4.平面直角坐标系知识点复习

合集下载

东营市胜利第一中学七年级数学下册第七章【平面直角坐标系】知识点总结(含解析)

东营市胜利第一中学七年级数学下册第七章【平面直角坐标系】知识点总结(含解析)

一、选择题1.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4 B .6- C .1-或4 D .6-或232.在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比( )A .向上平移3个单位B .向下平移3个单位C .向右平移3个单位D .向左平移3个单位3.如图,点A 的坐标是()3,1-将四边形ABCD 先向左平移3个单位,再向上平移2个单位,那么点A 的对应点A '的坐标是( )A .()0,1B .()6,1C .()0,3-D .()6,3-4.在平面直角坐标系中,点A 的坐标为(-4,3),AB ∥y 轴,AB=5,则点B 的坐标为( ) A .(1,3)B .(-4,8)C .(-4,8)或(-4,-2)D .(1,3)或(-9,3)5.若点P (x, y )在第二象限,且2,3x y ==,则x + y =( )A .-1B .1C .5D .-56.若实数a ,b 2(2)30a b +-=,则点P(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.已知点A 坐标为()2,3-,点A 关于x 轴的对称点为A ',则A '关于y 轴对称点的坐标为( )A .()2,3--B .()2,3C .()2,3-D .以上都不对 8.点()P 3,2-在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 9.如图,在直角坐标系中,边长为2的等边三角形12OA A 的一条边2OA 在x 的正半轴上,O 为坐标原点;将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……则顶点2019A 的坐标是( )A .()2690,0B .()2692,0C .()2694,0D .无法确定 10.在平面直角坐标中,点()1,2P 平移后的坐标是)3(3,-'P ,按照同样的规律平移其它点,则以下各点的平移变换中( )符合这种要求.A .()3,24(,2)→-B .()(104),5,--→-C .(1.2,5)→(-3.2,6)D .122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭11.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(2,4)-,原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大约是( )A .A 处B .B 处C .C 处D .D 处二、填空题12.下列四个命题中:①对顶角相等;②如果两条直线被第三条直线所截,那么同位角相等;③如果两个实数的平方相等,那么这两个实数也相等;④当0m ≠时,点()2,P m m -在第四象限内.其中真命题有________(填序号).13.若点A (m +2,﹣3)与点B (﹣4,n +5)在二四象限角平分线上,则m +n =_____. 14.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.15.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.16.在平面直角坐标系中,若点3(1)M ,与点()3N x ,的距离是8,则x 的值是________ 17.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:水平底a 为任意两点的横坐标差的最大值,铅垂高h 为任意两点的纵坐标差的最大值,则“矩面积”S =ah .若A (1,2),B (﹣2,1),C (0,t )三点的“矩面积”是18,则t 的值为_____. 18.如图,已知点A 的坐标为(−2,2),点C 的坐标为(2,1),则点B 的坐标是____.19.在平面直角坐标系中,对于平面内任一点(),a b ,若规定以下三种变换:①()(),,a b a b ∆=-;②(),a b O (),a b =--;③()(),,a b a b Ω=-按照以上变换例如:()()()1,21,2∆O =-,则()()2,5O Ω等于__________.20.如果点P (a ﹣1,a +2)在x 轴上,则a 的值为_____.21.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),如A 7=(4,1),则A 20=______________. 三、解答题22.如图,在平面直角坐标系中,四边形OABC 各顶点的坐标分别是()0,0O ,()0,12A ,()10,8B -,()14,0C -,求四边形OABC 的面积.23.在平面直角坐标系xOy 中,△ABC 的位置如图所示.(l )分别写出△ABC 各个顶点的坐标.(2)请在图中画出△ABC 关于y 轴对称的图形△A'B'C'.(3)计算出△ABC 的面积.24.平面直角坐标系中有点A (m +6n ,-1),B (-2,2n -m ),连接AB ,将线段AB 先向上平移,再向右平移,得到其对应线段A 'B '(点A '和点A 对应,点B '和点B 对应),两个端点分别为A '(2m +5n ,5),B '(2,m +2n ).分别求出点A '、B '的坐标.25.正方形的边长为220),并写出另外三个顶点的坐标.一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,12.第24届冬季奥林匹克运动会将于2022年由北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A .离北京市200千米B .在河北省C .在宁德市北方D .东经114.8°,北纬40.8°3.太原植物园是山西省唯一集科学研究、科普教育、园艺观赏和文化旅游于一体的综合性植物园.其标志性建筑为热带植物馆、沙生植物馆、主题花卉馆三个展览温室,远远望去犹如镶嵌在湖边的3颗大小不一的“露珠”(图1).若利用网格(图2)建立适当的平面直角坐标系,表示东门的点的坐标为()3,2A ,表示热带植物馆入口的点的坐标为()3,3B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()8,3--D .()5,1-- 4.在平面直角坐标系中,点A 的坐标为(21a +,3-),则点A 在( )A .第一象限B .第二象限C .第三象限D .第四象限 5.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点B 的坐标为()1,4,则点A 的坐标为( )A .()6,3-B .()3,6-C .()4,3-D .()3,4- 6.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7) 7.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 8.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限9.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 10.若点P (﹣m ,﹣3)在第四象限,则m 满足( )A .m >3B .0<m≤3C .m <0D .m <0或m >3 11.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒二、填空题12.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.13.如图,将边长为1的正方形OABP 沿x 轴正方向连续翻转,点P 依次落在点1P ,2P ,3P ,4P ,…的位置,那么2016P 的坐标是________.14.如图点 A 、B 的坐标分别为(1,2)、(3,0),将△AOB 沿 x 轴向右平移,得到△CDE . 已知点 D 在的点 B 左侧,且 DB =1,则点 C 的坐标为 ____ .15.已知点M 在y 轴上,纵坐标为4,点P (6,﹣4),则△OMP 的面积是__. 16.在平面直角坐标系中,有点A (a ﹣2,a ),过点A 作AB ⊥x 轴,交x 轴于点B ,且AB =2,则点A 的坐标是___.17.如图,在平面直角坐标系上有点1,0A ,点A 第一次跳动至点()11,1A -,第二次点1A 向右跳到()22,1A ,第三次点2A 跳到()32,2A -,第四次点3A 向右跳动至点()43,2A ,…,依此规律跳动下去,则点2019A 与点2020A 之间的距离是___________.18.已知点 P(b+1,b-2)在x 轴上,则P 的横坐标值为____19.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.20.已知点P 在第四象限,且到x 轴的距离是1,到y 轴的距离是3,则P 的坐标是______. 21.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.三、解答题22.在平面直角坐标系中,有A(﹣2,a +1),B(a ﹣1,4),C(b ﹣2,b )三点.(1)当点C 在y 轴上时,求点C 的坐标;(2)当AB ∥x 轴时,求A ,B 两点间的距离;(3)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.23.正方形的边长为2,建立适当的直角坐标系,使它的一个顶点的坐标为(2,0),并写出另外三个顶点的坐标.24.如图,平面直角坐标系中,已知点A (-3,3),B (-5,1),C (-2,0),P ( )是△ABC 的边AC 上任意一点,△ABC 经过平移后得到△A 1B 1C 1,点P 的对应点为 P 1 ( a +6,b+2 )(1)直接写出点A 1,B 1,C 1的坐标;(2)在图中画出△A 1B 1C 1;(3)求△ABC 的面积.25.已知()4,0A ,点B 在x 轴上,且5AB =.(1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标. (3)若点()3,2D a a -+,且15ABD S =,求点D 的坐标.一、选择题1.第24届冬季奥林匹克运动会将于2022年由北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A .离北京市200千米B .在河北省C .在宁德市北方D .东经114.8°,北纬40.8°2.在平面直角坐标系中,点()2,1-关于x 轴对称的点的坐标是( )A .()2,1B .()2,1-C .()2,1--D .()2,1- 3.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,……按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,0B .()2020,1C .()2021,1D .()2021,2 4.点A (n+2,1﹣n )不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 5.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)- 6.如图,在直角坐标系中,边长为2的等边三角形12OA A 的一条边2OA 在x 的正半轴上,O 为坐标原点;将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……则顶点2019A 的坐标是( )A .()2690,0B .()2692,0C .()2694,0D .无法确定 7.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为( )A .(1,3)B .(5,1)C .(1,3)或(3,5)D .(1,3)或(5,1) 8.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .8869.若点(1,)A n -在x 轴上,则点(1,1)B n n +-在( ).A .第一象限B .第二象限C .第三象限D .第四象限 10.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2)11.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .16二、填空题12.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.13.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 14.若点P 位于x 轴上方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,则点P 的坐标是_____________.15.写一个第三象限的点坐标,这个点坐标是_______________.16.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,1,2,()2,2根据这个规律,第2020个点的坐标为______.17.在平面直角坐标系中,将点A (5,﹣8)向左平移得到点B (x +3,x ﹣2),则点B 的坐标为_____.18.若P(2-a ,2a+3)到两坐标轴的距离相等,则点P 的坐标是____________________. 19.如图,已知点A 的坐标为(−2,2),点C 的坐标为(2,1),则点B 的坐标是____.20.已知点()24,1P m m +-.()1若点P 在x 轴上,则点P 的坐标为________;()2若点P 在第四象限,且到y 轴的距离是2,则点P 的坐标为________.21.在平面直角坐标系中,点()3,1A -在第______象限.三、解答题22.在平面直角坐标系中,点P(2﹣m ,3m +6).(1)若点P 与x 轴的距离为9,求m 的值;(2)若点P 在过点A(2,﹣3)且与y 轴平行的直线上,求点P 的坐标.23.如图,已知火车站的坐标为()2,1,文化宫的坐标为()1,2-.(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育馆、市场、超市、宾馆的坐标;(3)请将原点O ,宾馆C 和文化宫B ,看作三点用线段连起来,将得OBC ,然后将此三角形向下平移3个单位长度,画出平移后的111O B C ,并求出其面积.24.如图,∠ABC 在建立了平面直角坐标系的方格纸中,方格纸中的每个小方格都是边长为1个单位长度的正方形.(1)请写出三角形ABC 各顶点的坐标;(2)直接写出三角形ABC 的面积;(3)把三角形ABC 平移得到A B C '''∆,点B 经过平移后对应点为()6,5B ',请在图中画出A B C '''∆.25.如图1,在平面直角坐标系中,A (a ,0),C (b ,4),且满足(a+5)2+5-b =0,过C 作CB ⊥x 轴于B .(1)a = ,b = ,三角形ABC 的面积= ;(2)若过B 作BD //AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在,请说明理由.。

专题03 平面直角坐标系(专题详解)(解析版)

专题03 平面直角坐标系(专题详解)(解析版)

专题03 平面直角坐标系专题03 平面直角坐标系 (1)7.1 平面直角坐标系 (2)知识框架 (2)一、基础知识点 (2)知识点1 有序数对 (2)知识点2 平面直角坐标系 (2)知识点3 点的坐标特点 (3)二、典型题型 (6)题型1 有序数对 (6)题型2 平面直角坐标系的概念 (6)题型3 点的坐标的特征 (6)一、点的位置与坐标 (7)二、点的坐标与距离 (8)三、点的坐标与平行于坐标轴的直线(数形结合思想) (8)四、点的坐标与图形的面积 (9)(1)知坐标,求面积 (9)(2)知面积,求坐标(方程思想) (10)(3)分类讨论 (12)三、难点题型 (14)题型1 确定点所在的象限 (14)题型2 点到坐标轴的距离 (14)题型3 探究平面直角坐标系坐标的变化规律 (15)7.2 坐标系的简单运用 (17)知识框架 (17)一、基础知识点 (17)知识点1 用坐标表示地理位置 (17)知识点2 用坐标表示平移 (18)二、典型题型 (20)题型1 用坐标表示地理位置 (20)题型2 用坐标表示平移 (21)一、点的平移 (21)(1)已知点和平移方式,求对应点 (21)(2)已知点和对应点,求平移方式 (21)二、图形的平移 (22)三、难点题型 (23)题型1 动点问题 (23)7.1 平面直角坐标系知识框架{基础知识点{有序数对平面直角坐标系点的坐标的特点典型题型{ 有序数对平面直角坐标系的概念点的坐标的特征{ 点的位置与坐标点的坐标与距离点的坐标与平行于坐标轴的直线(数形结合思想)点的坐标与图形的面积{知坐标,求面积知面积,求坐标(方程思想)分类讨论难点题型{确定点所在的象限点到坐标轴的距离探究平面直角坐标系坐标的变化规律 一、基础知识点知识点1 有序数对1)我们把有顺序的两个数a 与b 组成的数对,用于表示平面中某一确定位置的,叫作有序数对,记作(a ,b )注:①(a ,b )与(b ,a )表达的含义不同,注意有序数对的顺序②在表达有序数对时,一般行在前,列在后。

中考数学复习考点知识归类讲解与练习01 平面直角坐标系与函数基本概念

中考数学复习考点知识归类讲解与练习01 平面直角坐标系与函数基本概念

中考数学复习考点知识归类讲解与练习专题01 平面直角坐标系与函数基本概念知识对接考点一、平面直角坐标系1.相关概念(1)平面直角坐标系(2)象限(3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标(1)坐标轴上的点(2)一三或二四象限角平分线上的点的坐标(3)平行于坐标轴的直线上的点的坐标(4)关于x轴、y轴、原点对称的点的坐标4.距离(1)平面上一点到x轴、y轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离(3)平面上任意两点间的距离5.坐标方法的简单应用(1)利用坐标表示地理位置(2)利用坐标表示平移1 / 27要点补充:点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于;(2)点P(x,y)到y 轴的距离等于;(3)点P(x,y)到原点的距离等于.考点二、函数及其图象1.变量与常量2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象要点补充:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.专项训练一、单选题1.已知点P (a ,a+3)在第二象限,且点P 到x 轴的距离为2,则a 的值为()A .1-B .5-C .2-D .2y x 22y x +【答案】A【分析】先判断a的取值,进而根据点P到x轴的距离为2得到a+3=2,解得即可.【详解】解:∵点P(a,a+3)在第二象限,∴30aa<⎧⎨+>⎩,∴-3<a<0,∵点P到x轴的距离为2,∴|a+3|=2,∴a+3=2,∴a=-1,故选:A.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.在平面直角坐标系中,点P(3,4)关于y轴对称点的坐标为()A.(﹣3,4)B.(3,4)C.(﹣3,﹣4)D.(4,﹣3)【答案】A【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】3 / 27解:点P (3,4)关于y 轴对称点的坐标为(-3,4),故选:A .【点睛】此题主要考查了关于y 轴对称点的坐标,关键是掌握点的坐标的变化规律.3.如图,一个机器人从点O 出发,向正西方向走2m 到达点1A ;再向正北方向走4m 到达点2A ,再向正东方向走6m 到达点3A ,再向正南方向走8m 到达点4A ,再向正西方向走10m 到达点5A ,…按如此规律走下去,当机器人走到点20A 时,点20A 的坐标为()A .(20,20)-B .(20,20)C .(22,20)--D .(22,22)-【答案】A【分析】 先求出A 1,A 2,A 3,…A 8,发现规律,根据规律求出A 20的坐标即可.【详解】解:∵一个机器人从点O 出发,向正西方向走2m 到达点1A ,点A 1在x 轴的负半轴上,∴A 1(-2,0)从点A 2开始,由点1A 再向正北方向走4m 到达点2A ,A 2(-2,4),由点2A 再向正东方向走6m 到达点3A ,A 3(6-2,4)即(4,4),由点3A 再向正南方向走8m 到达点4A ,A 4(4,4-8)即(4,-4),由点A 4再向正西方向走10m 到达点5A ,A 5(4-10,-4)即(-6,-4),由点A 5再向正北方向走12m 到达点A 6,A 6(-6,12-4)即(-6,8),5 / 27由点A 6再向再向正东方向走14m 到达点A 7,A 7(14-6,8)即(8,8),由点A 7再向正南方向走16m 到达点8A ,A 8(8,8-16)即(8,-8),观察图象可知,下标为偶数时在二四象限,下标为奇数时(除1外)在一三象限,下标被4整除在第四象限.且横坐标与下标相同,因为2054=⨯,所以20A 在第四象限,坐标为(20,20)-.故选择A .【点睛】本题考查平面直角坐标系点的坐标规律问题,掌握求点的坐标方法与过程,利用下标与坐标的关系找出规律是解题关键.4.小娜驾车从哈尔滨到大庆.设她出发第x min 时的速度为y km/h ,图中的折线表示她在整个驾车过程中y 与x 之间的函数关系式.下列说法:(1)在77≤x ≤88时,小娜在休息;(2)小娜驾车的最高速度是120km/h ;(3)小娜出发第16.5min 时的速度为48km/h ;(4)如果汽车每行驶100km 耗油10升,那么小娜驾车在33≤x ≤66时耗油6.6升. 其中正确的个数是( )A .1个B .2个C .3个D .4个【答案】C【分析】根据函数图象对每个选项进行分析判断,最后得出结论.①观察图象在77≤x ≤88时,小娜在以时速96千米在行驶;②观察图象小娜的最高时速为120千米;③用待定系数法求出11≤x ≤22时的函数关系式,可求小娜出发第16.5min 时的速度;④小娜驾车在33≤x ≤66时时速为120千米/小时,依次求出小娜驾车在33≤x ≤66时行驶的路程,从而耗油量可求.【详解】解:①观察图象在77≤x ≤88时,小娜在以时速96千米在行驶;故①错误; ②观察图象小娜的最高时速为120千米,故②正确;③在11≤x ≤22时,设y =kx +b .将(11,24)和(22,72)代入上式:11242272k b k b +=⎧⎨+=⎩, 解得:481124k b ⎧=⎪⎨⎪=-⎩. ∴482411y x =-. 当x =16.5min 时,y =48.∴小娜出发第16.5min 时的速度为48km /h .故③正确;④由图象可知:小娜驾车在33≤x ≤66时时速为120千米/小时,∴车在33≤x ≤66时小娜行驶了66331206660-⨯=(千米). ∴耗油为:66×10100=6.6(升).7 / 27故④正确;综上,正确的有②③④共三个.故选:C .【点睛】本题主要考查了一次函数的应用.理解函数图象上的点的实际意义是解题的关键.另外待定系数法是确定函数解析式的重要方法.5.下列不能表示y 是x 的函数的是()A .B .21y x =+C .D .【答案】C【分析】根据函数的定义(给定一个x 值都有唯一确定的y 值与它对应),对选项逐个判断即可.【详解】解:根据函数的定义(给定一个x 值都有唯一确定的y 值与它对应),对选项逐个判断, A :观察列表数据发现,符合函数的定义,不符合题意;B :观察x 与y 的等式发现,符合函数的定义,不符合题意;C :观察函数图像发现,不符合函数的定义,符合题意;D :观察函数图像发现,符合函数的定义,不符合题意;故选:C .【点睛】此题主要考查了函数的定义,涉及到了函数的表示方法(解析法,图像法和列表法),熟练掌握函数的基础知识是解题的关键.x的函数的是()6.下列各图象中,y不是..A.B.C.D.【答案】B【分析】对于自变量x的每一个确定的值y都有唯一的确定值与其对应,则y是x的函数,根据函数的定义解答即可.【详解】根据函数的定义,选项A、C、D图象表示y是x的函数,B图象中对于x的一个值y有两个值对应,故B中y不是x的函数,故选:B.【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键.9 / 277.如图,在平面直角坐标系中,//AB DC ,AC BC ⊥,5CD AD ==,6AC =,将四边形ABCD向左平移m 个单位后,点B 恰好和原点O 重合,则m 的值是()A .11.4B .11.6C .12.4D .12.6【答案】A【分析】 由题意可得,m 的值就是线段OB 的长度,过点D 作DE AC ⊥,过点C 作CF OB ⊥,根据勾股定理求得DE 的长度,再根据三角形相似求得BF ,矩形的性质得到OF ,即可求解.【详解】解:由题意可得,m 的值就是线段OB 的长度,过点D 作DE AC ⊥,过点C 作CF OB ⊥,如下图:∵5CD AD ==,DE AC ⊥ ∴132CE AC ==,90DEC ∠=︒由勾股定理得4DE =∵//AB DC∴DCE BAC ∠=∠,90ODC BOD ∠=∠=︒又∵AC BC⊥∴90 ACB CED∠=∠=︒∴DEC BCA△∽△∴DE CE CDBC AC AB==,即4356BC AB==解得8BC=,10AB=∵CF OB⊥∴90 ACB BFC∠=∠=︒∴BCF BAC∽△△∴BC BFAB BC=,即8108BF=解得 6.4BF=由题意可知四边形OFCD为矩形,∴5OF CD==11.4OB BF OF=+=故选A【点睛】此题考查了相似三角形的判定与性质,图形的平移,矩形的判定与性质,勾股定理等,熟练掌握相关基本性质是解题的关键.8.在平面直角坐标系中,已知点A(0,0)、B(2,2)、C(3,0),若以点A、B、C、D为顶点的四边形是平行四边形,则点D的坐标不可能为()A.(﹣1,2) B.(5,2) C.(1,﹣2) D.(2,﹣2)【答案】D【分析】分三种情况:①BC为对角线时,②AB为对角线时,③AC为对角线时;由平行四边形的11 / 27性质容易得出点D 的坐标. 【详解】解:分三种情况:①BC 为对角线时,点D 的坐标为(5,2) ②AB 为对角线时,点D 的坐标为(﹣1,2), ③AC 为对角线时,点D 的坐标为(1,﹣2),综上所述,点D 的坐标可能是(5,2)或(﹣1,2)或(1,﹣2). 故选:D . 【点睛】本题考查了平行四边形的性质、坐标与图形的性质;熟练掌握平行四边形的性质是解决问题的关键.9.半径是R 的圆的周长C 2R π=,下列说法正确的是() A .C ,π,R 是变量,2是常量 B .C 是变量,2,π,R 是常量 C .R 是变量,2,π,C 是常量 D .C ,R 是变量,2π是常量【答案】D 【分析】根据变量和常量的概念解答即可. 【详解】解:在半径是R 的圆的周长2C R π=中,C ,R 是变量,2π是常量. 故选D . 【点睛】本题主要考查了变量和常量,在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.10.关于变量x ,y 有如下关系:①6-=x y ;②24y x =;③2y x =;④3y x =.其中y 是x 函数的是() A .①③ B .①②③④ C .①③④ D .①②③【答案】C 【分析】根据函数的定义可知,满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,据此即可确定函数的个数. 【详解】解:y 是x 函数的是①x -y =6;③y =2|x |;④3y x =; ∵x =1时,y =±2,∴对于y 2=4x ,y 不是x 的函数; 故选:C . 【点睛】本题考查了函数的定义,函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量. 二、填空题11.若点()25,4P a a --到两坐标轴的距离相等,则点P 的坐标是______. 【答案】()1,1或()3,3-; 【分析】根据题意可得关于a 的绝对值方程,解方程可得a 的值,进一步即得答案. 【详解】解:∵P (2a -5,4-a )到两坐标轴的距离相等, ∴254a a -=-.13 / 27∴254a a -=-或25(4)a a -=--, 解得3a =或1a =,当3a =时,P 点坐标为(1,1); 当1a =时,P 点坐标为(-3,3). 故答案为:(1,1)或(-3,3). 【点睛】本题考查了直角坐标系中点的坐标特征,根据题意列出方程是解题的关键.12.在平行四边形ABCD 中,点A 的坐标是(﹣1,0),点B 的坐标是(2,3),点D 的坐标是(3,1),则点C 的坐标是___. 【答案】(6,4). 【分析】根据四边形ABCD 是平行四边形,可得AB∥DC ,且AB =DC ,根据坐标间关系可得2-(-1)=x C -3,3-0=y C -1,解得x C =6,y C =4即可. 【详解】解:∵四边形ABCD 是平行四边形, ∴AB∥DC ,且AB =DC , ∴2-(-1)=x C -3,3-0=y C -1, ∴x C =6,y C =4, 点C (6,4) 故答案为(6,4).【点睛】本题考查平行四边形的性质,点的坐标关系建构方程,掌握平行四边形的性质,点的坐标关系建构方程.13.函数y=182xx+-的自变量的取值范围是______.【答案】x≠4【分析】当表达式的分母中含有自变量时,自变量取值要使分母不为零,据此可得结论.【详解】解:由题可得,8﹣2x为分母,8﹣2x≠0,解得x≠4,∴函数182xyx+=-的自变量的取值范围是x≠4,故答案为:x≠4.【点睛】本题考查的是自变量的取值范围,由于此题表达式为分式,根据分式有意义的条件,分母不为零,得到自变量的取值范围.14.若一个函数图象经过点A(1,3),B(3,1),则关于此函数的说法:①该函数可能是一次函数;②点P(2,2.5),Q(2,3.5)不可能同时在该函数图象上;15 / 27③函数值y 一定随自变量x 的增大而减小;④可能存在自变量x 的某个取值范围,在这个范围内函数值y 随自变量x 增大而增大. 所有正确结论的序号是 ___. 【答案】①②④ 【分析】根据函数的定义,一次函数的图象及函数的性质一一分析即可求解. 【详解】解:①因为一次函数的图象是一条直线,由两点确定一条直线,故该函数可能是一次函数,故正确;②由函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量,所以点P (2,2.5),Q (2,3.5)不可能同时在该函数图象上,故正确;③因为函数关系不确定,所以函数值y 不一定一直随自变量x 的增大而减小,故错误; ④可能存在自变量x 的某个取值范围,在这个范围内函数值y 随自变量x 增大而增大,故正确; 故答案为①②④. 【点睛】本题主要考查函数的定义及一次函数的图象与性质,熟练掌握函数的定义及一次函数的图象与性质是解题的关键.15.在圆周长公式2C r π=中,常量是__________. 【答案】2π 【分析】根据常量的定义即可解答. 【详解】解:圆周长公式2C r π=中,常量是2π, 故答案为:2π. 【点睛】本题考查了常量的定义,正确理解定义是关键.16.如图,平面直角坐标系中O 是原点,等边△OAB 的顶点A 的坐标是(2,0),点P 以每秒1个单位长度的速度,沿O →A →B →O →A …的路线作循环运动,点P 的坐标是__________________.【答案】12⎛ ⎝⎭【分析】计算前面7秒结束时的各点坐标,得出规律,再按规律进行解答便可. 【详解】解:由题意得,第1秒结束时P 点运动到了线段OA 的中点C 的位置,所以P 1的坐标为P 1(1,0);第2秒结束时P 点运动到了点A 的位置,所以P 2的坐标为P 2(2,0);第3秒结束时P 点运动到了线段AB 的中点D 的位置,如下图所示,过D点作x轴的垂线交于x2处,∵△OAB是等边三角形,且OA=2,∴在Rt△AD x2中,∠DA x2=60°,AD=1,∴21 2Ax=,2Dx=故D点的坐标为32⎛⎝⎭,即P332⎛⎝⎭;第4秒结束时P点运动到了点B的位置,同理过B点向x轴作垂线恰好交于点C,在Rt△OBC中,∠BOC =60°,2OB=,1OC=,BC故B点的坐标为(1,即P4(1;第5秒结束时P点运动到了线段OB的中点E的位置,根据点D即可得出E点的坐标为12⎛⎝⎭,即 P512⎛⎝⎭;第6秒结束时运动到了点O的位置,所以P6的坐标为P6(0,0);第7秒结束时P点的坐标为P7(1,0),与P1相同;……17 / 27由上可知,P 点的坐标按每6秒进行循环, ∵2021÷8=336……5,∴第2021秒结束后,点P 的坐标与P 5相同为12⎛ ⎝⎭,故答案为:12⎛ ⎝⎭.【点睛】本题主要考查了点的坐标特征,等边三角形的性质,数字规律,关键是求出前面几个点坐标,得出规律.17.平面直角坐标系中,点()5,3A -,()0,3B ,()5,0C -,在y 轴左侧一点(),P a b (0b ≠且点P 不在直线AB 上).若40APO ∠=︒,BAP ∠与COP ∠的角平分线所在直线交于D 点.则ADO ∠的度数为______°.【答案】110或70 【分析】分两种情况,①点P 在AO 下方,设AP 与CO 交于点N ,过点N 作//NM AD ,先证明NM 平分PNO ∠,根据“三角形两内角平分线的夹角与第三个角的关系”,可以得出1902NMO P ∠=+∠,即可求解;②点P 在AO 上方,设PO 与AB 交于点M,过点M 作//NM OD ,先证明NM 平分PNA ∠,根据“三角形两内角平分线的夹角与第三个角的关系”,可以得出1902NMA P ∠=+∠,即可求解. 【详解】19 / 27解:分两种情况, ①点P 在AO 下方时,设AP 与CO 交于点N ,过点N 作//NM AD ,PAD PNM ∴∠=∠, //AB NO , BAN ONP ∴∠=∠,AD 平分BAN ∠,12PAD BAN ∴∠=∠,12PNM ONP ∴∠=∠,NM∴平分ONP ∠,OM 平分NOP ∠,111(180)70222MNO NOM ONP PON NPO ∴∠+∠=∠+∠=-∠=︒,110NMO ∴∠=︒, //NM AD ,110ADO NMO ∴∠=∠=︒;①点P 在AO 上方时,设AB 与PO 交于点N ,过点N 作//NM OD ,POD PNM ∴∠=∠,//AB CO ,PNA POC ∴∠=∠,DO 平分POC ∠,12POD POC ∴∠=∠,12PNM PNA ∴∠=∠,NM∴平分ANP ∠,直线CD 平分NAP ∠,111(180)70222MNA NAM PNA PAN NPA ∴∠+∠=∠+∠=-∠=︒,110NMA ∴∠=︒, //NM AD ,18070ADO NMO ∴∠=-∠=, 70ADO ∴∠=︒或110︒.故答案为:70或110.【点睛】本题主要考查了三角形双内角平分线模型,平行线的性质,解题的关键是找基本模型. 18.一个三角形的底边长是3,高x 可以任意伸缩,面积为y ,y 随x 的变化变化,则其中的常量为________,y 随x 变化的解析式为______________. 【答案】3 32y x = 【分析】先根据变量与常量的定义,得到3为常量,x 和y 为变量,再根据三角形面积公式得到21 / 27y =12×3×x =32x (x >0), 【详解】解:数值发生变化的量为变量,数值始终不变的量为常量,因此常量为底边长3,由三角形的面积公式得y 随x 变化的解析式为32y x =. 故答案为:3;32y x =. 【点睛】本题考查主要函数关系式中的变量与常量和列函数关系式解决本题的关键是要理解函数关系中常量和变量. 三、解答题19.已知一个圆柱的底面半径是3cm ,当圆柱的高(cm)h 变化时,圆柱的体积()3cm V 也随之变化.(1)在这个变化过程变量h 、V 中,自变量是______,因变量是______; (2)在这个变化过程中,写出圆柱的体积V 与高h 之间的关系式;(3)当圆柱的高h 由3cm 变化到6cm 时,圆柱的体积V 由______变化到______. 【答案】(1)h ,V ;(2)9V h π=;(3)327cm π,354cm π 【分析】(1)利用函数的概念进行回答;(2)利用圆柱的体积公式求解;(3)分别计算出h =3和6对应的函数值可得到V 的变化情况. 【详解】解:(1)在这个变化过程中,自变量是h ,因变量是V ;故答案为h ,V ;(2)V =π•32•h =9πh ;(3)当h =3cm 时,V =27πcm 3;当h =6cm 时,V =54πcm 3;所以当h 由3cm 变化到6cm 时,V 是由27πcm 3变化到54πcm 3.故答案为:27πcm3;54πcm3.【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.函数解析式是等式.解决此题的关键是圆柱的体积公式.20.一辆大客车和一辆小轿车同时从甲地出发去乙地,匀速而行,大客车到达乙地后停止,小轿车到达乙地后停留4小时,再按照原速从乙地出发返回甲地,小轿车返回甲地后停止,已知两车距甲地的路程s千米与所用的时间t小时的关系如图所示,请结合图象解答下列问题:(1)在上述变化过程中,自变量是________;因变量是________;(2)小轿车的速度是________km/h,大客车的速度是________ km/h;(3)两车出发多少小时后两车相遇,两车相遇时,距离甲地的路程是多少?【答案】(1)t,s;(2)50,30;(3)15小时,450km【分析】(1)根据函数图像可得;(2)根据函数图象中的数据,可以计算出小轿车和大客车的速度;(3)设两车出发xh时,两车相遇,根据题意列出方程,解之可得x,再乘以大客车的速度可得到甲地的距离.【详解】解:(1)自变量是时间t;因变量是路程s;(2)由图象可得,小轿车的速度为:500÷10=50(km/h),大客车的速度为:500÷503=30(km/h),故答案为:50,30;(3)设两车出发x小时,两车相遇,30x+50(x-14)=500,解得,x=15,30x=30×15=450,即两车出发15h后两车相遇,两车相遇时,距离甲地的路程是450km,故答案为:15,450.【点睛】本题考查了从函数图像获取信息,一元一次方程的应用,解答本题的关键是明确题意,结合函数图像得到必要信息.21.在平面直角坐标系中,O为坐标原点,C(4,0),A(a,3),B(a+4,3)(1)求ΔOAC的面积;(2)若aOABC是菱形.【答案】(1)6;(2)见解析【分析】(1)过点A(a,3)作AE⊥x轴于点E,根据A(a,3),C(4,0)求出AE和OC的长度,23 / 27然后根据三角形面积公式求解即可;(2)首先根据点A 和点B 的纵坐标相同得到//AB OC ,然后结合AB OC =得到四边形OABC 是平行四边形,然后根据勾股定理求出OA 的长度,得到OA =OB ,根据菱形的判定定理即可证明. 【详解】解:(1)如图所示,过点A (a ,3)作AE ⊥x 轴于点E ,则AE =3, 又∵C (4,0), ∴OC =4,∴S △OAC =11=43622OC AE ⨯⨯⨯⨯=.(2)若a =)A ,)43B ,, ∵A B y y =, ∴//AB OC , ∵44AB OC ==,, ∴AB OC =.∴四边形OABC 是平行四边形, 过点A 作AE ⊥x 轴,则90AEO ∠=︒,3AE OE ==,∴4OA =,∴OA AB=,∴四边形OABC是菱形.【点睛】此题考查了三角形面积的求法,菱形的判定,解题的关键是根据题意找到坐标和线段的关系.22.定义:平面直角坐标系中,点M(a,b)和点N(m,n)的距离为MN,例如:点(3,2)和(4,0(1)在平面直角坐标系中,点(2,5-)和点(2,1)的距离是,点(72,3)和点(12,1-)的距离是;(2)在平面直角坐标系中,已知点M(2-,4)和N(6,3-),将线段MN平移到M ′ N′,点M的对应点是M′,点N的对应点是N′,若M′的坐标是(8-,m),且MM′=10,求点N′的坐标;(3)在平面直角坐标系中,已知点A在x轴上,点B在y轴上,点C的坐标是(12,5),若BC=13,且△ABC的面积是20,直接写出点A的坐标.【答案】(1)6,5;(2)当M′(-8,12)时,N′(0,5),当M′(-8,-4)时,N′(0,-11);(3)(8,0)或(-8,0)或(16,0)或(32,0)【分析】(1)分别利用两点间距离公式求解即可.(2)构建方程求出m的值,可得结论.(3)设(0,)B t,构建方程求出t的值,可得结论.【详解】解:(1)点(2,5)-和点(2,1)的距离6,25 / 27点7(2,3)和点1(2,1)-的距离5=, 故答案为:6,5. (2)由题意,10MM '=,∴10=,12m =∴或4-,(8,12)M ∴'-或(8,4)--,当(8,12)M '-时,(0,5)N ', 当(8,4)M '--时,(0,11)N '-. (3)设(0,)B t ,(12,5)C ,13BC =,∴13,解得0t =或10,(0,0)B ∴或(0,10),当(0,0)B 时,20ABC S ∆=,∴15202OA ⨯⨯=, 8OA ∴=,(8,0)A ∴或(8,0)-.当(0,10)B 时,20ABC BOC AOC AOB S S S S ∆∆∆∆=+-=或20ABC AOC AOB BOC S S S S ∆∆∆∆=--=,∴111101*********OA OA ⨯⨯+⨯⨯-⨯⨯=或111101012520222OA OA ⨯⨯-⨯⨯-⨯⨯=,16OA ∴=或32,∴或(32,0),A(16,0)综上所述,满足条件的点A的坐标为(8,0)或(8,0)-或(16,0)或(32,0).【点睛】本题属于三角形综合题,考查了两点间距离公式,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.27 / 27。

初中数学函数之平面直角坐标系知识点总复习附答案(1)

初中数学函数之平面直角坐标系知识点总复习附答案(1)

初中数学函数之平面直角坐标系知识点总复习附答案(1)一、选择题1.在平面直角坐标系中,点P(-3,4)到x轴的距离为( )A.3 B.-3 C.4 D.-4【答案】C【解析】【分析】纵坐标的绝对值就是点到x轴的距离.【详解】∵|4|=4,∴点P(-3,4)到x轴距离为4.故选C.2.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1【答案】B【解析】试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B.3.如图,ABCDEF是中心为原点O,顶点A,D在x轴上,半径为4的正六边形,则顶点F的坐标为()A .()2,23B .()2,2-C .()2,23-D .()1,3- 【答案】C【解析】【分析】 连接OF ,设EF 交y 轴于G ,那么∠GOF=30°;在Rt △GOF 中,根据30°角的性质求出GF ,根据勾股定理求出OG 即可.【详解】解:连接OF ,在Rt △OFG 中,∠GOF=13603026⨯=oo ,OF=4. ∴GF=2,3∴F (-2,3).故选C .【点睛】本题利用了正六边形的对称性,直角三角形30°的角所对的边等于斜边的一半,勾股定理等知识,熟练掌握正六边形的对称性是解答本题的关键.4.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如()()()()()()1,02,02,11,11,22,2,,,,,······根据这个规律,第2019个点的纵坐标为( )A.5B.6C.7D.8【答案】B【解析】【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2019个点是(45,6),所以,第2019个点的纵坐标为6.故选:B.【点睛】本题考查了点的坐标,观察出点个数与横坐标的存在的平方关系是解题的关键.5.如图,在平面直角坐标系中,□ ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是().A.(3,7)B.(5,3)C.(7,3)D.(8,2)【答案】C【解析】【分析】由平行四边形的对边相等且互相平行可得AB=CD,CD∥AB,因为AB=5,点D的横坐标为2,所以点C的横坐标为7,根据点D的纵坐标和点C的纵坐标相同即可的解.【详解】∵四边形ABCD为平行四边形,AB=5,∴AB=CD=5,∵点D的横坐标为2,∴点C的横坐标为2+5=7,∵AB∥CD,∴点D和点C的纵坐标相等为3,∴C点的坐标为(7,3).故选:C.【点睛】本题考查平行四边形的性质以及坐标与图形的性质,解题的关键是熟知与x轴平行的点纵坐标都相等,将点向右移动几个单位横坐标就加几个单位.6.如图,若A、B两点的坐标分别为(﹣3,5)、(3,5),则点C坐标为()A.(﹣2,6)B.(﹣1,6)C.(﹣2,7)D.(﹣1,7)【答案】D【解析】【分析】根据A、B的坐标判断出y轴在AB的垂直平分线上,结合图形可得点C的纵坐标比A、B 的纵坐标大2,然后解答即可.【详解】如图所示,∵A、B两点的坐标分别为(﹣3,5)、(3,5),∴则点C坐标为(﹣1,7),故选:D.【点睛】本题考查了坐标确定位置,准确识图,判断出y轴的位置以及点C的纵坐标与点A、B的纵坐标的关系是解题的关键.7.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A.(1,1)B.(0,2)C.(20,)D.(﹣1,1)【答案】D【解析】分析:根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.详解:∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:OB=2,由旋转得:OB=OB1=OB2=OB3= (2)∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,2),B2(-1,1),B3(-2,0),…,发现是8次一循环,所以2018÷8=252 (2)∴点B2018的坐标为(-1,1)故选:D.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法8.如图,小手盖住的点的坐标可能为( )A.(-1,1) B.(-1,-1) C.(1,1) D.(1,-1)【答案】D【解析】【详解】解:根据第四象限的坐标特征,易得小手盖住的点的横坐标为正,纵坐标为负,选项D符合此特征,故选:D9.如果点M(3a﹣9,1+a)是第二象限的点,则a的取值范围在数轴上表示正确的是()A.B.C.D.【答案】A【解析】试题分析:点在第二象限的条件是:横坐标是负数,纵坐标是正数.解:∵点M(3a﹣9,1+a)是第二象限的点,∴,解得﹣1<a<3.在数轴上表示为:.故选A.考点:在数轴上表示不等式的解集;解一元一次不等式组;点的坐标.10.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.O1B.O2C.O3D.O4【答案】A【解析】试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.考点:平面直角坐标系.11.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】∵−2<0,3>0,∴(−2,3)在第二象限,故选B.12.在平面直角坐标系xOy中,若点P在第四象限,且点P到x轴的距离为1,到y轴的距离为3,则点的坐标为( )A.(3,-1) B.(-3,1) C.(1,-3) D.(-1,3)【答案】A【解析】【分析】根据点到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,结合第四象限点(+,-),可得答案.【详解】解:若点P在第四象限,且点P到x轴的距离为1,到y轴的距离为3,则点的坐标为(3,-1),故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).13.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是( )A.(3,4) B.(-3,4) C.(-4,3) D.(4,3)【答案】A【解析】【分析】根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.【详解】解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P 点距y 轴3个单位长度,距x 轴4个单位长度,∴P 点横坐标为3,纵坐标为4,即点P 的坐标为(3,4).故选A .【点睛】本题考查了点的位置判断方法及点的坐标几何意义.14.如果(,)p a b ab +在第二象限,那么点(,)Q a b -在第( )象限A .一B .二C .三D .四【答案】D【解析】【分析】由点P 在第二象限得到a+b<0,ab>0,即可得到a 与b 的符号,由此判断点Q 所在的象限.【详解】∵点P 在第二象限,∴a+b<0,ab>0,∴a<0,b<0,∴-a>0,∴点(,)Q a b -在第四象限,故选:D.【点睛】此题考查象限中点的坐标特点,熟记每个象限中的点坐标特点是解题的关键.15.在平面直角坐标系中,以A (0,2),B (﹣1,0),C (0.﹣2),D 为顶点构造平行四边形,下列各点中,不能作为顶点D 的坐标是( )A .(﹣1,4)B .(﹣1,﹣4)C .(﹣2,0)D .(1,0)【答案】C【解析】【分析】根据平行四边形的判定,可以解决问题.【详解】若以AB 为对角线,则BD ∥AC ,BD=AC=4,∴D (-1,4)若以BC 为对角线,则BD ∥AC ,BD=AC=4,∴D (-1,-4)若以AC 为对角线,B ,D 关于y 轴对称,∴D (1,0)故选C .【点睛】本题考查了平行四边形的判定,关键是熟练利用平行四边形的判定解决问题.16.会议室2排3号记作(2,3),那么3排2号记作()A.(3,2)B.(2,3)C.(-3,-2) D.(-2,-3)【答案】A【解析】【分析】根据有序数对的意义求解.【详解】会议室2排3号记作(2,3),那么3排2号记作(3,2).故选:A【点睛】关键是理解题意,理解有序数对的意义..17.点P(1,-2)在( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】点P(1,-2)所在的象限是第四象限,故选D.18.在平面直角坐标系中,点(一6,5)位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】【分析】根据所给点的横纵坐标的符号可得所在象限.【详解】解:∵所给点的横坐标是-6为负数,纵坐标是5为正数,∴点(-6,5)在第二象限,故选:B.【点睛】本题考查象限内点的符号特点;用到的知识点为:符号为(-,+)的点在第二象限.19.在平面直角坐标系中,点P(1,-2)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点P(1,-2),横坐标大于0,纵坐标小于0,∴点P(1,-2)在第三象限,故选D.【点睛】本题考查了象限内点的坐标特征,关键是熟记平面直角坐标系中各个象限内点的坐标符号.20.如果点P(m+3,m+1)在x轴上,则点P的坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)【答案】B【解析】【分析】根据点P在x轴上,即y=0,可得出m的值,从而得出点P的坐标.【详解】根据点P在x轴上,即y=0,可得出m的值,从而得出点P的坐标.解:∵点P(m+3,m+1)在x轴上,∴y=0,∴m+1=0,解得:m=﹣1,∴m+3=﹣1+3=2,∴点P的坐标为(2,0).故选:B.【点睛】本题考查了点的坐标,注意平面直角坐标系中,点在x轴上时纵坐标为0,得出m的值是解题关键.。

平面直角坐标系的13个知识点

平面直角坐标系的13个知识点

平面直角坐标系的13个核心知识点哎,说起平面直角坐标系,那可是数学里头相当重要的一个板块儿。

咱们今天就来摆一摆它的13个核心知识点。

首先呢,平面直角坐标系就是由两条互相垂直的数轴组成,水平方向的叫x轴,垂直方向的叫y轴,它们交在一块儿的那个点叫原点。

然后啊,平面上的每个点都可以用一对有序实数来表示,比如(x,y),x就是横坐标,y就是纵坐标。

再说说象限,根据点的坐标的正负,平面被分成了四个部分,叫象限。

第一象限的点坐标都是正数,第二象限的x坐标为负,y坐标为正,第三象限的点坐标都是负数,第四象限的x坐标为正,y坐标为负。

还有啊,关于x轴、y轴、原点对称的点的坐标,都是有规律的。

比如关于x轴对称的点,横坐标不变,纵坐标变相反数。

另外,平面直角坐标系里头还可以搞平移、缩放这些变换。

平移的时候,点的坐标会跟着变,比如向右平移,横坐标就变大,向左平移,横坐标就变小。

缩放的时候,比如横坐标变为原来的k倍,那图形就跟着放大或缩小了。

再来说说直线、圆这些图形,它们都可以用方程来表示。

比如直线y=2x+3,圆的方程是(x-h)^2+(y-k)^2=r^2。

最后啊,还有中点公式、斜率公式、距离公式这些工具,它们可以用来求线段的中点、直线的斜率和两点间的距离。

总之啊,平面直角坐标系的知识点虽然多,但只要掌握了规律,学起来也就不那么难了。

(八年级资料)平面直角坐标系全章综合归纳总结

(八年级资料)平面直角坐标系全章综合归纳总结

平面直角坐标系知识点归纳总结1.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成的图形.2.两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向.水平的数轴叫做x 轴,铅直的数轴叫做y 轴,x 轴和y 轴统称坐标轴,它们的公共原点O 称为直角坐标系的原点.3.在平面直角坐标系中,两条坐标轴将坐标平面分成了四局部,右上方的局部叫做第一象限,其他三局部按逆时针方向依次叫做第二象限、第三象限和第四象限.坐标轴上的点不在任何象限内.4.对于平面内的一点P ,用P 〔a ,b 〕表示点P 的坐标,其中a ,b 分别叫做点P 的横坐标、纵坐标.在平面直角坐标系中,任意一点都可以用一对有序实数来表示;面内的点与有序实数对一一对应.5.x 轴上的点,纵坐标等于0;y 轴上的点,横坐标等于0;坐标轴上的点不属于任何象限;6.四个象限的点的坐标具有如下特征:点P 〔a ,b 〕在第一象限,那么a >0,b >0; 在第二象限,那么a <0,b >0; 在第三象限,那么a <0,b <0; 在第四象限,那么a >0,b <0. 7.在平面直角坐标系中,点P ),(b a ,那么〔1〕点P 到x 轴的距离为b ; 〔2〕点P 到y 轴的距离为a ;8.平行直线上的点的坐标特征:a) 在与x 轴平行的直线上, 所有点的纵坐标相等;象限 横坐标x纵坐标y第一象限正 正 第二象限 负 正 第三象限 负 负 第四象限正负Oxy第___象限第____象限 第____象限 第___象限P 〔〕点A 、B 的纵坐标都等于m ;在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;9.对称点的坐标特征:b) 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数; c) 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数; d) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称 关于y 轴对称 关于原点对称 10.两条坐标轴夹角平分线上的点的坐标的特征:e) 假设点P 〔n m ,〕在第一、三象限的角平分线上,那么n m =,即横、纵坐标相等; f) 假设点P 〔n m ,〕在第二、四象限的角平分线上,那么n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上XYA BmXYCDnXy PO XyPOXyPOXyPOyPOX11.坐标轴上的点:x 轴上的点的纵坐标为0,y 轴上的点横坐标为0,即点〔a ,0〕在x 轴上,点〔0,b 〕在y 轴上. 12.坐标系内任意两点间距离公式:, ,那么;任意两点间的中点坐标公式:【考点讲解】考点一——平面直角坐标系中点的位置确实定【例1】以下各点中,在第二象限的点是 〔 〕A .〔2,3〕B .(2,-3)C .(-2,3)D .(-2, -3) 【例2】点M(-2,b)在第三象限,那么点N(b, 2 )在 〔 〕A .第一象限B .第二象限C .第三象限D .第四象限【例3】 假设点P 〔x ,y 〕的坐标满足xy=0(x ≠y),那么点P 在 〔 〕A .原点上B .x 轴上C .y 轴上D .x 轴上或y 轴上 【例4】点P 〔x,y 〕位于x 轴下方,y 轴左侧,且x =2,y =4,点P 的坐标是 〔 〕A .〔4,2〕B .〔-2,-4〕C .〔-4,-2〕D .〔2,4〕【例5】点P 〔0,-3〕,以P 为圆心,5为半径画圆交y 轴负半轴的坐标是 〔 〕A .〔8,0〕B .〔 0,-8〕C .〔0,8〕D .〔-8,0〕 【例6】点E 〔a,b 〕到x 轴的距离是4,到y 轴距离是3,那么有〔 〕A .a=3, b=4B .a=±3,b=±4C .a=4, b=3D .a=±4,b=±3 【例7】点P 〔a,b 〕,且ab >0,a +b <0,那么点P 在〔 〕 A .第一象限 B .第二象限 C .第三象限 D .第四象限【例8】如果点M 到x 轴和y 轴的距离相等,那么点M 横、纵坐标的关系是〔 〕A .相等B .互为相反数C .互为倒数D .相等或互为相反数【例9】在坐标系内,点P 〔2,-2〕和点Q 〔2,4〕之间的距离等于 个单位长度。

最新人教版高中数学选修4-4《平面直角坐标系》教材梳理

最新人教版高中数学选修4-4《平面直角坐标系》教材梳理

庖丁巧解牛知识·巧学一,平面直角坐标系1.平面直角坐标系的建立在生产,生活或科技中有很多问题都是可以通过坐标系来分析解决的.解决问题的过程中,有两种情况:(1)所研究的问题中已经有坐标系,此时在给定的坐标系中求出方程即可;(2)条件中无坐标系,这时必须首先选取适当坐标系,通常总是选取特殊位置的点为原点,相互垂直的直线为坐标轴等.某地发生严重的地震灾害,各地群众纷纷捐款捐物,救灾物资分批到达.但是,有些地方因为环境很恶劣,物资不能直接送达,就派送一架飞机在1000米高的上空正对目的地以100千米/时的速度做水平飞行,那么飞机应在离目的地水平距离大约多少米处抛下救灾物资,使物资能落到目的地呢?物资落下的路线是一条抛物线.物资下落的过程可分解为水平方向的匀速直线运动和竖直方向的自由落体运动.当将此抛物线放到一个合适的坐标系中解决时,就会很容易得到飞机应在离目的地水平距离400米处抛下这批救灾物资.2.求轨迹方程的一般步骤.(1)分析曲线的特征,揭示隐含条件;(2)找出曲线上与任意点有关的位置关系和满足的几何条件;(3)列出方程.方法点拨 求圆锥曲线方程的常用方法:定义法、待定系数法、直接法、代入法、参数法、几何法等.关键是数形结合,建立等量关系.二、平面直角坐标系中的伸缩变换以函数y=Asin(ωx+φ)的图象的形成过程为例,研究在平面直角坐标系中伸缩变换作用下的图形的变化情况.函数y=sinωx,x ∈R (其中ω>0,ω≠1)的图象,可以看作是把正弦曲线上所有的点的横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的ω1倍(纵坐标不变)而得到.平面直角坐标系中的伸缩变换可认为是一个坐标伸缩过程,即保持纵坐标不变,将x 轴进行压缩或伸长.函数y=Asinx,x ∈R (其中A>0,ω≠1)的图象,可以看作是把正弦曲线上所有点的纵坐标伸长(当A >1时)或缩短(当0<A <1时)到原来的A 倍(横坐标不变)而得到.平面直角坐标系中的伸缩变换可认为是一个坐标伸缩过程,即保持横坐标不变,将y 轴进行压缩或伸长.深化升华 正弦曲线经过这两种变换后,所得到图形的形状是完全相同的.平面直角坐标系中的伸缩变换只是从说法上有所不同,本质上是一样的.应该注意到:通过一个表达式,平面直角坐标系中的坐标伸缩变换将x 与y 的伸缩变换统一成了一个式子,即⎩⎨⎧>∙='>∙='.0,,0,μμλλy y x x 如果不改变坐标轴的方向和长度单位,只改变原点的位置,这种坐标系的变换叫做坐标轴的平移,简称移轴.设原坐标系为xOy ,平移后新坐标系为x′O′y′,新坐标系的坐标原点在原坐标系中的坐标是O′(h,k),在坐标平面内的任意一点,都有两个坐标,它们有如下平移公式⎩⎨⎧-='-='.,k y y h x x 在新旧坐标变换和方程变换时,可选择使用.问题·探究问题1 究竟以什么样的方法建立平面直角坐标系,才能够使方程最为简单呢?在建立坐标系的过程中我们应该注意什么呢?探究:建立坐标系的规律:(1)当题目中有两条互相垂直的直线,以这两条直线为坐标轴;(2)当题目中有对称图形,以对称图形的对称轴为坐标轴;(3)当题目中有已知长度的线段,以线段所在直线为横轴,以端点或中点为原点,使图形上的特殊点尽可能地在坐标轴上. 直角坐标系建立完后,需仔细分析曲线的特征,注意揭示隐含条件.如:已知动点P 与两定点A 、B 的距离的平方和为122,|AB|=10,求动点P 的轨迹方程.要使AB 在x 轴上,以AB 的中点为原点建立坐标系.再如:已知线段AB 的长为3,平面上一动点M 到定点A 的距离是到定点B 距离的两倍,求动点的轨迹方程.注意到动点M 运动到线段AB 上时,有|AM|=2|MB|,点M 恰为线段AB 的一个三等分点,故考虑以这个三等分点为坐标原点建立直角坐标系.再如:在相距1 400米的A 、B 两个哨所,听到炮弹爆炸的时间相差3秒,已知声速是340米/秒,问炮弹爆炸点在怎样的曲线上?它是怎样建立直角坐标系的呢?以A 、B 两个哨所所在的直线为x 轴,AB 的中点为坐标原点,建立直角坐标系.问题2 在伸缩变换下,椭圆能否变成圆?抛物线和双曲线能变成什么曲线?探究:圆锥曲线之间的图象关系.在一定的伸缩变换规律下椭圆能够变成圆,而双曲线与抛物线仍然是双曲线和抛物线.如:能把椭圆4)1(9)1(22-++y x =1变为中心在原点的单位圆吗? 先经过平移变换⎩⎨⎧-='+='.1,1y y x x 把椭圆变为4922y x '+'=1,再通过伸缩变换⎪⎪⎩⎪⎪⎨⎧'='''='',2,3y y x x 把此椭圆 变为单位圆x″2+y″2=1.上述两种变换可合成一个变换为⎪⎪⎩⎪⎪⎨⎧-=''+='',21,31y y x x .按照这个道理,按照变换⎩⎨⎧>∙='>∙='.0,,0,μμλλy y x x 对于双曲线和抛物线的方程,不管进行什么样的伸缩变换(当然,把图象伸缩的无限大,或者无限小的极限位置排除在外)之后,方程特点仍然没有变,抛物线方程的二次项和一次项都没有变,双曲线的两个二次项仍然是二次项,这两个二次项之间的减号也没有变;从另外一个角度来说,把它们的图象进行压缩时,图象特点是没有变的,压缩后的图象仍然是抛物线型和双曲线型的,所以它们的图象是没有变化的,仍然是双曲线和抛物线.典题·热题例1如图1-1-2,圆O 1与圆O 2的半径都是1,|O 1O 2|=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 分别为切点),使得PM=2PN,试建立适当的坐标系,并求动点P 的轨迹方程.图1-1-2思路分析:本题利用数形结合思想、勾股定理、两点间距离公式等相关知识点,及分析推理、计算化简技能、技巧等,是一道很综合的题目.由题意建立坐标系,写出相关点的坐标,由几何关系式PM=2PN ,即(PM)2=2(PN)2,结合图形由勾股定理转化为PO 12-1=2(PO 22-1),设P(x ,y),由距离公式写出代数关系式,化简整理可得.图1-1-3解:如图1-1-3,以直线O 1O 2为x 轴,线段O 1O 2的垂直平分线为y 轴,建立平面直角坐标系,则两圆心的坐标分别为O 1(-2,0),O 2(2,0).设P(x,y),则PM 2=PO 12-MO 12=(x+2)2+y 2-1.同理,PN 2=(x-2)2+y 2-1.∵PM=2PN ,∴(x+2)2+y 2-1=2[(x-2)2+y 2-1],即x 2-12x+y 2+3=0,即(x-6)2+y 2=33,这就是动点P 的轨迹方程.深化升华 在求轨迹方程时,首先能够建立一个适当的坐标系.同一几何图形的方程在不同坐标系中具有不同的形式.选择适当的坐标系可以使表示图形的方程具有更方便的形式. 例2设有半径为3 km 的圆形村落,A 、B 两人同时从村落中心出发,B 向北直行,A 先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B 相遇.设A 、B 两人速度一定,其速度比为3∶1,问两人在何处相遇?思路分析:因为A 、B 两人速度一定,其速度比为3∶1,可以先把其速度设出来.在这个问题中的关键是:路程之间的关系满足勾股定理,根据它可以建立一个关系式.解:如图1-1-4建立平面直角坐标系,由题意可设A 、B 两人速度分别为3v 千米/时,v 千米/时,再设出发x 0小时,在点P 改变方向,又经过y 0小时,在点Q 处与B 相遇,图1-1-4则P 、Q 两点坐标为(3vx 0,0),(0,vx 0+vy 0).由|OP|2+|OQ|2=|PQ|2,知(3vx 0)2+(vx 0+vy 0)2=(3vy 0)2,即(x 0+y 0)(5x 0-4y 0)=0.∵x 0+y 0>0,∴5x 0=4y 0①.将①代入k PQ =0003x y x +-,得k PQ =43-. 又已知PQ 与圆O 相切,直线PQ 在y 轴上的截距就是两人相遇的位置.设直线y=43-x+b 与圆O:x 2+y 2=9相切,则有2243|4|+b =3.∴b=415. 答:A 、B 两人的相遇点在离村中心正北433千米处. 方法归纳 在实际问题中能够根据已知条件合理地建立坐标系是个很关键的问题.本题当中,注意到村落为圆形,且A 、B 两人同时从村落中心出发分别沿东、北方向运动,于是可设想以村落的中心为圆点,以开始时A 、B 的前进方向为x 、y 轴,建立直角坐标系. 例3已知f 1(x)=cosx,f 2(x)=cosωx(ω>0),f 2(x)的图象可以看作是把f 1(x)的图象在其所在的坐标系中的横坐标压缩到原来的31倍(纵坐标不变)而得到的,则ω为( ) A.21 B.2 C.3 D.31 思路解析:函数y=cosωx,x ∈R (其中ω>0,ω≠1)的图象,可以看作把余弦曲线上所有点的横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的ω1倍(纵坐标不变)而得到.答案:C误区警示 规律容易记错,认为函数y=cosωx,x ∈R (其中ω>0,ω≠1)的图象,可以看作把余弦曲线上所有点的横坐标伸长(当ω>1时)或缩短(当0<ω<1时)到原来的ω1倍(纵坐标不变)而得到,这是错误的认识.例4在同一平面直角坐标系中,将直线x-2y=2变成直线2x′-y′=4,求满足图象变换的伸缩变换.思路分析:设变换为⎩⎨⎧>∙='>∙=').0(),0(μμλλy y x x 可将其代入第二个方程,得2λx -μy=4.与x-2y=2比较,将其变成2x-4y=4,比较系数得λ=1,μ=4.解:设⎩⎨⎧∙='='.4,y y x x .直线x-2y=2图象上所有点的横坐标不变,纵坐标扩大到原来的4倍可得到直线2x′-y′=4.拓展延伸 求满足图象变换的伸缩变换,实际上是求其变换公式,将新旧坐标分清,代入对应的直线方程,然后比较系数就可以了.若将已知条件换成:将直线2x-y=4变成x′-2y′=2,如何求满足图象变换的伸缩变换呢? 解:设变换为⎩⎨⎧>∙='>∙=').0(),0(μμλλy y x x 可将其代入第二个方程,得λx -2μy=2,与2x-y=4比较,将λx -2μy=2变成2λx -4μy=4,比较系数得λ=1,μ=41.。

初二平面直角坐标系知识点及习题教学内容

初二平面直角坐标系知识点及习题教学内容

初二平面直角坐标系知识点及习题平面直角坐标系1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系画平面直角坐标系时, x轴、y轴上的单位长度通常应相同,但在实际应用中,有时会遇到取相同的单位长度有困难的情况,这时可灵活规定单位长度,但必须注意的是,同一坐标轴上相同长度的线段表示的单位数量相同。

2、各个象限内点的特征:第一象限:(+,+)点P(x,y),则x>0, y>0;第二象限:(-,+)点P(x,y),则x<0, y>0;第三象限:(-,-)点P(x,y),则x<0, y<0;第四象限:(+,-)点P(x,y),则x>0, y<0;在x轴上:(x,0)点P(x,y),则y=0;在x轴的正半轴:(+,0)点P(x,y),则x>0, y=0;在x轴的负半轴:(—,0)点P(x,y),则x<0, y=0;在y轴上:(0,y)点P(x,y),则x=0;在y轴的正半轴:(0,+)点P(x,y),则x=0, y>0;在y轴的负半轴:(0,—)点P(x,y),则x=0, y<0;坐标原点:(0,0)点P(x,y),则x=0, y=0;3、点到坐标轴的距离:点P (x,y )到x 轴的距离为 |y|, 到y 轴的距离为 |x|到坐标原点的距离为d=y x 224、点的对称:点P(m,n),关于x 轴的对称点坐标是(m,-n),关于y 轴的对称点坐标是(-m,n)关于原点的对称点坐标是(-m,-n)5、平行线:平行于x 轴的直线上的点的特征:纵坐标相等;平行于y 轴的直线上的点的特征:横坐标相等。

6、象限角的平分线:。

点P(a,b)关于第一、三象限坐标轴夹角平分线的对称点坐标是(b, a) 第二、四象限角平分线上的点横纵坐标互为相反数,可记作点P(a,b)关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b,-a)7、点的平移:在平面直角坐标系中,将点(x,y )向右平移a 个单位长度,可以得到对应点(x+a ,y );将点(x,y )向左平移a 个单位长度,可以得到对应点(x-a ,y );将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b );将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章——平面直角坐标系复习
1、 平面直角坐标系中的点和______________是一一对应的.
2、 点P (x ,y )在第一象限内,则x ,y
点P (x ,y )在第二象限内,则x ,y
点P (x ,y )在第三象限内,则x ,y
点P (x ,y )在第四象限内,则x ,y
例1:(1)在平面直角坐标系中,点(-1,m 2+1)一定在 ( )
A .第一象限
B .第二象限
C .第三象限
D .第四象

(2)已知a>0,那么点P (-a 2-1,a +3)在第_______象限
例2:若点P(a ,b )在第四象限,则点M(b -a ,a -b )在 ( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
例3:已知点P (2a -8,2-a )是第三象限的整点(横、纵坐标均为整数),则P 点的坐标是_______.
例4:如图,棋子“卒”的坐标为(-2,3),棋子“马”的坐标为(1,3),则
棋子“炮”的坐标为 ( )
A .(3,2)
B .(3,1)
C .(2,2)
D .(-2,2)
例5:(1)已知点P 在第四象限,它的横坐标与纵坐标的
和为2,写出一个满足上述条件的点P 的坐标:_______.
(2)已知点P 的坐标(2-a ,3a+6),且点P 到两坐标轴
的距离相等,则点P 的坐标_ __.
(3)若点P(x ,y ),2x =,29y =,则点P 的坐
标为_ _ _.
3、点P (x ,y )在x 轴上,则x ,y
点P (x ,y )在y 轴上,则
例1:点P(m +3,m +1)在平面直角坐标系的x 轴上,则点P 的坐标为 ( )
A .(0,-2)
B .(2,0)
C .(4,0)
D .(0,-4)
例2:当x=_________时,点M(2x 一4,x+6)在y 轴上.
例3:已知点P 的坐标为(a -1,a -5).
(1)若点P 在x 轴上,则a =_______; (2)若点P 在y 轴上,则a =_______;
(3)若a <1,则点P 在第_______象限; (4)若a >5,则点P 在第_____象限; 例4:若点P(m,n)满足nm=0,则点P位于( )
A.x轴 B.y轴 C.原点 D.x轴或y轴
4、 点P (x ,y )到x 轴的距离是
点P (x ,y )到y 轴的距离是
例1:点A(3,-4)到y 轴的距离为____,到x 轴的距离为____,
例2:点P到x轴的距离为1,到y轴的距离为3,则P点坐标是
5、点P(x,y)关于x轴对称:x,y
点P(x,y)关于y轴对称:
点P(x,y)关于原点对称:
例1:(1)在平面直角坐标系中,点A(1,b-2)关于y轴对称的点为点B(a+1,2),
则a=___,b=__.
(2) 在平面直角坐标系中,点A(1,b-2)关于x轴对称的点为点B(a+1,2),则a=___,b=__.
(3) 在平面直角坐标系中,点A(1,b-2)关于原点对称的点为点B(a+1,2),则a=___,b=__.
例2:点P关于x轴对称的点为P'(3,4),则点P关于原点对称的点的坐标为( )
A.(3,-4) B.(-3,-4) C.(3, 4) D.(-3,4) 例3:已知P(x,y);Q(m,n),如果x+m=0,y+n=0,那么点P与Q ()
A.关于原点对称 B.关于x轴对称
C.关于y轴对称 D.关于过点(0,0),(1,1)的直线对称
6、左右平移:
上下平移:
例1:(1)在平面直角坐标系中,将点(-2,-3)向上平移3个单位,再向左
平移4个单位,则平移后的点的坐标为_______.
(2)在平面直角坐标系中,将点P(-1,6)向右平移4个单位,再向下平移8个单位,则平移后的点的坐标为_______.
例2:将点P向左平移2个单位长度,再向下平移1个单位长度得到P'(-1,3),则点P的坐标是_______.
例3:三角形ABC中BC边上的中点为M,在把三角形ABC向左平移2个单位,再
向上平移3个单位后,得到三角形A
1B
1
C
1
的B
1
C
1
边上中点M
1
此时的坐标为(-1,
0),则M点坐标为
5、同一条横线上的点(平行于x轴的线上的点):
同一条竖线上的点(平行于y轴的线上的点):
例1:(1)已知线段AB=3,AB∥x轴,若点A的坐标为(1,2),则点B的坐标
为_______.
(2)已知线段AB=3,AB∥y轴,若点A的坐标为(1,2),则点B的坐标为_______.
相关练习:
1.在下图中,把线段AB先向右平移7个单位长度,再向下平移4个单位长度,
得到线段A'B'.
(1)试写出点A、A'、B、B'的坐标.
(2)如果点C(a,b)是线段AB上的任意一点,那么当AB平移到A'B'后,与点对应的点C'的坐标是多少?
3.点P(-1,3)关于原点的对称点的坐标是 ( )
A.(-1,-3) B.(1,-3) C.(1,3) D.(-3,1) 4.点M在第一象限,距离x轴5个单位长度,距离y轴3个单位长度,则点M 的坐标为( )
A.(5,3) B.(-5,3)或(5,3) C.(3,5) D.(-3,5)或(3,5)
5.在平面直角坐标系中,将点P(3,6)向左平移4个单位长度,再向下平移8个单位长度后,得到的点位于第_______象限.
6.杨洋将点M关于x轴的对称点误认为是关于y轴的对称点,得到点(-4,-3),则点M关于x轴的对称点是_______.
8. 已知点A(a,-2)与点B(3,-2)关于y轴对称,则a=_______,点C的坐标为(4,-3),若将点C向上平移3个单位,则平移后的点C坐标为________
9.已知点A(a-1,a+1)在x轴上,则a等于______
10.已知点P(m,1-m)在第二象限内,则下列各式中.正确的是 ( )
A.m<1 B.m<0 C.m>1
D.m>0
12.如图,A(-1,0),C(1,4),点B在x轴上,且
AB=3.
(1)求点B的坐标,并画出△ABC;
(2)求△ABC的面积.
(3)在y轴上是否存在点P,使以A、B、P三点为顶
点的三角形的面积为10,若存在,请直接写出点P
的坐标;若不存在,请说明理由.。

相关文档
最新文档