (i ) n 1 i 1
1 l 2 mi ( x(i ) x ) . n i 1
欧启通主编. 概率论与数理统计. 浙江大学出版社, 2014.2 20
21
解 数据进行如下分组,
该段时间内通过的 汽车数所在区间 区间中点值 x( i ) 频数 mi
(220,230] (230,240] (240,250] (250,260] (260,270] (270,280] (280,290]
225 235 245 255 265 275 285
1 3 6 14 4 1 1
总 计
30
欧启通主编. 概率论与数理统计. 浙江大学出版社, 2014.2
22
数据只需分7次输入计算器即可算得,
1 7 x mi x( i ) 253 , 30 i 1
7 1 s 2 mi ( x(i ) x ) 2 147.59 , 29 i 1
样本分布函数 Fn ( x ) 定义
Fn ( x)
fi , x x
(i )
0,
x x(1) ;
x(i ) x x(i 1) ; x x(l ) .
。 。 。
Fn ( x)
1,
1
。 。 。
x(1) x( 2 )
x(i ) x(i 1)
o
x(l )
x
8
欧启通主编. 概率论与数理统计. 浙江大学出版社, 2014.2
第6章 数理统计的基本知识
第6章
数理统计的基本知识
数理统计研究什么? 数理统计的基本任务是:研究如何进行观测,以及如
何根据观测得到的统计资料,对被研究的随机现象的
一般概率特征(例如,概率分布律、数学期望、方 差等)做出科学的推断.
欧启通主编. 概率论与数理统计. 浙江大学出版社, 2014.2
Fn ( x)的性质:
(1) ( 2) (3)
0 Fn ( x) 1 ;
Fn ( x)是非减函数; Fn () 0 , Fn () 1 ;
( 4) Fn ( x) 在每个观测值 x(i )处是右连续的, Fn ( x) 在该点的跃度就等于频率 f i (i 1, 2,, l ) .
n 1 2 2 样本方差可化简为: S2 ( X 2 X X X ) i i n 1 i 1 n 1 1 n 2 2 2 2 2 2 n n S (1 X i nX 2 ) , s ( xi nx ) . 2 n 1 i 1 ( X i 2 X nX 1 i 1 n X ) i n 1 i 1 ni 1 1 2 1 nS 3.样本标准差 ( X X ) . 2 i ( X i X ) nn 1 i 1 n 1 i 1
1 10 2 4.66 . s ( xi x ) 9 i 1
2 10 1 2 ~2 ( x x ) 4.194 . i 10 i 1
欧启通主编. 概率论与数理统计. 浙江大学出版社, 2014.2
19
注: 当样本容量很大时,可使用统计计算软件在计算
而相同的数据往往可能重复出现, 为了 机上进行计算. 使计算简化,应先把所得的数据整理,设得到下表:
注: 对于连续随机变量或者某些离散随机变量抽样得 到的样本观测值, 分成若干个子区间整理后,通常把 各个子区间的中点值取作 x(i ) , 样本观测值落在对应区
间的频数取作 mi 进行计算. 例2 观测某交通路口每天上午8:00~8:30这段时间内 通过的汽车车辆数,共观测30天,得到如下观测值:
13
6.1.5 样本函数与统计量
x1 , x2 ,, 设 X 1 , X 2 , , X n是取自总体X 的一组样本,
xn 是观测值.
样本函数 :以样本为自变量的函数记 . g ( X1 , X 2 ,, X n ). 样本函数也是随机变量. 称 g ( x1 , x2 ,, xn ) 为样本函 数 g ( X1 , X 2 ,, X n ) 的观测值. 统计量 :不依赖任何未知参数的样本函数.
234 244 235 260 249 256 241 238 251 259 269 258 256 250 246 241 268 255 261 256 257 257 253 282 277 226 251 255 256 261
计算样本均值、样本方差及样本二阶中心矩的观测值.
欧启通主编. 概率论与数理统计. 浙江大学出版社, 2014.2
欧启通主编. 概率论与数理统计. 浙江大学出版社, 2014.2
18
例1 设抽样得到样本观测值如下:
38.2 40.0 42.4 37.6 39.2 41.0 44.0 43.2 38.8 40.6
计算样本均值、样本方差及样本二阶中心矩的观测值. 解 把上述10个数据逐个输入电子计算器或计算机中, 不难求得: 1 10 x xi 40.5. 10 i 1
100
1.00
12
欧启通主编. 概率论与数理统计. 浙江大学出版社, 2014.2
f x