波形钢腹板组合箱梁的结构设计方法
波形钢腹板PC箱梁桥的设计和施工

波形钢腹板PC箱梁桥的设计和施工一、设计阶段:1.桥梁类型选择:根据实际需要和条件,选择波形钢腹板PC箱梁作为桥梁类型。
2.荷载计算与分析:根据桥梁预期使用情况,确定荷载标准、设计条件等,并进行荷载计算和分析。
3.结构设计:根据荷载计算结果,进行桥梁的结构设计,涉及到桥墩、支座、桥面、横梁等各部分的尺寸和材料选取等。
4.针对波形钢腹板的设计:确定波形钢腹板的型号、尺寸、钢板厚度等。
5.施工工艺设计:根据设计要求和具体施工条件,进行施工工艺的设计,包括各部分施工顺序、工艺步骤、检测标准等。
二、材料准备:1.钢材采购:根据设计要求,采购合格的波形钢腹板、钢筋、混凝土等材料。
2.厂家质量检测:对采购的钢材进行质量检验,确保符合设计要求和施工标准。
三、施工准备:1.建立现场施工队伍:组建专业的施工队伍,包括工程师、技术人员、施工人员等,确保施工过程的安全和质量。
2.搭建施工场地:搭建施工所需的临时工地,包括桥墩模板、施工道路等。
3.设施材料准备:准备施工所需的设备、工具、模板、支撑材料、钢筋等。
四、施工过程:1.模板制作和安装:根据设计要求制作支座和桥墩的模板,然后进行安装。
2.钢筋加工和安装:根据设计要求和构造要求,对预制钢筋进行加工,然后进行安装。
3.波形钢腹板浇筑:在模板和钢筋安装好后,进行波形钢腹板的混凝土浇筑。
4.预应力张拉:钢筋混凝土浇筑后,进行预应力钢丝的张拉工作。
5.混凝土养护:钢筋混凝土浇筑完成后,进行养护,以确保混凝土的强度和耐久性。
五、质量检测和验收:1.施工过程监控:对施工过程进行监控和检测,包括模板安装质量、钢筋安装质量、混凝土浇筑质量等。
2.验收和检测:对施工结果进行验收和检测,确保符合设计和规范要求。
3.桥梁质量评估:进行桥梁的质量评估,包括结构安全性、荷载承载能力等方面的评估。
总结:波形钢腹板PC箱梁桥的设计和施工需要在设计阶段进行结构设计和工艺设计,并进行材料准备和施工准备工作。
波形钢腹板工字型钢-砼组合梁架设施工工法(2)

波形钢腹板工字型钢-砼组合梁架设施工工法一、前言波形钢腹板工字型钢-砼组合梁是一种常用的建筑工法,其特点是结构稳定、载荷能力强、施工简便等。
本文将详细介绍该工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及一个工程实例。
二、工法特点波形钢腹板工字型钢-砼组合梁是利用工字型钢和钢板进行组合构造的梁体,具有以下特点:1. 结构稳定:采用工字型钢腹板与钢筋砼的组合结构,使梁体整体刚度大,抗弯能力强,能够有效承受水平和垂直荷载。
2. 载荷能力强:通过工字型钢腹板的强度优势,增加了梁体的承载能力,降低了截面高度,实现了有效的构造空间利用。
3. 施工简便:工字型钢腹板和钢筋砼的制作工艺简单,易于加工和组装,适用于各种规模的建筑工程。
三、适应范围波形钢腹板工字型钢-砼组合梁适用于以下范围:1. 工程类型:适用于大跨度的建筑、桥梁、厂房等工程,如跨度超过30米的大跨度桥梁等。
2. 载荷要求:适用于承受较大水平和垂直载荷的工程,如高铁桥梁、公路桥梁等。
3. 环境要求:适用于各种环境要求,如潮湿环境、高温环境等。
四、工艺原理波形钢腹板工字型钢-砼组合梁的施工工法与实际工程之间的联系主要体现在以下几个方面:1. 材料选用:选择优质的工字型钢和钢筋砼材料,保证梁体的强度和耐久性。
2. 工艺流程:通过预制工字型钢腹板和钢筋砼构件,进行现场组装和浇筑,形成组合梁体。
3. 施工措施:采取适当的固定、支撑措施,确保构件的稳定性和平衡性。
4. 防腐措施:对工字型钢进行防腐处理,提高梁体的耐候性和抗腐蚀能力。
五、施工工艺波形钢腹板工字型钢-砼组合梁的施工工艺包括以下几个施工阶段:1. 材料准备:准备工字型钢腹板、钢筋和混凝土等材料。
2. 加工制作:对工字型钢腹板进行切割、弯曲和焊接等加工工艺,制作成预制构件。
3. 提升安装:使用合适的设备将预制构件提升到施工位置,进行安装和固定。
4. 砼灌注:在预制构件之间进行钢筋布置,然后进行砼灌注,形成整体梁体。
波形钢腹板工字型钢-砼组合梁架设施工工法

波形钢腹板工字型钢-砼组合梁架设施工工法波形钢腹板工字型钢-砼组合梁架设施工工法一、前言波形钢工字型钢-砼组合梁架设施工工法是一种用于建筑、桥梁等工程中的梁架设施工工法。
该工法利用波形钢腹板工字型钢和砼的优点,实现了梁体的高强度和轻量化,逐渐被广泛应用于各类工程中。
二、工法特点1. 结构简单:采用波形钢腹板工字型钢与砼相结合,梁体构造简单,施工便利。
2. 强度高:波形钢腹板工字型钢具有较高的强度和刚度,能够承受大的荷载。
3.轻量化:相较于传统的混凝土梁,波形钢腹板工字型钢-砼组合梁具有轻量化的特点,减轻了结构负荷。
4. 抗震性好:砼的高抗震性能与波形钢腹板工字型钢的刚性结合,使得组合梁具有良好的抗震性能。
三、适应范围该工法适用于大跨度的桥梁、高层建筑等工程,特别适合于设计荷载较大的工程。
同时,由于工法具有轻量化的特点,还适用于新旧结构改造工程。
四、工艺原理波形钢腹板工字型钢-砼组合梁的工艺原理是将波形钢腹板工字型钢与砼进行连接,形成一个整体的组合梁。
该工法通过砼充填工字型钢中的腹板孔洞,提高了梁的整体刚性;同时,通过刚性连接使工字型钢与砼之间产生摩擦力,增强了梁的承载力。
五、施工工艺1. 组合梁制作:首先按照设计要求制作好波形钢腹板工字型钢,在工字型钢的腹板上预先打孔。
然后,在现场砼浇筑时,将砼内的配筋穿过腹板中的孔洞,使工字型钢与砼连接在一起。
2. 组合梁安装:将制作好的组合梁吊装至预定位置,然后使用专用的安装夹具将梁固定在支座上。
3. 砼充填:在组合梁的空腔中充填砼,使砼与工字型钢和砼腹板之间形成紧密的连接,提高整体刚性。
六、劳动组织施工过程需要合理安排施工人员,包括梁体制作人员、安装人员、现场管理人员等。
根据工程规模和要求,确定合理的劳动组织方案。
七、机具设备1. 钢综合拆除机:用于组合梁的卸载和拆除。
2. 起重机:用于组合梁的吊装。
3. 插筋机:用于将配筋穿过工字型钢腹板的孔洞。
4. 灰斗:用于砼的运输和浇筑。
波形钢腹板组合箱梁桥

三.技术特点
• 自重减轻:用波形钢腹板替代混凝土腹板,主梁 自重约可以减轻20%;抗震性能提高。
• 施工方便:钢腹板制作实行工厂化,架设方便, 便于进行质量控制。
• 减少病害:减少预应力混凝土桥腹板斜裂缝,跨 中下挠等病害。
四.国内工程应用现状
已建桥梁近10座,主要为跨径较小(30m以下)的 简支梁或连续梁桥。
悬臂施工(错位浇注)
波形钢腹板桥悬臂错位施工的优势:
1. 减小挂篮规模和重量 2. 缩短工期,减小劳力 3. 合拢段施工调整方便 4. 减少施工期两侧不平衡弯矩 5. 提高经济性,节约施工成本
目前日本波形钢腹板桥基本上都采用错位施工法。
目前规划和施工中有10余座,如:鄄城黄河大桥, 卫河大桥等较大跨径桥梁,大径桥梁的制作和施 工经验有待积累。
鄄城黄河大桥
五.主要施工方法
• 预制吊装 • 预制节段拼装 • 满堂支架施工 • 悬臂施工 • 顶推施工
预制吊装
运用于:桥梁所在地的低级较弱,主梁下方空间 狭窄,难以搭建满堂支架。
预制节段拼装
波折腹板组合箱梁桥
主讲人:凌昊敏 交通1101
内容构成
组合梁桥的分类 波形钢腹板桥概要 波形钢腹板桥的技术特点 国内工程应用现状 主要施工方法
一. 组合箱梁的分类
闭合截面组合箱梁
组合箱梁
槽型截面组合箱梁 双重截面组合箱梁
波折腹板组合箱梁
二. 波形钢腹板桥的概要
用波形钢板代替混凝土箱梁桥腹板的组合结构桥梁形式, 在法国首次采用,在日本应用最为广泛(近200座桥)。
波形钢腹板箱梁结构及基本力学性能分析

波形钢腹板箱梁结构及基本力学性能分析波形钢腹板箱梁结构及基本力学性能分析摘要波形钢腹板PC组合箱梁是一种新型的钢-混凝土组合结构形式,传统的预应力混凝土箱梁桥相比还是与加劲的平钢腹板PC箱梁桥相比,它在结构性能、减少工程量、缩短工期以及降低成本等方面具有很大的优势。
本文首先介绍了波形钢腹板PC组合箱梁的结构特点,然后分析了这种结构的基本力学性能,包括腹板纵向刚度,弯曲及破坏特点,剪应力分布特征及剪切刚度,扭转特性及抗弯性能。
关键词:桥梁工程;波形钢腹板;结构体系;力学性能0前言波形钢腹板PC组合箱梁是一种新型的钢-混凝土组合结构形式,混凝土集中在了上、下翼缘板等力臂较大的区域,而中和轴附近力臂较小的区域采用了刚度小重量轻的波形钢板,充分利用了钢和混凝土的性能,提高了材料的利用率,大大减轻了箱梁的自重[1-2]。
波形钢腹板PC组合箱梁采用了箱内体外预应力技术,便于桥梁的维修和补强。
波形钢腹板预应力混凝土组合箱梁桥与同跨度的高强预应力混凝土桥相比可大大节约成本。
波形钢腹板PC组合箱梁桥巧妙地结合钢和混凝土,提高了结构的稳定性、强度及材料的使用效率,是一种值得推广的新型桥梁结构形式。
1结构体系及特点图1波形钢腹板PC组合箱梁结构示意图目前建成的波形钢腹板组合梁桥,主梁截面形式分为两种:一种是箱形截面,此时两片波形腹板倾斜放置,另一种是工字形截面,此时一片波形腹板竖直放置。
而绝大多数波形钢腹板预应力混凝土组合梁桥采用了箱形截面,即波形钢腹板PC组合箱梁。
本节将以箱梁为例来介绍波形钢腹板组合梁的结构构造特点。
图1所示为波形腹板组合箱梁的示意,由混凝土顶底板、波形钢腹板、横隔板、体内外预应力钢筋或钢索以及转向块等构成。
通过采用波形形状的钢腹板形成钢板与混凝土的组合箱梁截面体系,能够更加有效地施加预应力。
与预应力混凝土箱梁相比较,在混凝土腹板置换成波形钢板后,箱梁整体的横向刚度及其抗扭刚度都不同程度的减小了,因此,对立面布置、体外索及其横隔梁布置的要求也不同程度地与混凝土箱梁不同。
波形钢腹板PC组合连续梁桥设计

波形钢腹板PC组合连续梁桥设计1 波形钢腹板PC组合箱梁的特点波形钢腹板预应力混凝土(PC)组合箱梁结构是一种新型的钢—预应力混凝土组合结构(图1)。
图1 波形钢腹板箱梁这种组合箱梁结构的特点是:占自重25%左右的腹板采用轻型波形钢板,大幅度减轻了箱梁的自重,使基础工程在内的下部结构减少,从而降低了材料用量和造价。
由于不需要混凝土腹板,相应减少了钢筋和模板的拼装、拆除作业,缩短了工期。
在结构上看,波形钢腹板PC组合箱梁充分利用了混凝土抗压,波形钢腹板质轻、抗剪屈服强度高的优点。
波形钢板最早应用在船舶、集装箱以及机翼地制造中,后来开始应用在民用建筑之中,瑞典早在二十世纪六十年代,就将冷轧波形钢板梁用于较大跨径的屋顶主梁。
这种波形钢腹板因其在轴向为折叠状板,当受到轴向预压力作用时能自由压缩,因此由上、下混凝土翼板的徐变、干燥收缩产生的变形几乎不受约束,从而避免了由于钢腹板的约束作用而造成箱梁截面预应力的损失。
用波形钢板代替平面钢腹板,不仅减轻了箱梁自重,而且也省去了设置纵横向加劲肋的繁杂工艺,钢板的加工更为便利。
与混凝土腹板箱梁相比,仅有十几毫米厚的钢板所能承受的剪力对混凝土腹板来说,将达数十厘米厚,其重量仅为混凝土腹板的1/20左右,同时波形钢板具有很高的抗剪屈曲强度,抗剪的要求很容易满足。
更为重要的是,波形钢腹板有效地解决了传统的预应力混凝土箱梁腹板易出现斜裂缝的问题。
波形钢腹板PC组合箱梁所具有的区别于一般PC箱梁的特点,主要表现在波形钢腹板、体外预应力束布置、波形钢板与上下混凝土板的结合,即抗剪连接件等几方面。
近年来,我国展开了这种结构的力学性能、工程设计和施工方法等方面的研究[1-5],并已经建造了几座波形钢腹板PC组合箱梁桥。
2 结构设计本桥为上海市中环高架道路上中路越江隧道~申江路济阳路立交SW匝道,为上海市第一座此类桥梁。
该桥为两跨45+45m等高预应力波形钢腹板PC组合连续箱梁桥。
波形钢腹板箱梁桥的设计和施工

第10章波形钢腹板PC箱梁的设计和施工10.1波形钢腹板PC箱梁概述10.1.1波形钢腹板PC箱梁的特点波形钢腹板PC箱梁是上世纪80年代法国最先开发的一种新型组合结构,即用波形钢腹板(CSW:Corrugated Steel Web)替代PC箱梁的混凝土腹板,取得比PC箱梁更优的结构。
与PC箱梁相比具有以下优点:①钢腹板为波形,有较大的抗剪压屈强度。
而且,CSW在轴向力作用下具有“手风琴”效应,不承受轴向力,预应力不分流给钢腹板,提高了作用在上、下混凝土板上的预应力效率,减少了预应力钢材用量。
②通常PC箱梁的腹板约占主梁自重的20-30%,采用CSW板可减轻主梁自重约20%,从而,可延伸跨长,节省建设费用。
另外,悬臂架设时,由于每一节段重量减轻,可加大架设节段长度,减少架设循环次数,缩短工期。
③由于没有混凝土腹板,省略了腹板的钢筋绑扎和灌注混凝土工序,可期待施工的合理化、省力化,也可提高质量和耐久性。
④主梁自重较轻,减少了作用在下部结构上的荷载,可减小基础的规模。
⑤自重较轻,降低了地震时的惯性力,是抗震性相对较优的结构。
图10.1为CSW PC箱梁概念图。
图10.1 CSW PC箱梁概念图然而,CSW PC箱梁实用历史较短,设计、施工规范尚未健全。
在结构趋于破坏阶段,材料性能非线性和几何非线性两者的复合非线性理论分析目前尚不完善,今后仍有进一步研究的空间。
10.1.2波形钢腹板PC箱梁的发展CSW作为材料很早就用于工程结构,欧洲在飞机机身、集装箱上都采用波形钢板,以利于减轻自重,增大刚度。
日本于1960年就已在钢铁厂的吊车轨道梁(约10Km长)上采用波形板作腹板。
上世纪80年代末,法国首先采用CSW板代替PC箱梁的混凝土腹板,于1986年建成了Cognac桥。
对CSW PC箱梁桥推广产生影响的是1994年建成的Dole桥。
表1是法国CSW PC箱梁桥。
日本于1993年建成了第一座CSW PC箱梁桥,至今已建成近百座,远超过了法国,见表2。
波形钢腹板组合梁结构创新及施工方法

波形钢腹板组合梁结构创新及施工方法摘要:波形钢腹板组合梁桥是一种采用波形钢腹板代替传统的混凝土腹板,与混凝土顶、底板连接形成的组合结构形式桥梁。
其混凝土顶、底板几乎承受了组合截面的全部弯矩,而波形钢腹板承受了组合截面剪力的主要部分,充分发挥预应力混凝土和钢材这两种材料的性能。
主要介绍该形式桥梁在结构设计、预应力效率、截面抗剪性能以及结构抗震性能等方面的特点;介绍该桥型的应用现状,分析比较其适用范围。
关键词:波形钢腹板、组合梁桥、概述、施工方法一、概述波形钢腹板组合梁桥是“波形钢腹板一预应力混凝土组合梁桥”的简称,是一种采用波形钢腹板(沿桥轴方向呈褶皱状、沿竖向为平直状)取代使用混凝土的传统腹板形式的新型组合梁桥。
较釆用混凝土腹板的桥梁结构形式,该桥型实际上取消了箱梁(或工字梁)的腹板所使用的混凝土材料,取而代之为更为轻巧的钢腹板,从而降低主梁自身重量;同时由于腹板形状为纵向刚度较低的波纹形,解决了由于平直钢腹板对混凝土顶、底板纵桥向变形的限制作用而造成的降低截面预应力效率。
该桥型最早由法国 Campenon Bernard公司于1975年提出,并于1986年在法国建成首座该型桥梁— Cognac桥。
此后,在欧洲、亚洲、南美等地区修建了大量该型桥梁。
我国从20世纪80年代开始研究波形钢腹板组合梁桥,并于2005年建成首座波形钢腹板组合梁桥,至今已有一百多座波形钢腹板一PC组合梁桥,并在大跨度结构形式桥梁中多次运用。
目前我国交通主管部门已发布了该型桥梁用的波形钢腹板产品规范。
此外,已有部分省份制订了波形钢腹板组合梁桥的地方标准或规范,对该桥型的设计有一定的指导作用。
波形钢腹板有较高的应用价值,随着施工技术和施工设备的不断成熟,其应用价值也在不断提高。
波形钢腹板在桥梁结构中的应用案例不断增加,且均获得了良好的应用效果,提升了桥梁结构的各项性能,如在连续梁、简支梁、斜拉桥、组合桥梁结构中,波形钢腹板能有效保障桥梁的安全性及力学性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要钢-混凝土组合结构桥梁在日本和欧美得到了广泛应用,其特点在于它充分利用了混凝土和钢的材料特点。
本文通过分析波形钢腹板预应力混凝土组合箱梁的构造特征和力学特性,阐述了这种新型组合结构的设计方法,并介绍了国外的桥梁实例。
关键词波形钢腹板预应力混凝土组合结构结构设计1引言随着体外预应力技术的日趋成熟和新型建筑材料的发展,许多国家的工程师都在对大跨径桥梁的主梁轻型化问题进行研究。
在上世纪八十年代,法国首先设计并建造了以波形钢腹板代替箱梁的混凝土腹板的新型组合结构桥梁-Cognac桥,其后又相继建造了Maupre高架桥、Asterix桥和Dole等数座波形钢腹板的组合结构桥梁,该形式箱梁的典型结构如图1所示。
自上世纪九十年代起,日本也对该类形式的桥梁进行了研究,在参考法国同类桥梁的基础上,先后修建了新开桥、本谷桥、松木七号桥等一系列桥梁,其中有连续梁桥,也有连续刚构桥,拓宽了其使用范围,发展了设计和施工技术。
波形钢板即折叠的钢板,具有较高的剪切屈曲强度,用它作为混凝土箱梁的腹板,不但充分满足了腹板的力学性能要求,而且大幅度减轻了主梁自重,缩减了包括基础在内的下部结构所承受的上部恒载,还省去了施工时在腹板中布置钢筋、设置模板等繁杂的工作。
此外,波形钢板纵向伸缩自由的特点使得其几乎不抵抗轴向力,能更有效地对混凝土桥面板施加预应力,提高了预应力效率。
这种组合结构能减少工程量、缩短工期、降低成本,在施工性能和经济性能方面都具有很大的吸引力。
2设计方法当桥梁上部采用波形钢腹板预应力混凝土组合箱梁的结构形式时,和普通的钢筋混凝土箱梁桥一样,其设计需要针对施工和使用阶段的不同要求。
施工阶段的计算要结合具体的施工形式,比如,连续梁桥可以采用悬臂施工、顶推法施工或其它的方法,主要的计算荷载有自重、预应力、混凝土不同龄期的收缩徐变、施工荷载等。
使用阶段则要考虑汽车荷载、风荷载、温度荷载等。
箱梁内通常同时设置体内和体外预应力,由混凝土顶板和底板内的体内预应力抵抗施工荷载和恒载,箱内的体外预应力用来抵抗活载。
这样考虑的原因之一,是为了满足更换体外预应力钢束时结构的受力要求。
2.1纵向抗弯计算波形钢腹板在轴向力的作用下,轴向变形很大,表现出来的等效弹性模量很小。
波形钢板在纵向的等效弹性模量和板厚、波纹形状有关,可由下式计算Ex=αE(t/h)2(1)式中,Ex为等效轴向弹性模量;E为钢材的弹性模量;t为钢板厚度;α为波纹的形状系数。
根据此式,日本新开桥Ex=E/617。
已进行的模型实验和有限元计算的结果,进一步证实波形钢腹板在受弯时纵向正应力、正应变很小,可以忽略,即在进行截面抗弯设计时,只考虑混凝土顶板和底板的作用,并近似的认为混凝土顶板和底板内的纵向正应变符合线性分布规律,仍然按照平截面假定计算应力、布置预应力钢束。
2.2抗扭计算箱梁在偏心荷载作用下,截面将发生扭转变形。
在混凝土腹板箱梁中,扭转的影响并不大,但在波形钢腹板箱梁中,由于腹板的弯曲刚度和混凝土顶板、底板相比小得多,这对截面扭转变形的影响显著增大,会在混凝土板内产生较大的扭转翘曲应力。
到目前为止,关于波形钢腹板箱梁扭转刚度的计算还没有明确的结论。
通过对建成的该类桥梁的技术总结和研究,日本工程师上平等人提出了一种计算其抗扭刚度的方法(2)式中,Jt为抗扭刚度;Am为箱梁的横截面面积;b1为箱体的宽度;h1为波形钢腹板的高度;ns为钢材和混凝土剪切模量的比值;t为构件的厚度;α为修正系数(3)实际设计当中,鉴于截面扭转刚度和横隔板布置有密切关系,在不过于增加主梁自重的前提下,适当增加横隔板数量并调整间距可以有效的保证箱梁抗扭刚度。
2.3波形钢腹板的应力计算波形钢腹板主要承受剪应力。
在设计中可以偏保守地假定结构所有的剪应力都由波形钢腹板承受,忽略混凝土顶板和底板对剪应力的抵抗作用,从而计算出波形钢腹板所需的最小厚度。
波形钢腹板不仅承受上述剪应力,同时也承受横向弯曲所引起的弯曲应力,因此必须对波形钢腹板的合成应力进行验算,公式为(4)式中,σb为拉应力;σa为抗拉强度;τb为剪应力;τa抗剪强度;γ为安全系数,建议取值为1.2。
2.4波形钢腹板的屈曲稳定性计算波形钢腹板的屈曲破坏主要有三种模
式(如图2所示)。
(1)局部屈曲模式波形钢腹板的某一个波段部分出现屈曲破坏的现象。
局部屈曲强度的计算可按下式(5) 式中,τcr?熏L为局部屈曲强度;E为钢材的弹性模量;ν为钢材的泊松比;b为腹板的高度;a为波段长;K为屈曲系数,有(6) (2)整体屈曲模式波形钢腹板整体出现屈曲破坏的现象。
整体屈曲强度的计算可按照下式(7) 式中,τcr?熏G为整体屈曲强度;β为波形钢腹板两端的固定度系数;E为钢材的弹性模量;Iy为y轴的惯性矩;Ix为x轴的惯性矩,t为钢板的厚度;b为腹板的高度。
(3)合成屈曲模式波形钢腹板同时出现局部屈曲破坏和整体屈曲破坏的现象,是处于局部屈曲和整体屈曲中间的屈曲模式。
合成屈曲强度由下式计算(8)式中,τcr为合成屈曲强度;τcr?熏L为局部屈曲强度;τcr?熏G为整体屈曲强度。
2.5波形钢腹板和混凝土顶板、底板的连接模型实验表明,在加载后期,除了底板横向开裂外,波形钢腹板与底板交界处沿纵向开裂,随着裂缝的发展,结构刚度迅速降低,最终导致破坏,破坏特征为腹板和底板的连接部碎裂(如图3所示)。
波形钢腹板和混凝土顶板、底板的连接直接关系到结构的承载力,是设计此类桥梁中非常关键的环节。
对于连接部的设计,通常的做法是在波形钢腹板的上下端焊接钢制翼缘板,翼缘板上焊接剪力钉,使之与混凝土板结合在一起(图4-a)。
还可以采用在钢腹板上钻孔,穿过钢筋,再在钢板的上下端部焊接纵向约束钢筋后埋入混凝土板的做法(图4-b)。
在此基础上,还可衍生出其它的连接方法。
3工程实例自1993年起,日本从法国引进了波形钢腹板组合结构的技术,目前,日本大力鼓励设计人员在主要高速公路中采用这种结构形式。
正在建设中的中野高架桥是日本关西地区阪神高速公路段的一部分,为采用波形钢腹板预应力混凝土组合箱梁的四跨连续梁桥。
全桥的立面布置见图5。
主梁为单箱单室的变高度箱梁,同时设置了体外和体内预应力体系。
支点梁高4.0~4.6m,跨中梁高2.0~2.2m,梁高按照二次抛物线变化。
波形钢腹板采用抗拉强度490MPa、抗剪强度205MPa的耐腐蚀钢板,波长1.2m,波高200mm,钢板厚度9~19mm。
为了提高主梁的横向抗变形能力,除在支点和体外预应力的转向处设置横隔板,还在纵向的不同位置加设了横隔板。
主梁截面和波形钢腹板的一般构造见图6。
该桥的上部结构采用悬臂浇筑法施工,墩顶的0号节段长12m,在墩架上现浇。
其余节段分别长3.6m和4.8m,均在挂篮上悬臂浇筑混凝土及拼装钢腹板。
4结语钢-混凝土组合结构桥梁的设计和建造在国内起步比较晚,尤其是本文介绍的波形钢腹板预应力混凝土组合箱梁桥在国内尚无实桥。
与此同时,法国、德国,尤其是日本相继建设了数座此种类型的桥梁,设计和施工技术日益成熟。
波形钢腹板预应力混凝土组合箱梁,特别适合于中、大跨径的连续梁桥。
随着国内对这种结构的研究分析工作的开展,波形钢腹板预应力混凝土组合箱梁桥将会在我国的桥梁建设中得到应用。
参考文献〔1〕刘岚,崔铁万编译.本谷桥的设计与施工.国外桥梁,1999(3):18-25〔2〕刘磊,钱冬生.波形钢腹板的受力行为.铁道学报,2000(增):53-56〔3〕近藤昌泰?熏等.波形钢腹板PC箱梁新开桥设计与施工.桥梁与基础(日),1994(9):13-20〔4〕MElgaaly,RWHamilton,ASeshadri.ShearStrengthofBeamswithCorrugatedWebs.JournalofStructuralEngi-neering,ASCE,1996,122(4):390-398〔5〕MElgaaly,ASeshadri,RWHamilton.BendingStrengthofSteelBeamswithCorrugatedWebs.JournalofStructuralEngineering,ASCE,1997,123(6):772-782。