高中数学 第三章 导数及其应用 3.1 导数的概念 3.1.2 瞬时变化率—导数学案 苏教版选修11
高中数学第三章导数及其应用3.1导数的概念3.1.2瞬时变化率—导数学案苏教版选修1-1(2021

(江苏专用)2018-2019学年高中数学第三章导数及其应用3.1 导数的概念3.1.2 瞬时变化率—导数学案苏教版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专用)2018-2019学年高中数学第三章导数及其应用3.1 导数的概念3.1.2 瞬时变化率—导数学案苏教版选修1-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专用)2018-2019学年高中数学第三章导数及其应用3.1 导数的概念3.1.2 瞬时变化率—导数学案苏教版选修1-1的全部内容。
3.1。
2 瞬时变化率—导数学习目标:1。
理解导数的概念和定义及导数的几何意义.(重点) 2.理解运动在某时刻的瞬时变化率(瞬时速度).(难点)[自主预习·探新知]1.曲线上一点处的切线设曲线C上的一点P,Q是曲线C上的另一点,则直线PQ称为曲线C的割线;随着点Q沿曲线C向点P运动,割线PQ在点P附近越来越逼近曲线C。
当点Q无限逼近点P时,直线PQ 最终就成为在点P处最逼近曲线的直线l,这条直线l称为曲线在点P处的切线.2.瞬时速度运动物体的位移S(t)对于时间t的导数,即v(t)=S′(t).3.瞬时加速度运动物体的速度v(t)对于时间t的导数,即a(t)=v′(t).4.导数设函数y=f(x)在区间(a,b)上有定义,x0∈(a,b),当Δx无限趋近于0时,比值错误!=错误!无限趋近于一个常数A,则称f(x)在点x=x0处可导,并称常数A为函数f(x)在点x=x处的导数,记作f′(x0).5.导函数若函数y=f(x)对于区间(a,b)内任一点都可导,则f(x)在各点的导数也随自变量x的变化而变化,因而也是自变量x的函数,该函数称为f(x)的导函数,记作f′(x).6.函数y=f(x)在点x=x0处的导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线的斜率.[基础自测]1.判断正误:(1)函数y=f(x)在x=x0处的导数值与Δx值的正、负无关.()(2)在导数的定义中,Δx,Δy都不可能为零.( )(3)在导数的定义中,错误!>0.( )【解析】(1)√。
第三章导数及其应用3-1导数的概念及运算

(2)瞬时速度 设物体运动路程与时间的关系是 s=f(t),当 Δt 趋近 于 0 时, 函数 f(t)在 t0 到 t0+Δt 这段时间内的平均变化率 Δs ft0+Δt-ft0 = 趋近于常数,我们把这个常数称为 t0 Δt Δt 时刻的瞬时速度.
3.导数 设函数 y=f(x)在 x0 处及其附近有定义,当自变量在 x=x0 附近改变量为 Δx 时,函数值相应地改变量 Δy=f(x0 Δy +Δx)-f(x0).如果当 Δx 趋近于 0 时,平均变化率 = Δx fx0+Δx-fx0 趋近于一个常数 l, 那么常数 l 称为函数 f(x) Δx 在点 x0 处的瞬时变化率.函数在点 x0 处的瞬时变化率通 常称为 f(x)在 x=x0 处的导数,又称函数 f(x)在 x=x0 处可 导.
误区警示 1.导数公式 (1)要注意公式的适用范围.如(xn)′=nxn-1 中,n∈ N+,若 n∈Q 且 n≠0,则应有 x>0. (2)注意公式不要用混,如(ax)′=axlna,而不是(ax)′= xa
x-1
u u′ .还要特别注意(uv)′≠u′v′,v′≠ v′
4 ex 解析:y′=- x e +12 4 ex 4 ex 4 ∴tanα=- x =- x 2 =- 1 e +12 e +2ex+1 ex+ x+2 e 1 ∵e >0,∴e + x ≥2(当且仅当 x=0 时取等号) e
x x
1 4 ∴e + x+2≥4,∴0< ≤1 e 1 x e + x+2 e
x 轴、直
线 x=π 所围成的三角形的面积为( π2 A. 2 C.2π
2
)
B.π2 1 D. (2+π)2 2
解析: 曲线 y=xsinx
π π - , 在点 2 2处的切线方程
高中数学第三章导数及其应用3.1变化率与导数3.1.2导数的概念a11a高二11数学

12/9/2021
第三页,共二十五页。
1.函数的变化率 变化率类型
定义
实例
平均 变化率
函数 y=f(x)从 x1 到 x2 的平均
变化率为
①平均速
f(x2)-f(x1) ______x_2-__x_1______,
度; ②曲线割
简记作:
Δy Δx
线的斜率
12/9/2021
第四页,共二十五页。
函数 y=f(x)在 x=x0 处的瞬时变
12/9型 2 求瞬时速度 [典例 2] 一辆汽车按规律 s=2t2+3(时间单位:s,位移 单位:m)做直线运动,求这辆汽车在 t=2 s 时的瞬时速度. 解:设在 t=2 s 附近的时间增量为 Δt,则位移的增量 Δs =[2(2+Δt)2+3]-(2×22+3)=8Δt+2(Δt)2. 因为ΔΔst=8+2Δt, ΔΔst= (8+2Δt)=8, 所以这辆汽车在 t=2 s 时的瞬时速度为 8 m/s.
答案:D
12/9/2021
第九页,共二十五页。
3.如果质点 M 按规律 s=3+t2 运动,则在一小段时
间[2,2.1]中相应的平均速度是( )
A.4
B.4.1
C.0.41
D.3
解析:v=(3+2.12)0-.1 (3+22)=4.1.
答案:B
12/9/2021
第十页,共二十五页。
12/9/2021
类型 3 求函数在某点处的导数
[典例 3] 求函数 f(x)=3x2-2x 在 x=1 处的导数.
解:因为 Δy=3(1+Δx)2-2(1+Δx)-(3×12-2×1)
=3(Δx)2+4Δx,
所以ΔΔxy=3(Δx)Δx2+4Δx=3Δx+4,
高中数学第三章导数及其应用3.1.2瞬时变化率导数1111数学

练习 : (liànxí)
1
x 2
处的切线 斜率 (qiēxiàn)
2021/12/9
பைடு நூலகம்
第十二页,共十三页。
内容(nèiróng)总结
3.1.2 瞬时变化率——导数(1)。问题2:高速公路上的限速标志限的是平均速度吗。对于 曲线,我们也可以通过(tōngguò)平均变化率近似的刻画曲线在某一区间上的变化趋势,那么如何
找到定点(dìnɡ diǎn)P的 坐标设出动点Q的坐 标
求出割线 斜率
解:由题意,设P(1,2), Q(1+Δx,(1+Δx)2+1),则割线PQ斜率为
k PQ=
[ (1+
x ) 2 + 1]- x
2
= 2 x+ x 2 x
= 2+ x
当△x无限趋近于0 时,割线(gēxiàn)逼近切线, 割线(gēxiàn)斜率逼近切线 斜率.
一点处的切线斜率和方程.
割线PQ的斜率
Q无限逼近P时
令横坐标无限接近
P点处的切线斜率
函[xQ数,在x区P]间)[上xP的,平x均Q]变(或化率即Q区无间限(qū逼jiān近)长P度时趋向于P0点处的瞬时(导变数化率)
2021/12/9
第十页,共十三页。
结束语
Thank you
2021/12/9
第十一页,共十三页。
3.1.2 瞬时 变化率——导数 (shùn shí) (1)
2021/12/9
第一页,共十三页。
探究一:物体(wùtǐ)运动的瞬时速度
问题1:如何计算(jìsuàn)运动 物体在某一时间段内的 平均速度?
v s(t1) s(t0 ) t1 t0
s(t0 t) s(t0) t
高中数学第三章导数及其应用3.1.1变化率问题3.1.2导数的概念新人教A版选修

探究2:根据函数的瞬时变化率与在某点处导数的定 义,回答下列问题:
(1)瞬时变化率与平均变化率的关系是什么?它们的 物理意义分别是什么?
提示 瞬时变化率是平均变化率在Δx 无限趋近于 0 时,ΔΔxy无限趋近的值;瞬时变化率的物理意义是指物体运 动的瞬时速度,平均变化率的物理意义是指物体运动的平 均速度.
(2)瞬时变化率与函数在某点处导数的关系是什么? 提示 函数在某点处的瞬时变化率就是函数在此点 处的导数.
课堂探究案·核心素养提升
题型一 求函数的平均变化率
例1 求函数y=f(x)=3x2+2在区间[x0,x0+Δx]上的
平均变化率,并求当x0=2,Δx=0.1时平均变化率的 值.
【自主解答】 函数 y=f(x)=3x2+2 在区间[x0,x0
【答案】
1 (1)2
(2)见自主解答
●规律总结
1.求函数y=f(x)在点x0处的导数的三个步骤
2.瞬时变化率的几种变形形式
f(x0+Δx)-f(x0) Δx
2×12=5.
题型二 求函数在某点处的导数
例2 (1)函数 y= x在 x=1 处的导数为________.
(2)如果一个质点由定点 A 开始运动,在时间 t 的位 移函数为 y=f(t)=t3+3,
①当 t1=4,Δt=0.01 时,求Δy 和比值ΔΔyt; ②求 t1=4 时的导数.
【自主解答】 (1)Δy= 1+Δx-1, ΔΔxy= 1+ΔΔxx-1= 1+Δ1 x+1,
+
Δ
x]
上
的
平
均
变
化
率
为
f(x0+Δx)-f(x0) (x0+Δx)-x0
=
[3(x0+Δx)2+2]-(3x20+2) Δx
高中数学 第三章 导数及其应用 3.1.2 瞬时变化率导数

课后拓展
曲线上一点处的切线
复习
平均变化率
一般的,函数 在区间上
的平均变化率为
如何求曲线上一点的切线
(1)概念:曲线的割线和切线
y
y=f(x) Q
割 线
T 切线
P
o
x
结论:当Q点无限逼近P点时,此时直线PQ就是P点处的 切线.
(2)如何求割线的斜率?
y
y=f(x) Q
o
P
x
(3)如何求切线的斜率? y=f(x)
因此,切线方程为y-2=2(x-1),即y=2x.
求曲线在某点处的切线方程的基本步骤:
1、先利用直线斜率的定义求出割线线的斜率; 2.求出当△x趋近于0时切线的斜率 3、然后利用点斜式求切线方程.
课堂练习
1.已知曲线 y 2x2 上一点 A(1,2),求
(1) 点 A 处的切线的斜率. (2)点 A 处的切线的方程. 2.求曲线 y x2 1在点 P(-2,5)处的切线 方程与法线方程.
割 线
y
Q
T 切线
o
P
x
kPQ
f (x x) x
f (x))
(当x无限趋限0时,
k
无限趋限趋近点P处切
PQ
斜率)
练习: P60-61:1,2,3
例1:已知 率.
பைடு நூலகம்
,求曲线y=f(x)在x=2处的切线斜
练习:P61,4
例2:求曲线f(x)=x2+1在点P(1,2)处的切线方 程.
第三章 3.1导数的概念与运算

1.平均变化率一般地,已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx =x 1-x 0,Δy =y 1-y 0=f (x 1)-f (x 0)=f (x 0+Δx )-f (x 0),则当Δx ≠0时,商f (x 0+Δx )-f (x 0)Δx =ΔyΔx ,称作函数y =f (x )在区间[x 0,x 0+Δx ](或[x 0+Δx ,x 0])的平均变化率.2.函数y =f (x )在x =x 0处的导数 (1)定义称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0 ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0),即f ′(x 0)=lim Δx →0 ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.函数f (x )的导函数如果f (x )在开区间(a ,b )内每一点x 都是可导的,则称f (x )在区间(a ,b )可导.这样,对开区间(a ,b )内每个值x ,都对应一个确定的导数f ′(x ).于是,在区间(a ,b )内,f ′(x )构成一个新的函数,我们把这个函数称为函数y =f (x )的导函数,记为f ′(x )或y ′(或y ′x ). 4.基本初等函数的导数公式y =f (x ) y ′=f ′(x ) y =c y ′=0y =x n (n ∈N +) y ′=nx n -1,n 为正整数 y =x u (x >0,u ≠0且u ∈Q )y ′=ux u -1,u 为有理数y =a x (a >0,a ≠1)y ′=a x ln ay =log a x (a >0,a ≠1,x >0)y ′=1x ln ay =sin x y ′=cos x y =cos xy ′=-sin x5.导数的四则运算法则 设f (x ),g (x )是可导的,则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)[f (x )g (x )]′=f ′(x )g (x )-f (x )g ′(x )g 2(x )(g (x )≠0). 6.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)与(f (x 0))′表示的意义相同.( × ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( × ) (3)曲线的切线不一定与曲线只有一个公共点.( √ ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( × )1.(教材改编)f ′(x )是函数f (x )=13x 3+2x +1的导函数,则f ′(-1)的值为( )A .0B .3C .4D .-73答案 B解析 ∵f (x )=13x 3+2x +1,∴f ′(x )=x 2+2.∴f ′(-1)=3.2.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是( )答案 D解析 由y =f ′(x )的图象知y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除A ,C.又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故可排除B.故选D.3.设函数f (x )的导数为f ′(x ),且f (x )=f ′(π2)sin x +cos x ,则f ′(π4)=________.答案 - 2解析 因为f (x )=f ′(π2)sin x +cos x ,所以f ′(x )=f ′(π2)cos x -sin x ,所以f ′(π2)=f ′(π2)cos π2-sin π2,即f ′(π2)=-1,所以f (x )=-sin x +cos x .f ′(x )=-cos x -sin x .故f ′(π4)=-cos π4-sin π4=- 2.4.有一机器人的运动方程为s =t 2+3t (t 是时间,s 是位移),则该机器人在时刻t =2时的瞬时速度为( )A.194B.174C.154D.134 答案 D5.(2015·陕西)设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________. 答案 (1,1)解析 y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x (x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2 (m >0),因为两切线垂直,所以k 1k 2=-1,所以m=1,n =1,则点P 的坐标为(1,1).题型一 导数的运算例1 求下列函数的导数: (1)y =(3x 2-4x )(2x +1); (2)y =x 2sin x ; (3)y =3x e x -2x +e ; (4)y =ln x x 2+1;(5)y =ln(2x -5).解 (1)∵y =(3x 2-4x )(2x +1) =6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x , ∴y ′=18x 2-10x -4.(2)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (3)y ′=(3x e x )′-(2x )′+e ′ =(3x )′e x +3x (e x )′-(2x )′ =3x e x ln 3+3x e x -2x ln 2 =(ln 3+1)·(3e)x -2x ln 2.(4)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x (x 2+1)2=x 2+1-2x 2ln x x (x 2+1)2.(5)令u =2x -5,y =ln u ,则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.思维升华 (1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.(2)复合函数求导时,先确定复合关系,由外向内逐层求导,必要时可换元.(1)f (x )=x (2 016+ln x ),若f ′(x 0)=2 017,则x 0等于( )A .e 2B .1C .ln 2D .e(2)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2D .0答案 (1)B (2)B解析 (1)f ′(x )=2 016+ln x +x ×1x =2 017+ln x ,故由f ′(x 0)=2 017得2 017+ln x 0=2 017,则ln x 0=0,解得x 0=1.(2)f ′(x )=4ax 3+2bx ,∵f ′(x )为奇函数,且f ′(1)=2, ∴f ′(-1)=-2. 题型二 导数的几何意义命题点1 已知切点的切线方程问题例2 (1)函数f (x )=ln x -2xx 的图象在点(1,-2)处的切线方程为( )A .2x -y -4=0B .2x +y =0C .x -y -3=0D .x +y +1=0(2)曲线y =e-2x+1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为________.答案 (1)C (2)13解析 (1)f ′(x )=1-ln xx 2,则f ′(1)=1,故该切线方程为y -(-2)=x -1,即x -y -3=0.(2)∵y ′=-2e-2x,曲线在点(0,2)处的切线斜率k =-2,∴切线方程为y =-2x +2,该直线与直线y =0和y =x 围成的三角形如图所示, 其中直线y =-2x +2与y =x 的交点为A (23,23),∴三角形的面积S =12×1×23=13.命题点2 未知切点的切线方程问题例3 (1)与直线2x -y +4=0平行的抛物线y =x 2的切线方程是( ) A .2x -y +3=0 B .2x -y -3=0 C .2x -y +1=0D .2x -y -1=0(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( ) A .x +y -1=0 B .x -y -1=0 C .x +y +1=0 D .x -y +1=0答案 (1)D (2)B解析 (1)对y =x 2求导得y ′=2x .设切点坐标为(x 0,x 20),则切线斜率为k =2x 0.由2x 0=2得x 0=1,故切线方程为y -1=2(x -1), 即2x -y -1=0.(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.故选B. 命题点3 和切线有关的参数问题例4 已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 等于( ) A .-1 B .-3 C .-4 D .-2 答案 D解析 ∵f ′(x )=1x,∴直线l 的斜率为k =f ′(1)=1. 又f (1)=0,∴切线l 的方程为y =x -1. g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0, 于是解得m =-2.故选D. 命题点4 导数与函数图象的关系例5 如图,点A (2,1),B (3,0),E (x,0)(x ≥0),过点E 作OB 的垂线l .记△AOB 在直线l 左侧部分的面积为S ,则函数S =f (x )的图象为图中的( )答案 D解析 函数的定义域为[0,+∞),当x ∈[0,2]时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越大,即斜率f ′(x )在[0,2]内大于0且越来越大,因此,函数S =f (x )的图象是上升的,且图象是下凸的; 当x ∈(2,3)时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越小,即斜率f ′(x )在(2,3)内大于0且越来越小,因此,函数S =f (x )的图象是上升的,且图象是上凸的;当x ∈[3,+∞)时,在单位长度变化量Δx 内面积变化量ΔS 为0,即斜率f ′(x )在[3,+∞)内为常数0,此时,函数图象为平行于x 轴的射线.思维升华 导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1)求解即可.(4)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降的快慢.(1)已知函数f (x )=3x +cos 2x +sin 2x ,a =f ′(π4),f ′(x )是f (x )的导函数,则过曲线y =x 3上一点P (a ,b )的切线方程为( ) A .3x -y -2=0 B .4x -3y +1=0C .3x -y -2=0或3x -4y +1=0D .3x -y -2=0或4x -3y +1=0(2)若直线y =2x +m 是曲线y =x ln x 的切线,则实数m 的值为________. 答案 (1)C (2)-e解析 (1)由f (x )=3x +cos 2x +sin 2x 得f ′(x )=3-2sin 2x +2cos 2x , 则a =f ′(π4)=3-2sin π2+2cos π2=1.由y =x 3得y ′=3x 2,当P 点为切点时,切线的斜率k =3a 2=3×12=3. 又b =a 3,则b =1,所以切点P 的坐标为(1,1). 故过曲线y =x 3上的点P 的切线方程为y -1=3(x -1), 即3x -y -2=0.当P 点不是切点时,设切点为(x 0,x 30),∴切线方程为y -x 30=3x 20(x -x 0),∵P (a ,b )在曲线y =x 3上,且a =1,∴b =1.∴1-x 30=3x 20(1-x 0), ∴2x 30-3x 20+1=0, ∴2x 30-2x 20-x 20+1=0,∴(x 0-1)2(2x 0+1)=0, ∴切点为⎝⎛⎭⎫-12,-18, ∴此时的切线方程为y +18=34⎝⎛⎭⎫x +12, 综上,满足题意的切线方程为3x -y -2=0或3x -4y +1=0,故选C. (2)设切点为(x 0,x 0ln x 0),由y ′=(x ln x )′=ln x +x ·1x =ln x +1,得切线的斜率k =ln x 0+1,故切线方程为y -x 0ln x 0=(ln x 0+1)(x -x 0), 整理得y =(ln x 0+1)x -x 0,与y =2x +m 比较得⎩⎪⎨⎪⎧ln x 0+1=2,-x 0=m ,解得x 0=e ,故m =-e.4.求曲线的切线方程条件审视不准致误典例 (12分)若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值. 易错分析 由于题目中没有指明点O (0,0)的位置情况,容易忽略点O 在曲线y =x 3-3x 2+2x 上这个隐含条件,进而不考虑O 点为切点的情况. 规范解答解 易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0, 依题意Δ=4-4a =0,得a =1.[4分](2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,且k =y ′|x =x 0=3x 20-6x 0+2,① 又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .[7分]由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.[10分]综上,a =1或a =164.[12分]温馨提醒 对于求曲线的切线方程没有明确切点的情况,要先判断切线所过点是否在曲线上;若所过点在曲线上,要对该点是否为切点进行讨论.[方法与技巧]1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常数,其导数一定为0,即(f (x 0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.3.未知切点的曲线切线问题,一定要先设切点,利用导数的几何意义表示切线的斜率建立方程. [失误与防范]1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.复合函数的导数要正确分解函数的结构,由外向内逐层求导.2.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者. 3.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.A 组 专项基础训练 (时间:35分钟)1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)等于( ) A .-e B .-1 C .1 D .e答案 B解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x .∴f ′(1)=2f ′(1)+1, 则f ′(1)=-1.2.(2015·保定调研)已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A .e B .-e C.1e D .-1e答案 C解析 y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则y ′|x =x 0=1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1, 解得x 0=e ,故此切线的斜率为1e.3.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N +,则f 2 016(x )等于( ) A .-sin x -cos x B .sin x -cos x C .-sin x +cos x D .sin x +cos x 答案 B解析 ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,∴f 3(x )=f 2′(x )=-sin x -cos x ,∴f 4(x )=f 3′(x )=-cos x +sin x ,∴f 5(x )=f 4′(x )=sin x +cos x =f 1(x ),∴f n (x )是以4为周期的函数,∴f 2 016(x )=f 4(x )=sin x -cos x ,故选B.4.(2014·课标全国Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a 等于( )A .0B .1C .2D .3答案 D解析 令f (x )=ax -ln(x +1),则f ′(x )=a -1x +1.由导数的几何意义可得在点(0,0)处的切线的斜率为f ′(0)=a -1.又切线方程为y =2x ,则有a -1=2,∴a =3.5.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A .-1B .0C .2D .4答案 B解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13. ∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,∴g ′(3)=1+3×(-13)=0. 6.在平面直角坐标系xOy 中,若曲线y =ax 2+b x(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是______.答案 -3解析 y =ax 2+b x 的导数为y ′=2ax -b x2, 直线7x +2y +3=0的斜率为-72.由题意得⎩⎨⎧ 4a +b 2=-5,4a -b 4=-72,解得⎩⎪⎨⎪⎧ a =-1,b =-2,则a +b =-3. 7.已知函数f (x )=x 3-3x ,若过点A (0,16)且与曲线y =f (x )相切的直线方程为y =ax +16,则实数a 的值是________.答案 9 解析 先设切点为M (x 0,y 0),则切点在曲线上有y 0=x 30-3x 0,①求导数得到切线的斜率k =f ′(x 0)=3x 20-3, 又切线l 过A 、M 两点,所以k =y 0-16x 0, 则3x 20-3=y 0-16x 0,② 联立①②可解得x 0=-2,y 0=-2,从而实数a 的值为a =k =-2-16-2=9. 8.已知曲线y =1e x +1,则曲线的切线斜率取得最小值时的直线方程为( ) A .x +4y -2=0 B .x -4y +2=0C .4x +2y -1=0D .4x -2y -1=0答案 A解析 y ′=-e x (e x +1)2=-1e x +1e x +2, 因为e x >0,所以e x +1e x ≥2e x ×1e x =2(当且仅当e x =1ex ,即x =0时取等号), 则e x +1ex +2≥4, 故y ′=-1e x +1ex +2≥-14当(x =0时取等号). 当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为(0,12), 切线的方程为y -12=-14(x -0), 即x +4y -2=0.故选A.9.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程.解 (1)由y =x 3+x -2,得y ′=3x 2+1,由已知令3x 2+1=4,解之得x =±1.当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4).(2)∵直线l ⊥l 1,l 1的斜率为4,∴直线l 的斜率为-14. ∵l 过切点P 0,点P 0的坐标为(-1,-4),∴直线l 的方程为y +4=-14(x +1), 即x +4y +17=0.10.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.(1)解 方程7x -4y -12=0可化为y =74x -3. 当x =2时,y =12.又f ′(x )=a +b x 2, 于是⎩⎨⎧ 2a -b 2=12,a +b 4=74, 解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x . (2)证明 设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为 y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0, 从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,且此定值为6.B 组 专项能力提升(时间:25分钟)11.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a 的值为( ) A.14 B.12C .1D .4 答案 A解析 由题意可知f ′(x )=1212x -,g ′(x )=a x, 由f ′(14)=g ′(14),得12×(14)12-=a 14, 可得a =14,经检验,a =14满足题意. 12.曲边梯形由曲线y =x 2+1,y =0,x =1,x =2所围成,过曲线y =x 2+1 (x ∈[1,2])上一点P 作切线,使得此切线从曲边梯形上切出一个面积最大的普通梯形,则这一点的坐标为( )A.⎝⎛⎭⎫32,2B.⎝⎛⎭⎫32,134C.⎝⎛⎭⎫52,134D.⎝⎛⎭⎫52,2答案 B解析 设P (x 0,x 20+1),x 0∈[1,2],则易知曲线y =x 2+1在点P 处的切线方程为y -(x 20+1)=2x 0(x -x 0),∴y =2x 0(x -x 0)+x 20+1,设g (x )=2x 0(x -x 0)+x 20+1,则g (1)+g (2)=2(x 20+1)+2x 0(1-x 0+2-x 0),∴S 普通梯形=g (1)+g (2)2×1=-x 20+3x 0+1=-⎝⎛⎭⎫x 0-322+134,∴P 点坐标为⎝⎛⎭⎫32,134时,S 普通梯形最大. 13.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 答案 [2,+∞)解析 ∵f (x )=12x 2-ax +ln x ,∴f ′(x )=x -a +1x. ∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x≥2. 14.已知曲线f (x )=x n +1(n ∈N +)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015的值为________.答案 -1解析 f ′(x )=(n +1)x n ,k =f ′(1)=n +1,点P (1,1)处的切线方程为y -1=(n +1)(x -1),令y =0,得x =1-1n +1=n n +1,即x n =n n +1, ∴x 1·x 2·…·x 2 015=12×23×34×…×2 0142 015×2 0152 016=12 016, 则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015=log2 016(x1x2…x2 015)=-1.15.已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12和直线m:y=kx+9,且f′(-1)=0.(1)求a的值;(2)是否存在k,使直线m既是曲线y=f(x)的切线,又是曲线y=g(x)的切线?如果存在,求出k的值;如果不存在,请说明理由.解(1)由已知得f′(x)=3ax2+6x-6a,∵f′(-1)=0,∴3a-6-6a=0,∴a=-2.(2)存在.由已知得,直线m恒过定点(0,9),若直线m是曲线y=g(x)的切线,则设切点为(x0,3x20+6x0+12).∵g′(x0)=6x0+6,∴切线方程为y-(3x20+6x0+12)=(6x0+6)(x-x0),将(0,9)代入切线方程,解得x0=±1.当x0=-1时,切线方程为y=9;当x0=1时,切线方程为y=12x+9.由(1)知f(x)=-2x3+3x2+12x-11,①由f′(x)=0得-6x2+6x+12=0,解得x=-1或x=2.在x=-1处,y=f(x)的切线方程为y=-18;在x=2处,y=f(x)的切线方程为y=9,∴y=f(x)与y=g(x)的公切线是y=9.②由f′(x)=12得-6x2+6x+12=12,解得x=0或x=1.在x=0处,y=f(x)的切线方程为y=12x-11;在x=1处,y=f(x)的切线方程为y=12x-10;∴y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。
高中数学第3章导数及其应用3.1.2瞬时变化率——导数(二)111数学

12/8/2021
第二十一页,共三十一页。
跟踪训练(xùnliàn)3 求过点(-1,0)与曲线y=x2+x+1相切的直线方程.
12/8/2021
第二十二页,共三十一页。
解答
达标 检测 (dá biāo)
12/8/2021
第二十四页,共三十一页。
1.已知y=f(x)的图象如图所示,则f′(xA)与f′(xB)的大小(dàxiǎo)关系是f′(xA)<f′(xB) ____________.
∴函数(hánshù)f(x)在x=1处的导数为0.
12/8/2021
第十四页,共三十一页。
解答
命题角度(jiǎodù)2 求函数的导函数 例2 求函数y=-x2+3x的导函数.
解 ∵ΔΔyx=-x+Δx2+3xΔ+xΔx--x2+3x=3-2x-Δx, ∴当Δx→0时,3-2x-Δx→3-2x, 故函数(hánshù)f(x)的导函数为f′(x)=3-2x.
No 点x=x0处的切线方程的步骤:。令2a=2,得a=1.。规律与方法
Image
12/8/2021
第三十一页,共三十一页。
12/8/2021
第十七页,共三十一页。
解答
类型二 导数(dǎo shù)几何意义的应用 例3 (1)求曲线(qūxiàn)y=f(x)=x3+2x-1在点P(1,2)处的切线方程;
12/8/2021
第十八页,共三十一页。
解答
(2)求曲线y=2x2-7过点P(3,9)的切线(qiēxiàn)方程.
12/8/2021
第五页,共三十一页。
梳理 设函数y=f(x)在区间(a,b)上有定义,x0∈(a,b),当Δx无限趋近
fx0+Δx-fx0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.2 瞬时变化率—导数学习目标:1.理解导数的概念和定义及导数的几何意义.(重点) 2.理解运动在某时刻的瞬时变化率(瞬时速度).(难点)[自 主 预 习·探 新 知]1.曲线上一点处的切线设曲线C 上的一点P ,Q 是曲线C 上的另一点,则直线PQ 称为曲线C 的割线;随着点Q 沿曲线C 向点P 运动,割线PQ 在点P 附近越来越逼近曲线C .当点Q 无限逼近点P 时,直线PQ 最终就成为在点P 处最逼近曲线的直线l ,这条直线l 称为曲线在点P 处的切线.2.瞬时速度运动物体的位移S (t )对于时间t 的导数,即v (t )=S ′(t ). 3.瞬时加速度运动物体的速度v (t )对于时间t 的导数,即a (t )=v ′(t ). 4.导数设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),当Δx 无限趋近于0时,比值Δy Δx =f x 0+Δx -f x 0Δx无限趋近于一个常数A ,则称f (x )在点x =x 0处可导,并称常数A为函数f (x )在点x =x 0处的导数,记作f ′(x 0).5.导函数若函数y =f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数,记作f ′(x ).6.函数y =f (x )在点x =x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率.[基础自测]1.判断正误:(1)函数y =f (x )在x =x 0处的导数值与Δx 值的正、负无关.( ) (2)在导数的定义中,Δx ,Δy 都不可能为零.( ) (3)在导数的定义中,ΔyΔx>0.( )【解析】 (1)√.Δx 是自变量的增量,可正可负,函数f (x )在x =x 0处的导数与它的正负无关.(2)×.Δy 可以为0,如常数函数. (3)×.ΔyΔx 也可能是负数或0.【答案】 (1)√ (2)× (3)×2.函数f (x )=x 2在点(1,1)处切线的斜率是________. 【解析】 k =+Δx 2-1Δx=2+Δx ,当Δx →0时,k →2,故所求的切线的斜率是2.【答案】 23.一辆汽车运动的速度为v (t )=t 2-2,则汽车在t =3秒时加速度为__________. 【解析】 a =ΔvΔt=+Δt2-2--Δt=6+Δt ,当Δt →0时,a →6,故汽车的加速度为6. 【答案】 6[合 作 探 究·攻 重 难](1)t =2时的瞬时速度(时间单位:s ,位移单位:m).(2)设一辆汽车在公路上做加速直线运动,其在t s 时的速度为v (t )=t 2+1,求汽车在t =1 s 时的加速度.【导学号:95902184】[思路探究] (1)设时间变化量Δt →求位移增量Δs →求平均速度Δs Δt →令Δt →0→结论.(2)设时间变化量Δt →求速度增量Δv →求平均加速度ΔvΔt →令Δt →0→结论【自主解答】 (1)设这辆车在t =2附近的时间变化量为Δt ,则位移的增量Δs =[2(2+Δt )2+3]-(2×22+3)=8Δt +2(Δt )2,Δs Δt =8+2Δt ,当Δt →0时,ΔsΔt →8,所以这辆车在t =2时的瞬时速度为8 m/s.(2)设这辆车在t =1附近的时间变化量为Δt ,则速度的增量Δv =[(1+Δt )2+1]-(12+1)=(Δt )2+2Δt ,Δv Δt =Δt +2,当Δt →0时,ΔvΔt→2,所以汽车在t =1 s 时的加速度为2.[规律方法](1)求瞬时速度的步骤:①求位移增量Δs =S (t 0+Δt )-S (t 0); ②求平均速率v -=ΔsΔt;③求瞬时速度:当Δt 趋近于0时,ΔsΔt 趋近于v .(2)求瞬时加速度的步骤: ①求平均加速度ΔvΔt ;②令Δt →0,求瞬时加速度. [跟踪训练]1.若一物体的运动方程为S =7t 2+8,则其在t =__________时的瞬时速度为1. 【解析】 因为ΔsΔt=t 0+Δt2+8-t 20+Δt=7Δt +14t 0,所以当Δt →0时,Δs Δt 趋近于14t 0,即14t 0=1,t 0=114.【答案】 114求函数y =x +1x在x =1处的导数.【导学号:95902185】[思路探究] 方法一:先求Δy ,再求出ΔyΔx ,令Δx →0,可求f ′(1),先求出f ′(x ),再求出f ′(x )在x =1处的值.方法二:先求出ΔyΔx ,当Δx 无限趋于0时,即可求出f ′(x )在x =1处的值.【自主解答】 方法一:∵Δy =(1+Δx )+11+Δx -⎝ ⎛⎭⎪⎫1+11=Δx -1+11+Δx=Δx -Δx ++11+Δx=Δx 21+Δx ,∴Δy Δx =Δx 1+Δx ,当Δx →0时,ΔyΔx→0,∴f ′(1)=0.方法二:Δy Δx=fx +Δx -f xΔx=x +Δx +1x +Δx -⎝ ⎛⎭⎪⎫x +1x Δx=1-1x +Δx x,当Δx 无限趋于0时,1-1x +Δx x 无限趋近于1-1x2,即f ′(x )=1-1x2,故f ′(1)=0.函数y =x +1x 在x =1处的导数为1-112=0.[规律方法] 由导数的定义知,求一个函数y =f (x )在x =x 0处的导数的步骤如下: (1)求函数值的改变量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)求当Δx →0时,ΔyΔx 的值,即f ′(x 0).[跟踪训练]2.根据导数的定义求下列函数的导数: (1)求y =x 2在x =1处的导数;(2)求y =x 2+1x +5在点P ⎝⎛⎭⎪⎫2,192处的导数.【解】 (1)∵Δy =(1+Δx )2-12=2Δx +(Δx )2,∴Δy Δx =2Δx +Δx2Δx=2+Δx ,当Δx 无限趋近于0时,ΔyΔx =2+Δx 无限趋近于2,所以f ′(1)=2.(2)∵Δy =(2+Δx )2+12+Δx +5-⎝ ⎛⎭⎪⎫22+12+5=4Δx +(Δx )2-Δx+Δx,∴Δy Δx =4+Δx -14+2Δx, ∴当Δx →0时,Δy Δx →4-14=154,故f ′(2)=154.[探究问题] 1.平均变化率f x 0+Δx -f x 0Δx的几何意义是什么?【提示】 平均变化率f x 0+Δx -f x 0Δx的几何意义是过点P (x 0,f (x 0))和Q (x 0+Δx ,f (x 0+Δx ))割线的斜率.2.在探究1中,若让Δx →0,割线PQ 是如何变化的?【提示】 当点Q 沿着曲线无限接近点P ,即Δx →0时,割线PQ 有一个极限位置PT ,我们把直线PT 称为曲线在点P 处的切线.3.根据探究2的答案,导数的几何意义是什么?【提示】 函数y =f (x )在x =x 0处的导数的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线斜率k =f ′(x 0).4.我们在初中学过圆的切线,圆是一种特殊曲线,圆的切线与圆只有一个公共点,其他曲线和它的切线也只有一个公共点吗?【提示】 曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以有无穷多个.求双曲线y =1x 过点⎝ ⎛⎭⎪⎫2,12的切线方程. 【导学号:95902186】[思路探究] 由导数的几何意义先求出斜率,再求方程.【自主解答】Δy Δx=f +Δx -fΔx=12+Δx -12Δx=-1+Δx,当Δx →0时,Δy Δx →-14,即k =f ′(2)=-14.所以由直线方程的点斜式知切线方程为:y -12=-14(x -2),即y =-14x +1.[规律方法]1.求曲线y =f (x )在点P (x 0,f (x 0))处的切线方程.即点P 的坐标既适合曲线方程,又适合切线方程,若点P 处的切线斜率为f ′(x 0),则点P 处的切线方程为y -f (x 0)=f ′(x 0)(x -x 0);如果曲线y =f (x )在点P 处的切线平行于y 轴(此时导数不存在),可由切线定义确定切线方程为x =x 0.2.若切点未知,此时需设出切点坐标,再根据导数的定义列关于切点横坐标的方程,最后求出切点坐标或切线的方程,这种情况下求出的切线方程往往不止一条.[跟踪训练]3.已知直线y =3x +a 和曲线y =x 3相切,求实数a 的值. 【解】 设切点为M (x 0,y 0),则Δy Δx =x 0+Δx3-x 3Δx=3x 20+3x 0(Δx )+(Δx )2,当Δx 无限趋近于0时,3x 20+3x 0(Δx )+(Δx )2无限趋近于3x 20. 由题意得,3x 20=3,解得x 0=1或x 0=-1. 所以切点坐标为(1,1)或(-1,-1). 将点(1,1)代入直线y =3x +a ,可得a =-2; 将点(-1,-1)代入直线y =3x +a ,可得a =2. 综上可知,a =-2或a =2.[构建·体系][当 堂 达 标·固 双 基]1.设函数f (x )在点x 0附近有定义,且有f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2(a ,b 为常数),则f ′(x 0)=________.【解析】 ∵f x 0+Δx -f x 0Δx =a Δx +b Δx2Δx =a +b ·Δx ,当Δx →0时,f x 0+Δx -f x 0Δx→a ,∴f ′(x 0)=a .【答案】 a2.已知曲线y =13x 3+43,则以点P (2,4)为切点的切线方程是________.【导学号:95902187】【解析】 ∵Δy Δx=13x +Δx3-x 3]Δx=x 2+13(Δx 2)+Δx ·x ,当Δx →0时,Δy Δx →x 2,所以f ′(x )=x 2,∴k =f ′(2)=4,∴切线方程为y -4=4(x -2),即y =4x -4. 【答案】 y =4x -43.设函数f (x )=ax 3+2,若f ′(-1)=3,则a =________. 【解析】 Δy Δx=f-1+Δx -f -Δx=a -1+Δx3+2-a -3-2Δx=3a-3a Δx +a (Δx )2当Δx →0时,ΔyΔx →3a ,所以f ′(-1)=3a =3,即a =1.【答案】 14.如图313所示,函数y =f (x )的图象在点P 处的切线方程是y =x +5,则f (3)-f ′(3)=__________.图313【解析】 由导数的几何意义知f ′(3)=-1,又f (3)=-3+5=2, ∴f (3)-f ′(3)=2-(-1)=3. 【答案】 35.以初速度v 0 (v 0>0)做竖直上抛运动的物体,t 时刻的高度为s (t )=v 0t -12gt 2,求物体在时刻t 0时的瞬时速度.【导学号:95902188】【解】 ∵Δs =v 0(t 0+Δt )-12g (t 0+Δt )2-v 0t 0+12gt 20=(v 0-gt 0)Δt -12g (Δt )2,∴Δs Δt =v 0-gt 0-12g Δt ,当Δt →0时,ΔsΔt→v 0-gt 0, ∴物体在时刻t 0时的瞬时速度为v 0-gt 0.。