初中数学中考方案设计题
中考数学专题实际应用题(解析版)

【答案】(1)去年餐饮收入11万元,住宿收入5万元;(2)今年土特产销售至少有6.4万元的收入
【解析】
【分析】
(1)设去年餐饮收入为x万元,住宿为收入y万元,根据题意列出方程组,求出方程组的解即可得到结果;
(2)设今年土特产的收入为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.
【详解】解:(1)设去年餐饮收入x万元,住宿收入y万元,
依题意得: ,
解得: ,
答:去年餐饮收入11万元,住宿收入5万元;
【答案】(1) ;(2)①60,②20,1500;(3)当 时,捐赠后 每天的剩余利润不低于1025元
【解析】
【分析】
(1)从表格中取点代入一次函数解析式即可求解;(2)①由表格信息规律直接填写答案,或利用(1)中的函数解析式,求当 时的函数值.②建立W与 的函数关系式,利用二次函数性质求最大值即可.(3)先求捐赠后的利润为1025元时的销售单价,再利用二次函数的性质直接下结论即可;
2.(2019年重庆市中考数学模拟试卷5月份试题)今年五一期间,重庆洪崖洞民俗风情街景区受热棒,在全国最热门景点中排名第二.许多游客慕名来渝到网红景点打卡,用手机拍摄夜景,记录现实中的“千与千寻”,手机充电宝因此热销.某手机配件店有A型(5000毫安)和B型(10000毫安)两种品牌的充电宝出售
(1)已知A型充电宝进价40元,售价60元,B型充电宝进价60元,要使B型充电宝的利润率不低于A型充电宝的利润率,则B型充电宝的售价至少是多少元(利润率= ×100%)
方案问题七年级数学应用题

1.小明去超市购买了一些商品,他给了收银员100元,收银员找给他12元。
请问小明总共支付了多少钱?答案:小明总共支付了88元。
因为小明给了收银员100元,收银员找给他12元,所以小明实际支付的钱数是100元 - 12元 = 88元。
2.小华和小明一起打篮球,小华投篮得分2分,小明投篮得分3分。
请问他们两个人总共得了多少分?答案:小华和小明总共得了5分。
因为小华得分是2分,小明得分是3分,所以他们两个人总共得分的和是2+3=5分。
3.小红有4本故事书,小丽有3本故事书,她们决定把所有的书都放在一个书架上。
请问书架上总共有多少本书?答案:书架上总共有7本书。
因为小红有4本书,小丽有3本书,所以书架上总共有的书的数量是4+3=7本。
4.小刚和小强都喜欢吃糖果,小刚吃了4颗糖果,小强吃了6颗糖果。
请问他们两个总共吃了多少颗糖果?答案:小刚和小强总共吃了10颗糖果。
因为小刚吃了4颗糖果,小强吃了6颗糖果,所以他们两个总共吃的糖果数量是4+6=10颗。
5.小莉买了2支铅笔,每支2元;又买了3本练习本,每本3元。
请问小莉总共花了多少钱?答案:小莉总共花了11元。
因为小莉买了2支铅笔和3本练习本,而每支铅笔2元,每本练习本3元,所以她总共花费是2×2+3×3=11元。
6.小张去市场买菜,他买了3斤猪肉,每斤10元;又买了2斤牛肉,每斤15元。
请问小张总共花了多少钱?答案:小张总共花了75元。
因为小张买了3斤猪肉和2斤牛肉,猪肉每斤10元,牛肉每斤15元,所以他的总花费是3×10+2×15=75元。
7.学校要举办一场运动会,需要学生购买统一的运动服。
运动服的价格是每套50元。
如果一个班级需要购买30套运动服,请问这个班级需要支付多少钱?答案:这个班级需要支付1500元。
因为每套运动服的价格是50元,班级需要购买30套运动服,所以总价是50×30=1500元。
8.一个农场有10头牛和5只羊,每头牛每天需要吃3千克的饲料,每只羊每天需要吃2千克的饲料。
2023年广州市初中数学中考卷

专业课原理概述部分一、选择题(每题1分,共5分)1. 下列选项中,既是有理数又是无理数的是()。
A. 0B. πC. √9D. √22. 下列各数中,3的算术平方根是()。
A. 9B. √3C. 1/3D. 33. 下列函数中,是一次函数的是()。
A. y = 2x²B. y = 3xC. y = 1/xD. y = x² + 14. 下列几何图形中,是平行四边形的是()。
A. 等腰三角形B. 矩形C. 梯形D. 直角三角形5. 下列方程中,是一元二次方程的是()。
A. x + y = 1B. x² + y² = 1C. x² + 2x + 1 = 0D. 2x + 3y = 4二、判断题(每题1分,共5分)1. 任何实数都可以表示为分数形式。
()2. 同类二次根式可以进行加减运算。
()3. 一次函数的图像是一条直线。
()4. 平行四边形的对角线互相平分。
()5. 一元二次方程的解可能是两个不相等的实数。
()三、填空题(每题1分,共5分)1. 已知 a = 2,b = 3,则a² + b² = _______。
2. 若x² 2x + 1 = 0,则 x = _______。
3. 一次函数 y = kx(k ≠ 0)的图像是一条过_______的直线。
4. 平行四边形的对边_______。
5. 一元二次方程ax² + bx + c = 0(a ≠ 0)的判别式是_______。
四、简答题(每题2分,共10分)1. 简述实数的分类。
2. 解释同类二次根式的概念。
3. 描述一次函数的性质。
4. 说出平行四边形的一个性质。
5. 解释一元二次方程的解的概念。
五、应用题(每题2分,共10分)1. 已知 a = 3,b = 4,求a² + b² 的值。
2. 解方程x² 3x + 2 = 0。
九年级数学中考第二轮复习—方案设计问题冀教版

初三数学中考第二轮复习—方案设计问题冀教版【本讲教育信息】一. 教学内容:专题四:方案设计问题二. 知识要点:这类问题常常给出问题情景与解决问题的要求,让学生设计解决问题的方案,或给出多种不同方案,让学生判断它们的优劣.解这类问题的关键是寻找相等关系,利用函数的图像和性质解决问题;或列出相关不等式(组),通过寻求不等关系找到问题的答案;或利用图形变换、解直角三角形解决图形的设计方案、测量方案等.三. 考点分析:近年来,在各地的中考试题中,出现了方案设计题.方案设计题可以综合考查学生的阅读理解能力、分析推理能力、数据处理能力、文字概括能力、动手能力等.方案设计题还呈现出创新、新颖、异彩纷呈的新趋势.【典型例题】题型一利用方程(组)进行方案设计例1.一牛奶制品厂现有鲜奶9t.若将这批鲜奶制成酸奶销售,则加工1t鲜奶可获利1200元;若制成奶粉销售,则加工1t鲜奶可获利2000元.该厂的生产能力是:若专门生产酸奶,则每天可用去鲜奶3t;若专门生产奶粉,则每天可用去鲜奶1t.由于受人员和设备的限制,酸奶和奶粉两产品不可能同时生产,为保证产品的质量,这批鲜奶必须在不超过4天的时间内全部加工完毕.假如你是厂长,你将如何设计生产方案,才能使工厂获利最大,最大利润是多少?分析:要确定哪种方案获利最多,首先应求出每种方案各获得的利润,再比较即可.解:生产方案设计如下:(1)将9t鲜奶全部制成酸奶,则可获利1200×9=10800元.(2)4天内全部生产奶粉,则有5t鲜奶得不到加工而浪费,且利润仅为2000×4=8000元.(3)4天中,用x天生产酸奶,用4-x天生产奶粉,并保证9t鲜奶如期加工完毕.由题意,得3x+(4-x)×1=9.解得x.∴4-x(天).故在4天中,,,则利润为(×3××1×2000)元=12000元.答:按第三种方案组织生产能使该厂获利最大,最大利润是12000元.评析:运用数学知识解决现代经济生产中的实际问题是中考的热点考查对象之一,同学们应多关心商品经济,生活中的规律、规则,把数学与生活有机结合起来.题型二利用不等式进行方案设计例2.某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲,乙两种机器供选择,其中每台机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不低于380个,那么为了节约资金应选择哪种购买方案?分析:(1)可设购买甲种机器x 台,然后用x 表示出购买甲、乙两种机器的实际费用,根据“本次购买机器所耗资金不能超过34万元”列不等式求解.(2)分别算出(1)中各方案每天的生产量,根据“日生产能力不低于380个”与“节约资金”两个条件选择购买方案.解:(1)设购买甲种机器x 台,则购买乙种机器(6-x )台, 则:7x +5(6-x )≤34,解得x ≤2, 又x ≥0,∴0≤x ≤2,∴整数x =0、1、2, ∴可得三种购买方案: 方案一:购买乙种机器6台;方案二:购买甲种机器1台,乙种机器5台; 方案三:购买甲种机器2台,乙种机器4台. (2)列表如下:由于方案一的日生产量小于380个,因此不选择方案一;•方案三比方案二多耗资2万元,故选择方案二.评析:①部分实际问题的解通常为整数;②方案的各种情况可以用表格的形式表达;③对关键词“不低于”、“至少”、“不少于”的理解是解本例的关键.题型三 利用函数进行方案设计例3.已知某种水果的批发单价与批发量的函数关系如图(1)所示. (1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w (元)与批发量m (kg )之间的函数关系式;在下图(2)的坐标系中画出该函数图象;指出金额在什么X 围内,以同样的资金可以批发到较多数量的该种水果.图(1)m (kg )图(2)(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(3)所示,该经销商拟每日售出60kg 以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.图(3)分析:(1)中注意图像中的圆圈表示不包括该点;(2)中金额w (元)与批发量m (kg )之间的函数关系式分两部分,实际是两个函数图像.当240<w ≤300时,批发量m 有两个值,可比较这两者的大小;当w 取其他值时,m 只有一个值.(3)利用二次函数的最值求获得最大利润的进货和销售方案.解:(1)图(1)中①表示批发量不少于20kg 且不多于60kg 的该种水果,可按5元/kg 批发;②表示批发量高于60kg 的该种水果,可按4元/kg 批发.(2)解:由题意得:w =⎩⎪⎨⎪⎧5m (20≤m ≤60)4m (m >60) ,函数图象如图(4)所示.由图可知资金金额满足240<w ≤300时,以同样的资金可批发到较多数量的该种水果.(3)解法一:设当日零售价为x 元,由图可得日最高销量m =320-40x , 当m >60时,x <6.5,由题意,销售利润为: y =(x -4)(320-40x )=40[-(x -6)2+4], 当x =6时,y 最大=160,此时m =80,即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元. 解法二:设日最高销售量为xkg (x >60),则由图(3)日零售价p 满足:x =320-40p ,于是p =320-x40, 销售利润y =x (320-x 40-4)=-140(x -80)2+160,当x =80时,y 最大=160,此时p =6,即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.m (kg )图(4)评析:本题考查同学们的读图能力,解题关键是数形结合,弄清题目的数量关系.题型四 利用解直角三角形进行方案设计例4. 如图所示,小山上有一棵树.现有测角仪和皮尺两种测量工具,请你设计一种测量方案,在山脚水平地面上测出小树顶端A 到水平地面的距离AB . 要求:(1)画出测量示意图.(2)写出测量步骤.(测量数据用字母表示) (3)根据(2)中的数据计算AB .分析:本题是一道开放性问题,设计方案时要注意测角仪有高度,同时还要注意测量所需数据可用a 、b 、c 、d 以及角度α、β来表示.最后还要注意直角三角形的模型.解:(1)测量图(示意图)如图所示.ABCD EFH αβhhm(2)测量步骤:第一步:在地面上选择点C 安装测角仪,测得此时树尖A 的仰角∠AHE =α. 第二步:沿CB 前进到点D ,用皮尺量出C 、D 之间的距离CD =m . 第三步:在点D 安装测角仪,测得此时树尖A 的仰角∠AFE =β. 第四步:用皮尺量出测角仪的高h .(3)AB =αββαtan tan tan tan m -⋅+h .评析:利用解直角三角形进行方案设计时一定要使用题目中所给的测量工具,而不能利用题目以外的测量工具.同时还要关注测量时是否有障碍物,是用具体的数值表示还是用字母表示等.本题的易错点在于同学们容易忽视测角仪的高度.设计测量方案时,结合我们平时在解直角三角形中已经建立的模型来考虑是一条捷径.题型五 利用统计和概率进行方案设计例5. 某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分): 方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数. 方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.如图所示是这个同学的得分统计图.(1)分别按上述4个方案计算这个同学演讲的最后得分.(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.分析:对于题目中的四种方案我们可以分别计算出结果,只要注意平均数、中位数、众数的概念及三种统计量的意义即可.解:(1)方案1最后得分: 110(3.2+7.0+7.8+3×8.0+3×8.4+9.8)=7.7. 方案2最后得分:18(7.0+7.8+3×8.0+3×8.4)=8.方案3最后得分:8. 方案4最后得分:8或8.4.(2)因为方案1中的平均数受较大或较小数据的影响,不能反映这组数据的“平均水平”,所以方案1不适合作为统计最后得分的方案.因为方案4中的众数有两个,众数没有实际意义,所以方案4不适合作为统计最后得分的方案.评析:本题考查了统计中三个统计量的计算和意义的使用.题型六 实际应用图形方案设计例6. 在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm 的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切) (1)请说明方案一不可行的理由;(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆的半径;若不可行,请说明理由.A BCD ABDC方案一方案二分析:判断方案是否可行,可用反证法,假设方案可行,确定正方形的大小,与所给正方形进行比较得出结论.解:(1)理由如下:假设方案一可行.∵扇形的弧长=2π×16×14=8π,圆锥底面周长=2πr ,则圆的半径为4cm .由于所给正方形纸片的对角线长为162cm ,而制作这样的圆锥实际需要正方形纸片的对角线长为16+4+42=20+42cm ,20+42>162.∴假设不成立,故方案一不可行. (2)方案二可行.求解过程如下:设圆锥底面圆的半径为rcm ,圆锥的母线长为R cm ,则(1+2)r +R =162——①.2πr =2πR4——②.由①②,可得R =6425+2=3202-12823,r =1625+2=802-3223.故所求圆锥的母线长为3202-12823cm ,底面圆的半径为802-3223cm .评析:图形方案设计问题,关键要弄清楚设计要求,图形变化前后变化的量和不变的量.【方法总结】这类试题不仅要求学生要有扎实的数学双基知识,而且要能够把实际问题中所涉及的数学问题转化,抽象成具体的数学问题.从方法上分两类进行概括:(1)方案已知,要求选优;(2)先求方案,再选最优.【预习导学案】(专题五:开放探索性问题)一. 预习导学1. 如图所示,AC 、BD 相交于点O ,∠A =∠D ,请你再添加一个条件__________,使得∠ABC ≌△DCB .ABCDO2. 请同学们写出两个具有轴对称性的汉字__________.3. 已知二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,下列结论:①abc >0;②2a +b <0;③4a -2b +c <0;④a +c >0.其中正确的个数是( ) A .4个B .3个C .2个D .1个二. 反思1. 开放探索性问题有什么特征?2. 开放探索性问题的解题策略是什么?【模拟试题】(答题时间:50分钟)一. 选择题*1. 一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A. 4种B. 3种C. 2种D. 1种**2. 奥运期间,体育场馆要对观众进行安全检查。
(呼和浩特专版)中考数学复习方案 第五单元 四边形 课时训练25 正方形及中点四边形试题-人教版初中

课时训练(二十五)正方形及中点四边形(限时:45分钟)|夯实基础|1.[2019·某某]顺次连接菱形四边中点得到的四边形是()A.平行四边形B.菱形C.矩形D.正方形2.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图K25-1),现有下列四种选法,你认为其中错误的是()图K25-1A.①②B.②③C.①③D.②④3.[2018·某某]如图K25-2,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为25,DE=2,则AE的长为()图K25-2A.5B.√23C.7D.√294.[2019·某某]如图K25-3,边长为√2的正方形ABCD的对角线AC与BD交于点O,将正方形ABCD沿直线DF 折叠,点C落在对角线BD上的点E处,折痕DF交AC于点M,则OM=()图K25-3A .12B .√22 C .√3-1D .√2-15.[2019·某某]如图K25-4,在正方形ABCD 中,E 是BC 边上的一点,BE=4,EC=8,将正方形边的AB 沿AE 折叠到AF ,延长EF 交DC 于G.连接AG ,CF .现有如下四个结论:①∠EAG=45°;②FG=FC ;③FC ∥AG ;④S △GFC =14.其中结论正确的个数是()图K25-4A .1B .2C .3D .46.[2019·某某]如图K25-5,在正方形纸片ABCD 中,E 是CD 的中点,将正方形纸片折叠,点B 落在线段AE 上的点G 处,折痕为AF .若AD=4 cm,则CF 的长是 cm .图K25-57.[2019·某某]如图K25-6,已知点E 在正方形ABCD 的边AB 上,以BE 为边在正方形ABCD 外部作正方形BEFG ,连接DF ,M ,N 分别是DC ,DF 的中点,连接MN.若AB=7,BE=5,则MN=.图K25-68.[2019·某某]七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”.由边长为4√2的正方形ABCD 可以制作一套如图K25-7①所示的七巧板,现将这套七巧板在正方形EFGH 内拼成如图②所示的“拼搏兔”造型(其中点Q ,R 分别与图②中的点E ,G 重合,点P 在边EH 上),则“拼搏兔”所在正方形EFGH 的边长是.图K25-79.[2019·某某]如图K25-8,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.图K25-810.[2018·]如图K25-9,在正方形ABCD中,E是边AB上的一个动点(不与点A,B重合),连接DE,点A关于直线DE 的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.图K25-9|拓展提升|11.[2019·某某]如图K25-10,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12.点P在正方形的边上,则满足PE+PF=9的点P的个数是 ()图K25-10A.0B.4C.6D.812.[2019·某某]如图K25-11,在正方形ABCD中,AB=6,M是对角线BD上的一个动点0<DM<12BD,连接AM,过点M作MN⊥AM交边BC于N.(1)如图K25-11①,求证:MA=MN;(2)如图②,连接AN,O为AN的中点,MO的延长线交边AB于点P,当S△AMNS△BCD =1318时,求AN和PM的长;(3)如图③,过点N作NH⊥BD于H,当AM=2√5时,求△HMN的面积.图K25-11【参考答案】1.C2.B[解析] ∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故选项A不符合题意;∵四边形ABCD 是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD 是矩形,当③AC=BD 时,矩形满足该性质,无法得出四边形ABCD 是正方形,故选项B 符合题意; ∵四边形ABCD 是平行四边形,∴当①AB=BC 时,平行四边形ABCD 是菱形,当③AC=BD 时,菱形ABCD 是正方形,故选项C 不符合题意; ∵四边形ABCD 是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD 是矩形,当④AC ⊥BD 时,矩形ABCD 是正方形,故选项D 不符合题意.故选B . 3.D4.D[解析]在正方形ABCD 中,OC=OD ,AC ⊥BD ,由折叠可知,DF ⊥EC ,CD=DE=√2, ∴∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3, 又∵OC=OD ,∠DOM=∠COE=90°,∴△ODM ≌△OCE (ASA),∴OM=OE ,在Rt △BCD 中,BD=√(√2)2+(√2)2=2,∴OD=1,∴OE=DE -OD=√2-1,∴OM=√2-1,故选D .5.B[解析]由题易知AD=AB=AF , 则Rt △ADG ≌Rt △AFG (HL). ∴GD=GF ,∠DAG=∠GAF .又∵∠F AE=∠EAB ,∴∠EAG=∠GAF +∠F AE=12(∠BAF +∠F AD )=12∠BAD=45°,∴①正确; 设GF=x ,则GD=GF=x.又∵BE=4,CE=8,∴DC=BC=12,EF=BE=4. ∴CG=12-x ,EG=4+x.在Rt △ECG 中,由勾股定理可得82+(12-x )2=(4+x )2,解得x=6. ∴FG=DG=CG=6.∵∠AGD=∠AGF ≠60°, ∴∠FGC ≠60°,∴△FGC 不是等边三角形,∴②错误; 连接DF ,如图,由①可知△AFG 和△ADG 是对称型全等三角形,∴FD ⊥AG. 又∵FG=DG=GC ,∴△DFC 为直角三角形,∴FD ⊥CF ,∴FC ∥AG , ∴③正确;∵EC=8,CG=6,∴S △ECG =12EC ·CG=24,又∵S △FCG S △ECG =FG EG =35,∴S △FCG =35S △ECG =725.∴④错误,故正确结论为①③,选B .6.(6-2√5)[解析]由勾股定理得AE=2√5cm,根据题意得GE=(2√5-4)cm,设BF=x cm,则FC=(4-x )cm,∴(2√5-4)2+x 2=22+(4-x )2,解得x=2√5-2, ∴CF=(6-2√5)cm .7.132[解析]连接CF ,∵正方形ABCD 和正方形BEFG 中,AB=7,BE=5, ∴GF=GB=5,BC=7,∴GC=GB +BC=5+7=12, ∴CF=√GF 2+GC 2=√52+122=13.∵M ,N 分别是DC ,DF 的中点,∴MN=12CF=132.故答案为132.8.4√5[解析]如图,连接EG ,作GM ⊥EN 交EN 的延长线于M.在Rt △EMG 中,∵GM=4,EM=2+2+4+4=12, ∴EG=√EM 2+GM 2=√122+42=4√10, ∴EH=√2=4√5,故答案为:4√5.9.解:(1)证明:∵四边形ABCD 是正方形,∴∠BAE=∠ADF=90°,AB=AD=CD , ∵DE=CF ,∴AE=DF ,在△BAE 和△ADF 中,AB=AD ,∠BAE=∠ADF ,AE=DF ,∴△BAE ≌△ADF (SAS), ∴BE=AF .(2)由(1)得:△BAE ≌△ADF , ∴∠EBA=∠F AD ,∴∠GAE +∠AEG=90°,∴∠AGE=90°, ∵AB=4,DE=1,∴AE=3,∴BE=√AB 2+AE 2=5, 在Rt △ABE 中,12AB ·AE=12BE ·AG , ∴AG=3×45=125.10.解:(1)证明:连接DF ,如图.∵点A 关于直线DE 的对称点为F , ∴DA=DF ,∠DFE=∠A=90°. ∴∠DFG=90°.∵四边形ABCD 是正方形, ∴DC=DA=DF ,∠C=∠DFG=90°. 又∵DG=DG ,∴Rt △DGF ≌Rt △DGC (HL). ∴GF=GC.(2)如图,在AD 上取点P ,使AP=AE ,连接PE ,则BE=DP .由(1)可知∠1=∠2,∠3=∠4,从而由∠ADC=90°,得2∠2+2∠3=90°, ∴∠EDH=45°. 又∵EH ⊥DE ,∴△DEH是等腰直角三角形.∴DE=EH.∵∠1+∠AED=∠5+∠AED=90°,∴∠1=∠5.∴△DPE≌△EBH(SAS).∴PE=BH.∵△P AE是等腰直角三角形,从而PE=√2AE.∴BH=√2AE.11.D[解析] 如图,作点F关于CD的对称点F',连接PF',PF,则PE+PF=EF',根据两点之间线段最短可知此时PE+PF的值最小.连接FF',交CD于点G,过点E作EH⊥FF',垂足为点H,易知△EHF,△CFG都是等腰直角三角EF=2√2,形,∴EH=FH=FG=F'G=√22∴EF'=√EH2+F'H2=√(2√2)2+(6√2)2=4√5<9.根据正方形的对称性可知正方形ABCD的每条边上都有一点P使得PE+PF值最小.连接DE,DF,易求得DE+DF=4√10>9,CE+CF=12>9,故点P位于点B,D时,PE+PF>9,点P 位于点A,C时,PE+PF>9,∴该正方形每条边上都有2个点使得PE+PF=9,共计8个点.12.解:(1)证明:如图,过点M作MF⊥AB于F,作MG⊥BC于G,∴∠MFB=∠BGM=90°.∵正方形ABCD,∴∠DAB=90°,AD=AB,∴∠ABD=45°.同理可证:∠DBC=45°,∴∠ABD=∠DBC.∵MF⊥AB,MG⊥BC,∴MF=MG.∵正方形ABCD,∴∠ABN=90°,∵∠MFB=∠FBG=∠BGM=90°,∴∠FMG=90°,∴∠FMN+∠NMG=90°,∵MN⊥AM,∴∠NMA=90°, ∴∠AMF+∠FMN=90°,∴∠AMF=∠NMG.又∵∠AFM=∠NGM=90°,∴△AMF≌△NMG,∴MA=MN.(2)在Rt△AMN中,∵∠AMN=90°,MA=MN,∴∠MAN=45°.在Rt△BCD中,∵∠DBC=45°, ∴∠MAN=∠DBC,∴Rt△AMN∽Rt△BCD,∴S△AMNS△BCD =ANBD2.∵在Rt△ABD中,AB=AD=6,∴BD=6√2.∵S△AMNS△BCD =1318,∴2(6√2)2=1318,∴AN=2√13.∴在Rt△ABN中,BN=√AN2-AB2=4.∵在Rt△AMN中,MA=MN,O是AN的中点, ∴OM=AO=ON=12AN=√13,OM⊥AN,∴PM⊥AN,∴∠AOP=90°,∴∠AOP=∠ABN=90°.又∵∠P AO=∠NAB,∴△AOP∽△ABN.∴OPBN =AO AB,∴OP4=√136,∴OP=2√133.∴PM=PO+OM=2√133+√13=53√13.(3)如图,过点A作AQ⊥BD于Q,∴∠AQM=90°,∴∠QAM +∠AMQ=90°. ∵MN ⊥AM , ∴∠AMN=90°. ∴∠AMQ +∠HMN=90°, ∴∠QAM=∠HMN. ∵NH ⊥BD ,∴∠NHM=90°, ∴∠NHM=∠AQM.∵MA=MN ,∴△AQM ≌△MHN , ∴AQ=MH.在Rt △ABD 中,AB=AD=6,∴BD=6√2. ∵AQ ⊥BD ,∴AQ=12BD=3√2,∴MH=3√2. ∵AM=2√5,∴MN=2√5.在Rt △MNH 中,HN=√MN 2-HM 2=√2. ∴S △HMN =12HM ·HN=12×√2×3√2=3. ∴△HMN 的面积是3.。
华师版九年级数学中考总复习教案集(31课时)

九年级数学总复习教案 第1课 实数复习教学目标:1、理解现实世界中具有相反意义的量的含义,会借助数轴理解实数的相反数和绝对值的意义,会求实数的相反数和绝对值,并会比较实数的大小。
2、了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根和立方根。
3、了解无理数与实数的概念,知道实数与数轴上的点的一一对应的关系,会用一个有理数估计一个无理数的大致范围,了解近似数与有效数字的概念,会用计算器进行近似计算。
4、结合具体问题渗透化归思想,分类讨论的数学思想方法。
复习教学过程设计: Ⅰ [唤醒] 一、填空:1、-1.5的相反数是 、倒数是 、绝对值是 、1- 2 的绝对值是 。
2、倒数等于本身的数是 ,绝对值等于本身的数是 。
算术平方根等于本身的数是 ,立方根等于本身的数是 。
3、2-1= ,-2-2= ,(-12 )-2= ,(3.14-∏ )0=4、在227,∏,-8 ,3(-64) ,sin600,tan450中,无理数共有 个。
5、用科学记数法表示:-3700000= ,0.000312=用科学记数法表示的数3.4×105 中有 个有效数字,它精确到 位。
6、点A 在数轴上表示实数2,在数轴上到A 点的距离是3的点表示的数是 。
7、3260 精确到0.1 的近似值为 ,误差小于1的近似值为 。
8、比较下列各位数的大小:-23 -34,0 -1, tan300 sin600二、判断:1、不带根号的数都是有理数。
( )2、无理数都是无限小数。
( )3、232是分数,也是有理数。
( )4、3-2没有平方根。
( ) 5、若3x =x ,则x 的值是0和1。
( )6、a 2的算术平方根是a 。
( ) 三、选择:1、和数轴上的点一一对应的数是( ) A 、整数 B 、有理数 C 、无理数 D 、实数2、已知:xy < 0,且|x|=3 ,|y|=1,则x+y 的值等于( ) A 、2或-2 B 、4或-4 C 、4或2 D 、4或-4或2或-23、如果一个数的平方根与立方根相同,这个数为( ) A 、0 B 、1 C 、0或1 D 、0或+1或-1 Ⅱ[尝试]例1,已知下列各数:∏,-2.6,227,0,0.4,-(-3),3(-27) ,(--12)-2,cos300,23.6 ,-10,0.21221222122221……(按此规律,从左至右,在每相邻的两个1之间,每段在原有2的基础上再增加一个2)。
中考数学常见问题汇总及解决方案整理

中考数学常见问题汇总及解决方案整理自信,是成功的一半;平澹,是成功的驿站;努力,是成功的积淀;祝福,是成功的先决条件。
自信的你,定会在中考中摘取桂冠。
下面是小编给大家带来的中考数学常见问题汇总及解决方案,欢迎大家阅读参考,我们一起来看看吧!初中数学要学会解题套路老师一讲就明白,自己一做就不会我们先来说说“老师一讲马上就明白,自己一做就不会”的情况。
该怎么办呢?解题关键:要学会找题目的套路,一是从题眼抓做题点,二是总结题目类型。
这句话你应该也听过很多遍了吧,可你依旧不明白该怎么入手。
老师举个例子,你就一目了然了。
下面是关于圆的题目。
【例1】先不用看题,直接看图,当我们看到这个图的时候如果你总结过,你会发现①△ABC和△DBE相似;②∠ABC和∠DBE相等,代表着这两个角的三角函数值是相等的。
那么这就已经给我们两种思路了。
再看题目,求DE的长,无论是用①相似三角形的相似比来求,还是用②的三角函数值相等都可以。
再看第二问,问题是求一个三角形是等腰三角形,那么对于该问的考法有①腰底不定,分类讨论哪条线为底或腰,②三角形是等腰三角形,需要证角相等再证腰相等。
如果你做求等腰三角形的题目时分析过解题过程,这两个考法是你看一眼立马就闪现在脑子里的东西。
再看条件,题目告诉我们EF是圆O的切线,也就代表着OE垂直于EF,不管你有没有想法,都可以去考虑连接OE了。
题眼说了句是切线,就要想到连接圆心和切点了,不然告诉你这句话还有什么用呢!听题眼的话。
在这道题目里,我们分析了题眼和解题过程,总结了题眼的隐含条件,总结了问题的考法,这个过程就是我们题型总结的过程。
总结了一道题,当你看到类似的题目时,自然知道怎么做了。
再来看我们的第二题。
第一问,求相切,自然你知道是求DF⊥AB,怎么求呢?题目说了BD是平分线,对于平分线来说有两个特点:①角相等;②角平分线上点到角的两边距离相等;这两个条件都是题目中“BD平分∠ABC”告诉我们的。
2024年江苏盐城市中考数学试题+答案详解

2024年江苏盐城市中考数学试题+答案详解(试题部分)注意事项:1.本次考试时间为120分钟,卷面总分为150分.考试形式为闭卷. 2.本试卷共6页,在检查是否有漏印、重印或错印后再开始答题.3.所有试题必须作答在答题卡上规定的区域内,注意题号必须对应,否则不给分. 4.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 有理数2024的相反数是( ) A. 2024B. 2024−C.12024D. 12024−2. 下列四幅图片中的主体事物,在现实运动中属于翻折的是( )A. 工作中的雨刮器B. 移动中的黑板C. 折叠中的纸片D. 骑行中的自行车3. 下列运算正确的是( ) A. 624a a a ÷=B. 22a a −=C. 326a a a ⋅=D. ()235a a =4. 盐城是江苏省第一产粮大市.2023年全市小麦总产量约2400000吨,数据2400000用科学记数法表示为( ) A. 70.2410⨯B. 52410⨯C. 72.410⨯D. 62.410⨯5. 正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是( )A. 湿B. 地C. 之D. 都6. 小明将一块直角三角板摆放在直尺上,如图,若155∠=︒,则2∠的度数为( )A. 25︒B. 35︒C. 45︒D. 55︒7. 、,设其面积为2cm S ,则S 在哪两个连续整数之间( ) A. 1和2B. 2和3C. 3和4D. 4和58. 甲、乙两家公司2019~2023年的利润统计图如下,比较这两家公司的利润增长情况( )A. 甲始终比乙快B. 甲先比乙慢,后比乙快C. 甲始终比乙慢D. 甲先比乙快,后比乙慢二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9. 若分式11x −有意义,则x 的取值范围是_________. 10. 分解因式:x 2+2x +1=_______11. 两个相似多边形的相似比为12∶,则它们的周长的比为______. 12. 如图,ABC 是O 的内接三角形,40C ∠=︒,连接OA OB 、,则OAB ∠=________︒.13. 已知圆锥的底面圆半径为4,母线长为5,则圆锥的侧面积是______.14. 中国古代数学著作《增删算法统宗》中记载的“绳索量竿”问题,大意是:现有一根竿子和一条绳索,用绳索去量竿子,绳索比竿子长5尺;若将绳索对折去量竿子,绳索就比竿子短5尺,问绳索、竿子各有多长?该问题中的竿子长为________尺.15. 如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面30m 的点P 处,测得教学楼底端点A 的俯角为37︒,再将无人机沿教学楼方向水平飞行26.6m 至点Q 处,测得教学楼顶端点B 的俯角为45︒,则教学楼AB 的高度约为________m .(精确到1m ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)16. 如图,在ABC 中,90ACB ∠=︒,AC BC ==,点D 是AC 的中点,连接BD ,将BCD 绕点B 旋转,得到BEF .连接CF ,当CF AB ∥时,CF =________.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17. 计算:()0214sin30π−−++︒ 18. 求不等式113xx +≥−的正整数解. 19. 先化简,再求值:22391a a a a a−−−÷+,其中4a =. 20. 在“重走建军路,致敬新四军”红色研学活动中,学校建议间学们利用周末时间自主到以下三个基地开展研学活动.A .新四军纪念馆(主馆区);B .新四军重建军部旧址(泰山庙):C .新四军重建军部纪念塔(大铜马),小明和小丽各自随机选择一个基地作为本次研学活动的第一站. (1)小明选择基地A 的概率为________:(2)用画树状图或列表的方法,求小明和小丽选择相同基地的概率. 21. 已知:如图,点A 、B 、C 、D 在同一条直线上,AE BF ∥,AE BF =. 若________,则AB CD =.请从①CE DF ∥;②CE DF =;③E F ∠=∠这3个选项中选择一个作为条件(写序号),使结论成立,并说明理由.22. 小明在草稿纸上画了某反比例函数在第二象限内的图像,并把矩形直尺放在上面,如图.请根据图中信息,求: (1)反比例函数表达式; (2)点C 坐标.23. 如图,点C 在以AB 为直径的O 上,过点C 作O 的切线l ,过点A 作AD l ⊥,垂足为D ,连接AC BC 、.(1)求证:ABC ACD △△∽;(2)若5AC =,4CD =,求O 的半径.24. 阅读涵养心灵.某地区2023年9月就“初中生每天阅读时间”对七年级8000名学生进行了抽样调查(设每天阅读时间为h t ,调查问卷设置了四个时间选项:A .1t <;B .1 1.5t ≤<;C .1.52t ≤<;D .2t ≥),并根据调查结果制作了如图1所示的条形统计图.2023年9月该地区出台系列激励措施,力推学生阅读习惯养成.为了检测这些措施的效果,2023年12月该地区又对七年级学生进行了一次抽样调查,并根据调查结果制作了如图2所示的扇形统计图. 9月份学生每天阅读时间条形统计图12月份学生每天阅读时间扇形统计图请根据提供的信息,解答下列问题.(1)2023年9月份抽样调查的样本容量为________,该地区七年级学生“每天阅读时间不少于1小时”的人数约为________人;(2)估算该地区2023年12月份“每天阅读时间不少于1小时”的七年级学生人数相对于9月份的增长率;(精确到0.01%)(3)根据两次调查结果,对该地区出台相关激励措施的做法进行评价.25. 如图1,E 、F 、G 、H 分别是平行四边形ABCD 各边的中点,连接AF CE 、交于点M ,连接AG 、CH 交于点N ,将四边形AMCN 称为平行四边形ABCD 的“中顶点四边形”.(1)求证:中顶点四边形AMCN为平行四边形;、交于点O,可得M、N两点都在BD上,当平行四边形ABCD满足(2)①如图2,连接AC BD________时,中顶点四边形AMCN是菱形;②如图3,已知矩形AMCN为某平行四边形的中顶点四边形,请用无刻度的直尺和圆规作出该平行四边形.(保留作图痕迹,不写作法)26. 请根据以下素材,完成探究任务.27. 发现问题小明买菠萝时发现,通常情况下,销售员都是先削去菠萝的皮,再斜着铲去菠萝的籽. 提出问题销售员斜着铲去菠萝的籽,除了方便操作,是否还蕴含着什么数学道理呢?图1 分析问题某菠萝可以近似看成圆柱体,若忽略籽的体积和铲去果肉的厚度与宽度,那么籽在侧面展开图上可以看成点,每个点表示不同的籽.该菠萝的籽在侧面展开图上呈交错规律排列,每行有n 个籽,每列有k 个籽,行上相邻两籽、列上相邻两籽的间距都为d (n ,k 均为正整数,3n k >≥,0d >),如图1所示. 小明设计了如下三种铲籽方案.方案1:图2是横向铲籽示意图,每行铲的路径长为________,共铲________行,则铲除全部籽的路径总长为________;方案2:图3是纵向铲籽示意图,则铲除全部籽的路径总长为________; 方案3:图4是销售员斜着铲籽示意图,写出该方案铲除全部籽的路径总长. 解决问题在三个方案中,哪种方案铲籽路径总长最短?请写出比较过程,并对销售员的操作方法进行评价.2024年江苏盐城市中考数学试题+答案详解(答案详解)注意事项:1.本次考试时间为120分钟,卷面总分为150分.考试形式为闭卷. 2.本试卷共6页,在检查是否有漏印、重印或错印后再开始答题.3.所有试题必须作答在答题卡上规定的区域内,注意题号必须对应,否则不给分. 4.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 有理数2024的相反数是( ) A. 2024 B. 2024−C.12024D. 12024−【答案】B 【解析】【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:有理数2024的相反数是2024−, 故选:B .2. 下列四幅图片中的主体事物,在现实运动中属于翻折的是( )A. 工作中的雨刮器B. 移动中的黑板C. 折叠中的纸片D. 骑行中的自行车【答案】C 【解析】【分析】本题考查了折叠,根据折叠的定义逐项判断即可求解,掌握折叠的定义是解题的关键. 【详解】解:A 、工作中的雨刮器,属于旋转,不合题意;B 、移动中的黑板,属于平移,不合题意;C 、折叠中的纸片,属于翻折,符合题意;D 、骑行中的自行车,属于平移,不合题意;故选:C .3. 下列运算正确的是( ) A. 624a a a ÷= B. 22a a −=C. 326a a a ⋅=D. ()235a a =【答案】A 【解析】【分析】本题考查了同底数幂乘法,合并同类项,同底数幂除法,幂的乘方等知识点,熟知相关运算法则是解本题的关键.根据同底数幂乘法,合并同类项,同底数幂除法,幂的乘方等运算法则分别计算即可得出答案. 【详解】解:A 、624a a a ÷=,正确,符合题意; B 、2a a a −=,错误,不符合题意; C 、325a a a ⋅=,错误,不符合题意; D 、()236a a =,错误,不符合题意;故选:A .4. 盐城是江苏省第一产粮大市.2023年全市小麦总产量约2400000吨,数据2400000用科学记数法表示为( ) A. 70.2410⨯ B. 52410⨯C. 72.410⨯D. 62.410⨯【答案】D 【解析】【分析】本题考查用科学记数法表示绝对值大于1的数,将2400000写成10n a ⨯的形式即可,其中110a ≤<,n 的值与小数点移动的位数相同.【详解】解:62400000 2.410=⨯, 故选D .5. 正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是( )A. 湿B. 地C. 之D. 都【答案】C【解析】 【分析】本题主要考查了正方体相对两个面上的文字,对于正方体的平面展开图中相对的面一定相隔一个小正方形,由此可解.【详解】解:由正方体表面展开图的特征可得:“盐”的对面是“之”,“地”的对面是“都”,“湿”的对面是“城”,故选C .6. 小明将一块直角三角板摆放在直尺上,如图,若155∠=︒,则2∠的度数为( )A. 25︒B. 35︒C. 45︒D. 55︒【答案】B【解析】 【分析】此题考查了平行线的性质,根据平行线的性质得到3155∠=∠=︒,再利用平角的定义即可求出2∠的度数.【详解】解:如图,∵155∠=︒,AB CD∴3155∠=∠=︒, ∴21802335∠=︒−∠−∠=︒,故选:B7. 、,设其面积为2cm S ,则S 在哪两个连续整数之间( )A. 1和2B. 2和3C. 3和4D. 4和5【答案】C【解析】【分析】本题主要考查无理数的估算,二次根式的乘法,先计算出矩形的面积S ,再利用放缩法估算无理数大小即可.【详解】解:S == 91016<<,∴<<∴34<<,即S 在3和4之 间,故选:C .8. 甲、乙两家公司2019~2023年的利润统计图如下,比较这两家公司的利润增长情况( )A. 甲始终比乙快B. 甲先比乙慢,后比乙快C. 甲始终比乙慢D. 甲先比乙快,后比乙慢【答案】A【解析】 【分析】本题考查了折线统计图,根据折线统计图即可判断求解,看懂折线统计图是解题的关键.【详解】解:由折线统计图可知,甲公司2019~2021年利润增长50万元,2021~2023年利润增长70万元,乙公司2019~2021年利润增长20万元,2021~2023年利润增长20万元,∴甲始终比乙快,故选:A .二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9. 若分式11x −有意义,则x 的取值范围是_________. 【答案】1x ≠【解析】【分析】本题主要考查了分式有意义的条件,根据分式有意义分母不等于零,得出10x −≠,求出1x ≠即可. 【详解】解:若分式11x −有意义, 则10x −≠,∴1x ≠,故答案为:1x ≠.10. 分解因式:x 2+2x +1=_______【答案】()21x +##()21x +【解析】【分析】本题中没有公因式,总共三项,其中有两项能化为两个数的平方和,第三项正好为这两个数的积的2倍,直接运用完全平方和公式进行因式分解.【详解】解:x 2+2x +1=(x +1)2,故答案为:(x +1)2.【点睛】本题考查了公式法分解因式,熟记完全平方公式的结构是解题的关键.(1)三项式;(2)其中两项能化为两个数(整式)平方和的形式;(3)另一项为这两个数(整式)的积的2倍(或积的2倍的相反数).11. 两个相似多边形的相似比为12∶,则它们的周长的比为______.【答案】12∶##12【解析】【分析】本题考查了相似多边形的性质,根据相似多边形周长之比等于相似比即可求解,掌握相似多边形的性质是解题的关键.【详解】解:∵两个相似多边形的相似比为12∶,∴它们的周长的比为12∶,故答案为:12∶.12. 如图,ABC 是O 的内接三角形,40C ∠=︒,连接OA OB 、,则OAB ∠=________︒.【答案】50【解析】【分析】本题考查主要考查圆周角定理、等腰三角形的性质、三角形内角和定理,先根据圆周角定理计算出280AOB C ∠=∠=︒,再根据等边对等角得出OAB OBA ∠=∠,最后利用三角形内角和定理即可求出OAB ∠. 【详解】解:40C ∠=︒,∴280AOB C ∠=∠=︒,OA OB =,∴OAB OBA ∠=∠,180OAB OBA AOB ∠+∠+∠=︒,∴()()11180180805022OAB AOB ∠=︒−∠=⨯︒−︒=︒, 故答案为:50.13. 已知圆锥的底面圆半径为4,母线长为5,则圆锥的侧面积是______.【答案】20π【解析】【分析】结合题意,根据圆锥侧面积和底面圆半径、母线的关系式计算,即可得到答案.【详解】解:∵圆锥的底面圆半径为4,母线长为5∴圆锥的侧面积4520S ππ=⨯⨯=故答案为:20π.【点睛】本题考查了圆锥的知识,解题的关键是熟练掌握圆锥的性质,从而完成求解.14. 中国古代数学著作《增删算法统宗》中记载的“绳索量竿”问题,大意是:现有一根竿子和一条绳索,用绳索去量竿子,绳索比竿子长5尺;若将绳索对折去量竿子,绳索就比竿子短5尺,问绳索、竿子各有多长?该问题中的竿子长为________尺.【答案】15【解析】【分析】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题关键.设绳索长x 尺,竿长y 尺,根据“用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺”,即可得出关于x y , 的二元一次方程组,此题得解.【详解】解:设绳索长x 尺,竿长y 尺, 根据题意得:552x y x y =+⎧⎪⎨=−⎪⎩ . 解得:2015x y =⎧⎨=⎩故答案为15.15. 如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面30m 的点P 处,测得教学楼底端点A 的俯角为37︒,再将无人机沿教学楼方向水平飞行26.6m 至点Q 处,测得教学楼顶端点B 的俯角为45︒,则教学楼AB 的高度约为________m .(精确到1m ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)【答案】17【解析】【分析】本题主要考查解直角三角形的实际应用,延长AB 交直线PQ 于点H ,先用三角函数解Rt PHA △求出PH ,进而求出QH ,再证QH BH =,最后根据AB AH BH =−即可求解.【详解】解:如图,延长AB 交直线PQ 于点H ,则90∠=︒PHA ,由题意知30m AH =,在Rt PHA △中,tan AH PHA PH ∠=,即30tan 370.75PH︒=≈,解得40m PH =,∴()4026.613.4m QH PH PQ =−=−=,90∠=︒PHA ,45QHB ∠=︒,∴45QBH QHB ∠=∠=︒,∴13.4m QH BH ==,∴()3013.416.617m AB AH BH =−=−=≈,故答案为:17.16. 如图,在ABC 中,90ACB ∠=︒,AC BC ==,点D 是AC 的中点,连接BD ,将BCD 绕点B 旋转,得到BEF .连接CF ,当CF AB ∥时,CF =________.【答案】22【解析】【分析】本题主要考查等腰直角三角形的性质,勾股定理,平行线的性质,全等三角形的性质的综合,掌握等腰直角三角形的性质,勾股定理,旋转的性质是解题的关键.根据等腰直角三角形的性质可得AB CD BD BF ,,,的值,作BG CF ⊥,根据平行线的性质可得BCG 是等腰直角三角形,可求出CG BG ,的长,在直角BFG 中,根据勾股定理可求出FG 的长度,由此即可求解.【详解】解:∵在ABC 中,90ACB ∠=︒,AC BC ==,∴45CAB CBA ∠=∠=︒,4AB ==, ∵点D 是AC 的中点,∴12AD CD AC ===∴在Rt BCD 中,BD ===∵将BCD 绕点B 旋转得到BEF ,∴BCD BEF ≌,∴BD BF ==,EF CD ==BC BE ==如图所示,过BG CF ⊥于点G ,∵CF AB ,∴45FCB CBA ∠=∠=︒,∴BCG 是等腰直角三角形,且BC =,∴222CG BG BC ====,在Rt BFG 中,FG ===∴2CF CG FG =+=故答案为:2三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17. 计算:()0214sin30π−−++︒【答案】3【解析】【分析】此题考查了实数的混合运算,计算绝对值、零指数幂、代入特殊角三角函数值,再进行混合运算即可.【详解】解:()0214sin30π−−++︒ 12142=−+⨯ 212=−+3=18. 求不等式113x x +≥−的正整数解. 【答案】1,2.【解析】【分析】本题考查了求一元一次不等式的解集以及正整数解,先求出不等式的解集,进而可得到不等式的正整数解,正确求出一元一次不等式的解集是解题的关键.【详解】解:去分母得,()131x x +≥−,去括号得,133x x +≥−,移项得,331x x −≥−−,合并同类项得,24x −≥−,系数化为1得,2x ≤,∴不等式的正整数解为1,2.19. 先化简,再求值:22391a a a a a−−−÷+,其中4a =. 【答案】23a +;27【解析】【分析】题目主要考查分式的化简求值,先计算分式的除法运算,然后计算加减法,最后代入求值即可,熟练掌握运算法则是解题关键. 【详解】解:22391a a a a a−−−÷+ )3(1(3()1)3a a a a a a −++−−=⨯ 113a a +=−+ 313a a a +−−=+ 23a =+, 当4a =时,原式22437==+. 20. 在“重走建军路,致敬新四军”红色研学活动中,学校建议间学们利用周末时间自主到以下三个基地开展研学活动.A .新四军纪念馆(主馆区);B .新四军重建军部旧址(泰山庙):C .新四军重建军部纪念塔(大铜马),小明和小丽各自随机选择一个基地作为本次研学活动的第一站.(1)小明选择基地A 的概率为________:(2)用画树状图或列表的方法,求小明和小丽选择相同基地的概率.【答案】(1)13 (2)13【解析】【分析】本题考查列表法与树状图法、概率公式,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.(1)直接利用概率公式可得答案.(2)列表可得出所有等可能的结果数以及小明和小丽选择相同基地的结果数,再利用概率公式可得出答案.【小问1详解】解:由题意得,小明选择基地A 的概率为13; 故答案为:13【小问2详解】解:列表如下:共有9种等可能的结果,其中小明和小丽选择到相同基地的结果有3种,∴小明和小丽选择相同基地的概率为3193=. 21. 已知:如图,点A 、B 、C 、D 在同一条直线上,AE BF ∥,AE BF =.若________,则AB CD =.请从①CE DF ∥;②CE DF =;③E F ∠=∠这3个选项中选择一个作为条件(写序号),使结论成立,并说明理由.【答案】①或③(答案不唯一),证明见解析【解析】【分析】题目主要考查全等三角形的判定和性质,①根据平行线的性质得出,A FBD D ECA ∠=∠∠=∠,再由全等三角形的判定和性质得出AC BD =,结合图形即可证明;②得不出相应的结论;③根据全等三角形的判定得出(SAS)AEC BFD ≌,结合图形即可证明;熟练掌握全等三角形的判定和性质是解题关键.【详解】解:选择①CE DF ∥;∵AE BF ∥,CE DF ∥,∴,A FBD D ECA ∠=∠∠=∠,∵AE BF =,∴(AAS)AEC BFD ≌,∴AC BD =,∴AC BC BD BC −=−,即AB CD =;选择②CE DF =;无法证明AEC BFD △≌△,无法得出AB CD =;选择③E F ∠=∠;∵AE BF ∥,∴A FBD ∠=∠,∵AE BF =, E F ∠=∠,∴()ASA AEC BFD ≌,∴AC BD =,∴AC BC BD BC −=−,即AB CD =;故答案为:①或③(答案不唯一)22. 小明在草稿纸上画了某反比例函数在第二象限内的图像,并把矩形直尺放在上面,如图.请根据图中信息,求:(1)反比例函数表达式;(2)点C 坐标.【答案】(1)6y x =−(2)3,42⎛⎫− ⎪⎝⎭【解析】【分析】本题考查反比例函数、锐角三角函数:(1)设反比例函数表达式为k y x=,将点A 的坐标代入表达式求出k 值即可; (2)设点C 的坐标为6,m m ⎛⎫− ⎪⎝⎭,则CE m =−,6OE m=−,根据平行线的性质得CBE AOD ∠=∠,进而根据tan tan CBE AOD ∠=∠求出m 的值即可.【小问1详解】解:由图可知点A 的坐标为()3,2−, 设反比例函数表达式为k y x=, 将()3,2−代入,得:23k =−,解得6k =−, 因此反比例函数表达式为6y x =−; 【小问2详解】解:如图,作CE y ⊥轴于点E ,AD y ⊥轴于点D ,由图可得3AD =,2OD =,设点C 的坐标为6,m m ⎛⎫− ⎪⎝⎭,则CE m =−,6OE m=−, ∴63BE OE OB m=−=−−, 矩形直尺对边平行,∴CBE AOD ∠=∠,∴tan tan CBE AOD ∠=∠,∴CE AD BE OD =,即3623m m−=−−, 解得32m =−或6m =, 点C 在第二象限, ∴32m =−,66432m −=−=−, ∴点C 坐标为3,42⎛⎫− ⎪⎝⎭.23. 如图,点C 在以AB 为直径的O 上,过点C 作O 的切线l ,过点A 作AD l ⊥,垂足为D ,连接AC BC 、.(1)求证:ABC ACD △△∽;(2)若5AC =,4CD =,求O 的半径. 【答案】(1)见解析 (2)256【解析】【分析】题目主要考查切线的性质,相似三角形的判定和性质及勾股定理解三角形,作出辅助线,综合运用这些知识点是解题关键.(1)连接OC ,根据题意得90OCD OCA ACD ∠∠∠=+=︒,90ACB ACO OCB ∠∠∠=+=︒,利用等量代换确定ACD ABC ∠∠=,再由相似三角形的判定即可证明;(2)先由勾股定理确定3AD =,然后利用相似三角形的性质求解即可.【小问1详解】证明:连接OC ,如图所示:∵CD 是O 的切线,点C 在以AB 为直径的O 上,∴90OCD OCA ACD ∠∠∠=+=︒,90ACB ACO OCB ∠∠∠=+=︒,∴ACD OCB ∠∠=,∵OC OB =,∴OBC OCB ∠∠=,∴ACD ABC ∠∠=,∵AD l ⊥,∴90ADC ∠=︒,∴ADC ACB ∠∠=,∴ABC ACD △△∽;【小问2详解】∵5AC =,4CD =,∴3AD ==,由(1)得ABC ACD △△∽, ∴AB AC AC AD =即553AB =, ∴253AB =, ∴O 的半径为2525236÷=.24. 阅读涵养心灵.某地区2023年9月就“初中生每天阅读时间”对七年级8000名学生进行了抽样调查(设每天阅读时间为h t ,调查问卷设置了四个时间选项:A .1t <;B .1 1.5t ≤<;C .1.52t ≤<;D .2t ≥),并根据调查结果制作了如图1所示的条形统计图.2023年9月该地区出台系列激励措施,力推学生阅读习惯养成.为了检测这些措施的效果,2023年12月该地区又对七年级学生进行了一次抽样调查,并根据调查结果制作了如图2所示的扇形统计图.9月份学生每天阅读时间条形统计图12月份学生每天阅读时间扇形统计图请根据提供的信息,解答下列问题.(1)2023年9月份抽样调查的样本容量为________,该地区七年级学生“每天阅读时间不少于1小时”的人数约为________人;(2)估算该地区2023年12月份“每天阅读时间不少于1小时”的七年级学生人数相对于9月份的增长率;(精确到0.01%)(3)根据两次调查结果,对该地区出台相关激励措施的做法进行评价.【答案】(1)800;7200(2)5.56%(3)见解析【解析】【分析】题目主要考查条形统计图及扇形统计图综合问题,用样本估计总体等,结合统计图获取相关信息是解题关键.(1)根据条形统计图得出样本容量,然后用总人数乘以“每天阅读时间不少于1小时”的比例即可得出结果; (2)先求出9月份和12月份“每天阅读时间不少于1小时”的比例,然后求增长率即可;(3)根据增长率合理评价即可.【小问1详解】解:样本容量为:80320280120800+++=,该地区七年级学生“每天阅读时间不少于1小时”的人数约为:32028012080007200800++⨯=人, 故答案为:800;7200;【小问2详解】 320280120100%90%800++⨯=, 12月份“每天阅读时间不少于1小时”的比例为:15%95%−=,设9月份学生和12月份学生样本均为x ,∴95%90%5%x x x −=,∴增长率为:5%100% 5.56%90%x x⨯=; 【小问3详解】该地区出台相关激励措施有明显的作用,督促大部分学生养成良好的阅读习惯.25. 如图1,E 、F 、G 、H 分别是平行四边形ABCD 各边的中点,连接AF CE 、交于点M ,连接AG 、CH 交于点N ,将四边形AMCN 称为平行四边形ABCD 的“中顶点四边形”.(1)求证:中顶点四边形AMCN 为平行四边形;(2)①如图2,连接AC BD 、交于点O ,可得M 、N 两点都在BD 上,当平行四边形ABCD 满足________时,中顶点四边形AMCN 是菱形;②如图3,已知矩形AMCN 为某平行四边形的中顶点四边形,请用无刻度的直尺和圆规作出该平行四边形.(保留作图痕迹,不写作法)【答案】(1)见解析 (2)①AC BD ⊥;②见解析.【解析】【分析】题目主要考查平行四边形及菱形的判定和性质,三角形重心的性质,理解题意,熟练掌握三角形重心的性质是解题关键.(1)根据平行四边形的性质,线段的中点平分线段,推出四边形AECG ,四边形AFCH 均为平行四边形,进而得到:,AM CN AN CM ∥∥,即可得证;(2)①根据菱形的性质结合图形即可得出结果;②连接AC ,作直线MN ,交于点O ,然后作2,2ND ON MB OB ==,然后连接AB BC CD DA 、、、即可得出点M 和N 分别为ABC ADC 、的重心,据此作图即可.【小问1详解】证明:∵ABCD Y ,∴,,,AB CD AD BC AB CD AD BC ==∥∥,∵点E 、F 、G 、H 分别是ABCD Y 各边的中点, ∴11,22AE AB CD CG AE CG ===∥, ∴四边形AECG 为平行四边形,同理可得:四边形AFCH 为平行四边形,∴,AM CN AN CM ∥∥,∴四边形AMCN 是平行四边形;【小问2详解】①当平行四边形ABCD 满足AC BD ⊥时,中顶点四边形AMCN 是菱形,由(1)得四边形AMCN 是平行四边形,∵AC BD ⊥,∴MN AC ⊥,∴中顶点四边形AMCN 是菱形,故答案为:AC BD ⊥;②如图所示,即为所求,连接AC ,作直线MN ,交于点O ,然后作2,2ND ON MB OM ==,然后连接AB BC CD DA 、、、即可,∴点M 和N 分别为ABC ADC 、的重心,符合题意;证明:矩形AMCN ,∴,AC MN OM ON ==,∵2,2ND ON MB OM ==,∴OB OD =,∴四边形ABCD 为平行四边形;分别延长CM AM AN CN 、、、交四边于点E 、F 、G 、H 如图所示:∵矩形AMCN ,∴AM CN ∥,MO NO =,由作图得BM MN =,∴MBF NBC ∽, ∴12BF BM BC BN ==, ∴点F 为BC 的中点,同理得:点E 为AB 的中点,点G 为DC 的中点,点H 为AD 的中点.26. 请根据以下素材,完成探究任务.【答案】任务1:17033y x=−+;任务2:22723360(10)w x x x=−++>;任务3:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润【解析】【分析】题目主要考查一次函数及二次函数的应用,理解题意,根据二次函数的性质求解是解题关键. 任务1:根据题意安排x 名工人加工“雅”服装,y 名工人加工“风”服装,得出加工“正”服装的有()70x y −−人,然后利用“正”服装总件数和“风”服装相等,得出关系式即可得出结果;任务2:根据题意得:“雅”服装每天获利为:()100210x x ⎡⎤−−⎣⎦,然后将2种服装的获利求和即可得出结果;任务3:根据任务2结果化为顶点式,然后结合题意,求解即可.【详解】解:任务1:根据题意安排70名工人加工一批夏季服装,∵安排x 名工人加工“雅”服装,y 名工人加工“风”服装,∴加工“正”服装的有()70x y −−人,∵“正”服装总件数和“风”服装相等,∴()7012x y y −−⨯=, 整理得:17033y x =−+; 任务2:根据题意得:“雅”服装每天获利为:()100210x x ⎡⎤−−⎣⎦,∴()()2247048100210w y x y x x ⎡⎤=⨯+−−⨯+−−⎣⎦,整理得:()()()21611203222402120w x x x x =−++−++−+ ∴22723360(10)w x x x =−++>任务3:由任务2得()2227233602184008w x x x =−++=−−+, ∴当18x =时,获得最大利润,1705218333y =−⨯+=, ∴18x ≠,∵开口向下,∴取17x =或19x =,当17x =时,335y =,不符合题意; 当19x =时,17513y ==,符合题意;∴7034x y −−=,综上:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润.27. 发现问题小明买菠萝时发现,通常情况下,销售员都是先削去菠萝的皮,再斜着铲去菠萝的籽.提出问题销售员斜着铲去菠萝的籽,除了方便操作,是否还蕴含着什么数学道理呢?图1分析问题某菠萝可以近似看成圆柱体,若忽略籽的体积和铲去果肉的厚度与宽度,那么籽在侧面展开图上可以看成点,每个点表示不同的籽.该菠萝的籽在侧面展开图上呈交错规律排列,每行有n 个籽,每列有k 个籽,行上相邻两籽、列上相邻两籽的间距都为d (n ,k 均为正整数,3n k >≥,0d >),如图1所示. 小明设计了如下三种铲籽方案.方案1:图2是横向铲籽示意图,每行铲的路径长为________,共铲________行,则铲除全部籽的路径总长为________;方案2:图3是纵向铲籽示意图,则铲除全部籽的路径总长为________;方案3:图4是销售员斜着铲籽示意图,写出该方案铲除全部籽的路径总长.解决问题在三个方案中,哪种方案铲籽路径总长最短?请写出比较过程,并对销售员的操作方法进行评价.【答案】分析问题:方案1:()1n d −;2k ;()21n dk −;方案2:()21k dn −;方案3:()212k nd ⨯−;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一) 二次函数的概念二次函数、对称轴、顶点等.(二) 二次函数的图象和性质二次函数的图象和性质2[例题]1、已知二次函数的解析式是322--=x x y .(1)在直角坐标系中,用五点法画出它的图象; (2)当x 为何值时,函数值y =0?(3)当-3<x <3时,观察图象直接写出函数值y 的取值的范围. 解:(1) 已知二次函数的解析式是322--=x x y =4)1(2--x(2) 令0322=--x x ,解得3,121=-=x x∴当x = -1或3时,函数值y =0 (3) 观察图象知:-4≤y <122、(2010株洲市)已知二次函数()()221y x a a =-+- (a 为常数),当a 取不同的值时,其图象构成一个“抛物 线系”.下图分别是当1a =-,0a =,1a =,2a =时 二次函数的图象.它们的顶点在一条直线上,这条直线的 解析式是y = . (121-x ) 3、(2010湖北省咸宁市)已知抛物线2y ax bx c =++(a <0)过A (2-,0)、O (0,0)、A .1y >2yB .1y 2y =C .1y <2yD .不能确定4、(2010年杭州市)定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m ,1 – m , –1– m ] 的函数的一些结论: ① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23; ③ 当m < 0时,函数在x >41时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有( B )A. ①②③④B. ①②④C. ①③④D. ②④5、(2010湖北省荆门市)二次函数y =ax 2+bx +c 的图象如图所示,下列 结论错误..的是( ) A. ab <0B. ac <0C. 当x <2时,函数值随x 增大而增大;当x >2时,函数值随x 增 大而减小.D. 二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标就是方程ax 2+bx +c =0的根.6、(2010玉溪市)如图是二次函数y =ax 2+bx +c (a ≠0)在平面直角坐标 系中的图象,根据图形判断 ①c >0;②a +b +c <0;③2a -b <0; ④b 2+8a >4ac 中,正确的是(填写序号) ② 、④ . 7、(2010年天津市)已知二次函数2y ax bx c =++(0a ≠)如图所示,有下列结论:( D )①24b ac ->; ②0abc >; ③80a c +>; ④930a b c ++<.其中,正确结论的个数是A. 1B. 2C. 3D. 48、(2010毕节)函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( C )xyO -119、(2010年兰州)抛物线y =ax 2+bx +c 图象如图所示,则一次函数24b ac bx y +--=与反比例函数xcb a y ++=在同一坐标系内的图象大致为( D ) 10、(2010年崇文二模)矩形ABCD 中,8cm 6cmADAB ==,.动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动至点B 停止,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止.如图可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:2cm ),则y 与x 之间的函数关系用图象表示大致是下图中的( A )(三) 二次函数y =ax 2+bx +c 1、平移:a 不变. 清移动谁,不妨画草图. 2结论:抛物线y =ax 2+bx +c 关于x 2-bx -c 抛物线y -bx +c3 结论:抛物线180°后的解析式为y = -a (x -h )2+k x xx x[例题]1、观察右面二次函数y =ax 2+bx +c 的图象,回答下面的问题: (1)判断a ,b ,c 和ac b 42-的符号并写出顶点坐标;(2)把抛物线向下平移6个单位,再向左平移2个单位,求平移后抛物线的解析式;(3)把抛物线沿x 轴翻折,求翻折后抛物线的解析式.2、(2010桂林)将抛物线221216y x x =-+绕它的顶点旋转180°,所得抛物线的解析式是( D ). A .221216y x x =--+ B .221216y x x =-+- C .221219y x x =-+- D .221220y x x =-+-3、将抛物线12+=x y 绕原点O 旋转180°,则旋转后抛物线的解析式为( D ) A. 2x y -= B. 12+-=x y C. 12-=x y D. 12--=x y4、(2010遵义市)如图,两条抛物线12121+-=x y 、 12122--=x y 与分别经过点()0,2-,()0,2且平行于y 轴的两条平行线围成的阴影部分的面积为( A )A .8B .6C .10D .45、(2010毕节)把抛物线y =x 2+bx +c 向右平移3个单位,再向下平移2个单位,所得图象的解析式为y = x 2-3x +5,则( A )A .b =3,c =7B .b =6,c =3C .b =-9,c =-5D .b =-9,c =216、(2010台州市)如图,点A ,B 的坐标分别为(1, 4)和(抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为 -3D 的横坐标最大值为( D )A .-3B .1C .5D .8 7、(2010浙江温州)如图,抛物线y =ax 2+bx 经过点A (4,0)B (2,2). 连结OB ,AB .(1)求该抛物线的解析式;(2)求证:△OAB 是等腰直角三角形;(3)将△OAB 绕点O 按顺时针方向旋转l35°得到△O A′B′写出△O A′B′ 的边A′B′的中点P 的坐标.试判断点P8、(2009年北京)已知关于x 的一元二次方程22410x x k ++-=有实数根, k 为正整数.(1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次函数2241y x x k =++-的图象向下平移8个单位,求平移后的图象的解析 式;(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图 象.请你结合这个新的图象回答:当直线1(2y x b b k =+<)与此图象有两个公共点时,b 的取值范围.解:(1)由题意:△=24-8k ≥0 ∴k ≤3∵k 为正整数∴k =1,2,3当k =2时,方程22410x x k ++-=无整数根;当k =3时,方程22410x x k ++-=有两个非0的整数根. ∴k =1,k =2不合题意舍去,k =3当k =3时,二次函数为2422++=x x y ,把它的图象向下平移8个单位得到的图象解析式为6422-+=x x y(3)设抛物线6422-+=x x y 与x 轴交于A 、B 两点,则A (-3,0),B (1,0)依题意翻折后的图象如图所示.当直线b x y +=21(b <k )经过点A 时,可得23=b 当直线b x y +=21(b <k )经过点B 时,可得21-=b由图象可知b 的取值范围是2321<<-b9、(2010年镇江市)已知二次函数m x x y ++=22的图象C 1与x. (1)求C 1的顶点坐标;(2)将C 1向下平移若干个单位后,得抛物线C 2,如果C 2与x 3,0),求C 2的函数关系式,并求C 2与x 轴的另一个交点坐标; (3)若n y y C y Q y n P 求实数且上的两点是,,),2(),,(21121>解:(1)1,1)1(222-=-++=++=x m x m x x y 对称轴为x 与 轴有且只有一个公共点,∴顶点的纵坐标为0.∴C 1的顶点坐标为(-1,0)(2)设C 2的函数关系式为,)1(2k x y ++=把A (-3,0)代入上式得,4,0)13(2-==++-k k 得∴C 2的函数关系式为.4)1(2-+=x y∵抛物线的对称轴为x x 与,1-=轴的一个交点为A (-3由对称性可知,它与x 轴的另一个交点坐标为(1,0).(3)当x y x 随时,1-≥的增大而增大,当.2,,121>∴>-≥n y y n 时2),,2(),(,111-----<n y n y n P n 且的对称点坐标为时当.4,22,21-<∴>--∴>n n y y .42:-<>n n 或综上所述(四) 确定二次函数解析式一般式:y =ax 2+bx +c (a ≠0) 顶点式:y =a (x -h )2+k (a ≠0)双根式:y =a (x -x 1)( x -x 2) (a ≠0) 其中x 1、x 2是抛物线与x 轴交点的横坐标-n , y 1)(n , y y 2)[例题] 1、(2007天津市)已知一抛物线与x 轴的交点是)0,2(-A ,B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标.答案:(1)4222-+=x x y ;(2))29,21(--注:抛物线与x 轴两交点的不同说法应给学生作变式练习. 2、(2007上海市)在直角坐标平面内,二次函数图象的顶点为(14)A -,,且过点(30)B ,. (1)求该二次函数的解析式; (2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标. 解:(1)223y x x =--.(2)令0y =,得2230x x --=,解方程,得13x =,21x =-.∴二次函数图象与x 轴的两个交点坐标分别为(30),和(10)-,. ∴二次函数图象向右平移1个单位后经过坐标原点.平移后所得图象与x 轴的另一个交点坐标为(40),注:抛物线顶点的不同说法应给学生作变式练习.3、(2007广东梅州)已知二次函数图象的顶点是(12)-,,且过点302⎛⎫ ⎪⎝⎭,. (1)求二次函数的表达式;(2)求证:对任意实数m ,点2()M m m -,都不在这个二次函数的图象上. 解:(1)23212+--=x x y (2)证明:若点2()M m m -,在此二次函数的图象上,则221(1)22m m -=-++. 得2230m m -+=. △=41280-=-<,该方程无实根.所以原结论成立.4、(2010年天津市)已知二次函数2y ax bx c =++(0a ≠)中自变量x 和函数值y 的部分对应值如下表:则该二次函数的解析式为 .(2y x x =+-)方程与函数联系密切,我们可以用方程思想解决函数问题,也可以用函数思想讨论方程问题,在确定函数解析式中的待定系数、函数图象与坐标轴的交点、函数图象的交点等问题时,常将问题转化为解方程或方程组;而在讨论方程、方程组的解的个数、解的分布情况等问题时,借助函数图象能获得直观简捷的解答.二次函数)0(2≠++=a c bx ax y ,令y =0,则得02=++c bx ax ,这是一个关于x 的一元二次方程,它们的联系表现在:方程实根的个数、抛物线与x 轴交点的个数的讨论都可转化为由根的判别式△来讨论.利用二次函数的图象求一元二次方程的近似解,重要的是求解的思路,包括解的范围、解的精确度以及如何达到所要求的精确度等.同时利用图象法求解,还可以使学生进一步理解一元二次方程和二次函数之间的关系. [例题]1、已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的解为 .(11-=x ,32=x )2、二次函数2(0)y ax bx c a =++≠的图象如图所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根;(2)写出不等式20ax bx c ++>的解集;(3)写出y 随x 的增大而减小的自变量x 的取值范围; (4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围. 解:(1)11x =,23x = (2)13x << (3)2x > (4)2k <3、函数y =ax 2+bx +c 的图象如图所示,那么关于x 的方程ax 2+bx +c -的根的情况是( A ) A .有两个不相等的实数根B .有两个异号的实数根C .有两个相等的实数根D .没有实数根 4、(2010年朝阳二模)已知二次函数y 1=x 2-x -2和一次函数y 2=x +1的两个交点分别为A (-1,0),B (3,4),当y 1>y 2时,自变量x 的取值范围是( A )A .x <-1或x >3B .-1<x <3C .x <-1D .x >35、下列表格是二次函数y =ax 2+bx +c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx +c =0 (a ≠0,6、已知抛物线)(2442是常数m m mx mx y -+-=. (1)求抛物线的顶点坐标;(2)若155m <<,且抛物线与x 轴交于整数点,求此抛物线的解析式. 解:(1)依题意,得0≠m ,∴2242=--=-=mm a b x , 24168164)4()24(4442222-=--=---=-=mm m m m m m m a b ac y .∴抛物线的顶点坐标为)2,2(-.(2)∵抛物线与x 轴交于整数点,∴02442=-+-m mx mx 的根是整数.∴22x m==±.∵0m >,∴2x =±∴2m 是完全平方数. ∵155m <<, ∴22105m << ∴2m 取1,4,9, 当21m =时,2=m ; 当24m =时,21=m ; 当29m =时,29m =. ∴m 的值为2或21或29.∴抛物线的解析式为6822+-=x x y 或x x y 2212-=或22810999y x x =--.(六) 实际问题与二次函数1、建立平面直角坐标系,求二次函数解析式,解决实际问题. 一般步骤:(1)建立适当的平面直角坐标系,注意建立坐标系时以方便为原则; (2)设恰当的解析式;(3)求解析式,注意点在各象限中的符号; (4)根据解析式解决实际问题.[例题]、一位运动员在距篮下水平距离4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05米. 若该运动员身高1.8米,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?分析:由于篮球运行的路线是抛物线,可建立适当的直角坐标系,并把相关的数椐写成点的坐标,再利用点的坐标及待定系数法求出运行路线的解析式.最后算出跳离地面的高度.解:如图建立直角坐标系.∵点(2.5,3.5)是这段抛物线的顶点∴设解析式为:5.3)5.2(2+-=x a y (0≤x ≤4) ∵抛物线过点(4,3.05) ∴5.3)5.24(05.32+-=a a = -0.2∴5.3)5.2(2.02+--=x y (0≤x ≤4) 即25.22.02++-=x x y当x =0时,y =2.25∴距地面高度是2.25-1.8-0.25=0.2米法二:如图建立直角坐标系.∵点(0,3.5)是这段抛物线的顶点∴设解析式为:23.5y ax =+(-2.5≤x ≤1.5) ∵抛物线过点(1.5,3.05) ∴5.35.105.32+⨯=a a = -0.2∴5.32.02+-=x y (-2.5≤x ≤1.5) 当x = -2.5时,y =2.25∴距地面高度是2.25-1.8-0.25=0.2米2、最值问题(1) 二次函数的最值应用主要体现在以下方面: ①解决实际问题中的最值问题; ②探讨几何图形中相关元素的最值. (2) 利用二次函数求最值问题的一般步骤: ①列出函数解析式;②求自变量x 的取值范围; ③求abx 2-=的值;④判断abx 2-=的值是否在x 的取值范围中:若在,a b ac y 442-=最值;若不在,利用图象在端点处找最值或利用增减性找最值.[例题]1、如图,用18米长的木方做一个有一条横档的矩形窗子, 窗子的宽不能超过2米.为使透进的光线最多,则窗子的长、 宽应各为多少米?解:设窗子的宽为x m ,透光面积y m 2.x x y 9232+-=(0<x ≤2) ∵32=-=abx 不符合0<x ≤2∴由函数图象可知:当x =2时,y 最大=12 ∴当宽为2 m ,长为6 m 时,透进的光最多.注:利用图象在端点处找最值.2、某服装公司试销一种成本为每件50元的T 不高于每件70元,试销中销售量y (件)与销售单价x (元)的关系可以近似的看作一次函数(如图).(1)求y 与x 之间的函数关系式;(2)设公司获得的总利润为P 元,求P 与x 之间的函数关系式,并写出自变量x 的取值范围;根据题意判断:当x 取何值时,P 的值最大? 最大值是多少?(总利润=总销售额-总成本)解:(1)设b kx y x y +=的函数关系式为:与,∵函数图象经过点(60,400)和(70,300)∴⎩⎨⎧+=+=b k bk 7030060400 解得⎩⎨⎧=-=100010b k∴100010+-=x y(2))100010)(50(+--=x x P 500001500102-+-=x x P (50≤x ≤70)∵752015002=--=-a b ,10-=a <0∴函数500001500102-+-=x x P 图象开口向下,对称轴是直线x=75 ∵50≤x ≤70,此时y 随x 的增大而增大 ∴当x =70时,6000=最大值P注:利用增减性找最值.(七) 二次函数综合题解二次函数综合题特别是解与几何结合的综合题,善于求点的坐标,进而求出函数解析式y (件)是解题的基础. 而充分发挥形的因素,数形互助,把证明与计算相结合是解题的关键.[例题]1、已知抛物线)0()21(22≠+-+=k k x k x y 与x 轴交于两点A (x 1, 0),B (x 2, 0)(x 1≠x 2),顶点为C .(1) 若△ABC 为直角三角形,求k 的值; (2) 若△ABC 为等边三角形,求k 的值. 解:(1) 作CD ⊥AB 于D ,则AD =DB∵△ABC 为直角三角形 ∴AD =CD ∵a AD 2∆=,aCD 4∆=∴aa 42∆=∆ ∵△≠0 ∴△=4∵△= -4k +1 ∴-4k +1=4 43-=k (2) 同理∵△ABC 为等边三角形∴CD =3AD∵a AD 2∆=,aCD 4∆=∴aa234∆=∆ ∵△≠0 ∴△=12 ∵△= -4k +1 ∴-4k +1=12411-=k 小结:已知抛物线)0(2≠++=a c bx ax y 与x 轴交于A (x 1, 0),B (x 2, 0)(x 1≠x 2)两点,顶点为C .(1) △ABC 为直角三角形442=-=∆⇔ac b ;(2) △ABC 为等边三角形1242=-=∆⇔ac b 2、(2010安徽芜湖)如图,在平面直角坐标系中放置一矩形ABCO ,其顶点为A (0,1)、B (-33,1)、C (-33,0)、O (0,0).将此矩形沿着过E (-3,1)、F (- 433,0)的直线EF 向右下方翻折,B 、C 的对应点分别为B ′、C′. (1)求折痕所在直线EF 的解析式;(2)一抛物线经过B 、E 、B ′三点,求此二次函数解析式;(3)能否在直线EF 上求一点P ,使得△PBC 周长最小?如能,求出点P 的坐标;若不能,说明理由.解:(1)设EF 的解析式为y =kx +b ,,把E (1)、F ()的坐标代入:1=+b 解得: k0=+b b =4∴直线EF 的解析式为y +4(2)设矩形沿直线EF 向右下方翻折,B 、C 的对应点分别为B ′、C ′∵BE B ′E = BE 在Rt △AE B ′中,根据勾股定理,求得:A B ′=3,∴B′ 的坐标为(0,-2) 设二次函数的解析式为:y =ax 2+bx +c把点B (-33,1)、E (1)、B′(0,-2)代入-2=c a =13-3a +c =1 解得: b =27a -+c =1 c =-2∴二次函数的解析式为y =13-x 2-2 (3)能,可以在直线EF 上找到点P ,连接B′C ,交直线EF 于点P ,连接BP .由于B′P =BP ,此时,点P 与C 、B ′在一条直线上,所以,BP +PC = B′P +PC 的和最小,由于BC 为定长,所以满足△PBC 周长最小. 设直线B′C 的解析式为:y=kx +b-2=b0= -+b又∵P 为直线B′C 和直线EF 的交点,∴ 2y x =- 解得: x =y +4 1011y =-∴点P 的坐标为(,1011-)3、(2010年海淀二模)已知:抛物线2(2)2y x a x a =+--(a 为常数,且0a >). (1)求证:抛物线与x 轴有两个交点;(2)设抛物线与x 轴的两个交点分别为A 、B (A 在B 左侧),与y 轴的交点为C .①当AC =②将①中的抛物线沿x 轴正方向平移t 个单位(t >0),同时将直线l :3y x =沿y 轴正方向平移t 个单位.平移后的直线为'l ,移动后A 、B 的对应点分别为'A 、'B .当t 为何值时,在直线'l 上存在点P ,使得△''A B P 为以''B A 为直角边的等腰直角三角形?解:(1)证明:令0y =,则2(2)20x a x a +--=.△=22)2(8)2(+=+-a a a . ∵ 0>a ,∴ 02>+a . ∴ △0>.∴ 方程2(2)20x a x a +--=有两个不相等的实数根. ∴ 抛物线与x 轴有两个交点.(2)①令0y =,则2(2)20x a x a +--=,解方程,得122,x x a ==-.∵A 在B 左侧,且0a >,∴抛物线与x 轴的两个交点为A (,0)a -,B (2,0). ∵ 抛物线与y 轴的交点为C , ∴ (0,2)C a -. ∴ ,2AO a CO a ==.在Rt △AOC 中,222AO CO +=,22(2)20a a +=. 可得 2a =±. ∵ 0a >, ∴ 2a =.∴ 抛物线的解析式为24y x =-.②依题意,可得直线'l 的解析式为3y x t =+,'A (2,0)t -,'B (2,0)t +,''4A B AB ==.∵ △''A B P 为以''B A 为直角边的等腰直角三角形,∴ 当''90PA B ∠=︒时,点P 的坐标为(2,4)t -或(2,4)t --. ∴ 3(2)4t t -+=.解得 52t =或12t =. 当''90PB A ∠=︒时,点P 的坐标为(2,4)t +或(2,4)t +-.∴3(2)4t t ++=.解得52t =-或12t =-(不合题意,舍去). 综上所述,52t =或12t =.。