初中数学教学设计方案
初中数学教学方案精选范文五篇

初中数学教学方案精选范文五篇教师是人类灵魂的工程师,肩负着为祖国的建设与发展培养人才的历史使命。
怎样才能不辜负人类灵魂工程师这一光荣的称号,怎样才能完成党赋予的培养人才的责任,这是每个教师必须认真对待并要用实践作出回答的问题。
今天小编为大家带来了初中数学教学方案精选范文,希望可以帮助到大家。
初中数学教学方案精选范文一一、指导思想:本学期,我力争让每个学生在原有基础上都有所提高。
认真贯彻落实学校的教育理念,课堂上以学生为主体,大胆开创课堂教育教学方法,争取做一名优秀的数学老师。
二、工作目标:通过本期教学,使学生形成一定的数学素质,能自觉运用数学知识解决生活中的数学问题,形成扎实的数学基本功,为今后继续学习数学打下良好的基础。
培养一批数学尖子,能掌握科学的学习方法。
形成良好的数学学习习惯。
形成融洽的师生关系,使学生在德、智、体各方面全面发展。
(一)、多方面学习,树立新理念开学初就要认真通读数学新课程标准,潜心研究,反复揣摩。
以《数学课程标准》基本理念为依据是用好教材的前提,所以一定要认真领会《标准》编导意图,去指导教学实践,以便采取灵活、有效的教学方法,使数学教学真正面向全体学生,促进学生全面、持续、和谐的发展。
(二)、掌握学生心理特征,激发他们学习数学的积极性。
学生由小学进入中学,在心理上发生了较大的变化,开始要求“独立自主”但学生环境的更换并不等于他们已经具备了中学生的诸多能力。
因此对学习道路上的困难估计不足。
鉴于这些心理特征,教师必须十分重视激发学生的求知欲,有目的地时时地向学生介绍数学在日常生活中的应用,还要想办法让学生亲身体验生活离开数学知识将无法进行。
从而激发他们学习数学知识的直接兴趣。
同时在言行上,教师要切忌伤害学生的自尊心。
如初一学生普遍保留小学阶段积极举手发言的良好习惯,面对孩子们这种学习热情,教师应该表示赞赏,给予肯定,同时尽可能让更多的学生有轮流发言的机会。
(三)以课堂教学为主阵地(1)在教师这方面,首先做到要通读教材,驾驭教材,认真备课,认真备学生,认真备教法。
初中数学教学设计案例(热门18篇)

初中数学教学设计案例(热门18篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、述职报告、心得体会、工作计划、演讲稿、教案大全、作文大全、合同范文、活动方案、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as work summaries, job reports, insights, work plans, speeches, lesson plans, essays, contract samples, activity plans, and other materials. If you want to learn about different data formats and writing methods, please pay attention!初中数学教学设计案例(热门18篇)范文范本可以帮助我们发现和分析自己写作中的问题和不足,促进我们的自我评价和提高。
初中数学课堂教学设计5篇

初中数学课堂教学设计5篇一、教学目标:1、知道一次函数与正比例函数的定义。
2、理解掌握一次函数的图象的特征和相关的性质。
4、掌握直线的平移法则简单应用。
5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点:重点:初步构建比较系统的函数知识体系。
难点:对直线的平移法则的理解,体会数形结合思想。
三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=k某+b(其中k,b为常数且k≠0),那么y 是一次函数。
正比例函数:对于y=k某+b,当b=0,k≠0时,有y=k某,此时称y 是某的正比例函数,k为正比例系数。
(1)从解析式看:y=k某+b(k≠0,b是常数)是一次函数;而y=k某(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=k某(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=k某+b(k≠0)的图象是过点(0,b)且与y=k某平行的一条直线。
基础训练:1、写出一个图象经过点(1,—3)的函数解析式为2、直线y=—2某—2不经过第象限,y随某的增大而。
3、如果P(2,k)在直线y=2某+2上,那么点P到某轴的距离是4、已知正比例函数y=(3k—1)某,若y随某的增大而增大,则k是5、过点(0,2)且与直线y=3某平行的直线是6、若正比例函数y=(1—2m)某的图像过点A(某1,y1)和点B(某2,y2)当某1y2,则m的取值范围是7、若y—2与某—2成正比例,当某=—2时,y=4,则某=时,y=—4。
8、直线y=—5某+b与直线y=某—3都交y轴上同一点,则b的值为9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。
(1)求线段AB的长。
(2)求直线AC的解析式。
四、教学反思:题的答案做出来,尽量要一题多解。
再由小组长组织小组成员汇编,在汇编过程中要去粗取精。
课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可以成果共享,在这个舞台上学生收获着自己的收获。
初中数学课堂教学设计(7篇)

初中数学课堂教学设计(7篇)初中数学课堂教学设计(篇1)一、教学目标1、了解二次根式的意义;2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;3、掌握二次根式的性质和,并能灵活应用;4、通过二次根式的计算培养学生的逻辑思维能力;5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。
二、教学重点和难点重点:(1)二次根的意义;(2)二次根式中字母的取值范围。
难点:确定二次根式中字母的取值范围。
三、教学方法启发式、讲练结合。
四、教学过程(一)复习提问1、什么叫平方根、算术平方根?2、说出下列各式的意义,并计算(二)引入新课新课:二次根式定义:式子叫做二次根式。
对于请同学们讨论论应注意的问题,引导学生总结:(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。
(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次根式指的是某种式子的“外在形态”。
请学生举出几个二次根式的例子,并说明为什么是二次根式。
下面例题根据二次根式定义,由学生分析、回答。
例1当a为实数时,下列各式中哪些是二次根式?例2 x是怎样的实数时,式子在实数范围有意义?解:略。
说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。
例3当字母取何值时,下列各式为二次根式:分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。
解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。
(2)—3x≥0,x≤0,即x≤0时,是二次根式。
(3),且x≠0,∴x0,当x0时,是二次根式。
(4),即,故x—2≥0且x—2≠0,∴x2。
当x2时,是二次根式。
例4下列各式是二次根式,求式子中的字母所满足的条件:分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。
初中数学教学设计(通用15篇)

初中数学教学设计(通用15篇)初中数学教学设计一、案例实施背景教材为人教版义务教育课程标准实验教科书七年级数学(下册)。
二、案例主题分析与设计本节课是人教版义务教育课程标准实验教科书七年级数学(下册)第五章第3节内容——5.3.1平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。
《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。
本节课将以“生活?数学”“活动?思考”“表达?应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
三、案例教学目标1.知识与技能:掌握平行线的性质,能应用性质解决相关问题。
2.数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
3.解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
4.情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。
四、案例教学重、难点1.重点:对平行线性质的掌握与应用。
2.难点:对平行线性质1的探究。
五、案例教学用具1.教具:多媒体平台及多媒体课件.2.学具:三角尺、量角器、剪刀。
六、案例教学过程1.创设情境,设疑激思⑴播放一组幻灯片。
内容:①供火车行驶的铁轨上;②游泳池中的泳道隔栏;③横格纸中的线。
⑵提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?行;③同旁内角互补两直线平行。
⑶学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平⑷教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7.2探索平行线的性质(板书)。
初中数学教学设计(优秀5篇)

初中数学教学设计(优秀5篇)初中数学设计教案篇一一、教学目标(一)基础知识目标:1.理解方程的概念,掌握如何判断方程。
2.理解用字母表示数的好处。
(二)能力目标体会字母表示数的好处,画示意图有利于分析问题,找相等关系是列方程的重要一步,从算式到方程(从算术到代数)是数学的一大进步。
(三)情感目标增强用数学的意识,激发学习数学的热情。
二、教学重点知道什么是方程、一元一次方程,找相等关系列方程。
三、教学难点如何找相等关系列方程四、教学过程我们知道方程是一个含有未知数的'等式,而等式表示了一个相等关系。
因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。
师生共同分析、研究一元一次方程解简单应用题的方法和步骤例1 某面粉仓库存放的面粉运出15%后,还剩余42 500千克,这个仓库原来有多少面粉?师生共同分析:1.本题中给出的已知量和未知量各是什么?2.已知量与未知量之间存在着怎样的相等关系?(原来重量—运出重量=剩余重量)若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?上述分析过程可列表如下:解:设原来有x千克面粉,那么运出了15%x千克,由题意,得x—15%x=42 500,此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?(还有,原来重量=运出重量+剩余重量;原来重量—剩余重量=运出重量)教师应指出:(1)这两种相等关系的表达形式与“原来重量—运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:(1)仔细审题,透彻理解题意。
初中数学教学设计方案(范文6篇)
初中数学教学设计方案(范文6篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作计划、工作总结、个人总结、汇报体会、策划方案、事迹材料、申请书、演讲稿、主持稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work plans, work summaries, personal summaries, report experiences, planning plans, deeds materials, application forms, speeches, hosting drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!初中数学教学设计方案(范文6篇)本店铺为你整理了多篇初中数学教学设计方案(范文6篇),希望对您的工作学习有帮助,您还可以在本店铺找到更多相关《初中数学教学设计方案(范文6篇)》范文。
初中数学教学设计(精选15篇)
初中数学教学设计(精选15篇)初中数学教学设计1(一)创设情境导入新课不利用工具,请你将一张用纸片做的角分成两个相等的角。
你有什么办法?如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。
(二)合作交流探究新知(活动一)探究角平分仪的原理。
具体过程如下:播放美访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的.依据,说明这个仪器的制作原理。
设计目的:用生活中的实例感知。
以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。
其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。
使学生很轻松的完成活动二。
(活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。
讨论结果展示:教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:已知:∠AO B.求作:∠AOB的平分线.作法:(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交于点C.(3)作射线OC,射线OC即为所求.设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。
议一议:1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?2.第二步中所作的两弧交点一定在∠AOB的内部吗?设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。
学生讨论结果总结:1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB•的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.(活动三)探究角平分线的性质思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。
初中数学教学设计 初中数学设计教案(优秀5篇)
初中数学教学设计初中数学设计教案(优秀5篇)作为一名默默奉献的教育工作者,就有可能用到教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。
那么教学设计应该怎么写才合适呢?作者整理了5篇初中数学设计教案,希望您在阅读之后,能够更好的写作初中数学教学设计。
初中数学教学设计篇一为了提高学生的学习兴趣,增大学生的学习参与面,减小差距。
努力作好教学工作,在这一学期中,下文将准备了初中二年级下册数学教学设计如下:一、教学目标:通过本期的学习,要使学生在情感与态度上,认识到数学来源于实践,又反作用于实践,认识现实生活中图形间的数量关系,能够设计精美的图案,提高学生的审美情趣,培养学生实事求是、严肃认真的学习态度,激发学生的学习兴趣,培养学生对数学的热爱,对生活的热爱,在民主、和谐、合作、探究、有序、分享发现快乐,感受学习的快乐。
对于过程与方法,通过学生积极参与对知识的探究,经历发现知识,发现知识间的内在联系,让学生经历发现知识道路上坎坎坷坷,达到深刻理解掌握知识的目的,达到漫江碧透,鱼翔浅底的境界,在经历这些活动中,提高学生的动手实践能力,提高学生的逻辑推理能力与逻辑思维能力,自主探究,解决问题的能力,提高运算能力,使所有学生在数学上都有不同的发展,尽可能接近其发展的较大值,培养学生良好的学习习惯,发展学生的非智力因素,使学生潜移默化的接受辩证唯物的熏陶,提高学生素质。
二、教材分析本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:第十六章分式本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。
第十七章反比例函数函数是研究现实世界变化规律的一个重要模型,本单元学生在学习了一次函数后,进一步研究反比例函数。
学生在本章中经历:反比例函数概念的抽象概括过程,体会建立数学模型的思想,进一步发展学生的抽象思维能力;经历反比例函数的图象及其性质的探索过程,在交流中发展能力这是本章的重点之一;经历本章的重点之二:利用反比例函数及图象解决实际问题的过程,发展学生的数学应用能力;经历函数图象信息的识别应用过程,发展学生形象思维;能根据所给信息确定反比例函数表达式,会作反比例函数图象,并利用它们解决简单的实际问题。
初中数学教学设计(优秀8篇)
初中数学教学设计(优秀8篇)篇一:初中数学教学设计篇一一、内容和内容解析(一)内容概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.(二)内容解析现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.二、目标和目标解析(一)教学目标1.理解不等式的概念2.理解不等式的解与解集的意义,理解它们的区别与联系3.了解解不等式的概念4.用数轴来表示简单不等式的解集(二)目标解析1.达成目标1的标志是:能正确区别不等式、等式以及代数式.2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.三、教学问题诊断分析本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.四、教学支持条件分析利用多媒体直观演示课前引入问题,激发学生的学习兴趣.五、教学过程设计(一)动画演示情景激趣多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.(二)立足实际引出新知问题一辆匀速行驶的汽车在11U20距离a地50km,要在12U00之前驶过a地,车速应满足什么条件?小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.(三)紧扣问题概念辨析1.不等式设问1:什么是不等式?设问2:能否举例说明?由学生自学,老师可作适当补充.比如:是不等式.2.不等式的解设问1:什么是不等式的解?设问2:不等式的解是唯一的吗?由学生自学再讨论.老师点拨:由x>50÷得x>75说明x任意取一个大于75的数都是不等式3.不等式的解集设问1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都设问2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.4.解不等式设问1:什么是解不等式?由学生回答.老师强调:解不等式是一个过程.设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.(四)数形结合,深化认识问题1:由上可知,x>75既是不等式的解集.那么在数轴上如何表示x>75呢?问题2:如果在数轴上表示x≤ 75,又如何表示呢?由老师讲解,注意规范性,准确性.老师适当补充:“≥”与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75就是不等式.设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.(五)归纳小结,反思提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题1、什么是不等式?<的解集,也是不等式>502、什么是不等式的解?3、什么是不等式的解集,它与不等式的解有什么区别与联系?4、用数轴表示不等式的解集要注意哪些方面?设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.(六)布置作业,课外反馈教科书第119页第1题,第120页第2,3题.设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.六、目标检测设计1.填空下列式子中属于不等式的有___________________________①x +7>②x≥ y + 2 = 0③ 5x + 7设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念.2.用不等式表示① a与5的和小于7② a的与b的3倍的和是非负数③正方形的边长为xcm,它的周长不超过160cm,求x满足的条件设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义.篇二:初中数学教学设计模板篇二教学目标:知识与技能目标:通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学教学设计方案
初中数学教学设计方案——小编整理了关于初中数学教学设计方案,以供各位老师和同学们参考!希望对于各位老师的教学工作有所帮助!
1.测试形式与工具(打√)
(1)课堂提问√
(2)书面练习√
(3)达标测试√
(4)学生自主网上测试√
(5)合作完成作品
(6)其他
2.测试内容
一.相似三角形的判定定理在现实生活中的应用的应用
二. 全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形全等的3个定理和判定两个三角形相似的3个定理之间有内在的联系,不同之处仅在于前者是后者相似比为1的情况.
三.边边对应成比例到比求三角形的面积的比,周长比,高度的比
四.证明两个三角形相似
相似三角形复习题
一.填空题:(24分)
1.两个相似三角形的面积比为4∶25,则它们的周长比为。
2.顺次连结三角形三边中点所构成的三角形与原三角形,它们的面积比为。
3.如图,AB∥DC,AC交BD于点O.已知,BO=6,则DO=_________。
4.某校绘制的校园平面图的面积为2.5m2,比例尺为1:200,则该校占地面积 m2 。
5.如图,在△ABC中,点D在线段BC上,∠BAC=∠ADC,AC=8,BC=16,那么CD=__________。
6.如图,AD、BC交于点E,AC∥EF∥BD,EF交AB于F,设AC=p,BD=q,则EF=_____。
7.如图,已知△ABC的周长为30cm,D,E,F分别为AB,BC,CA的中点,则△DEF的周长等于 cm。
8.如图,△ABC中,D是AB上一点,AD:DB=3:4,E是BC上一点。
如果DB=DC,
∠1=∠2,那么S△ADC:S△DEB= 。
二、选择题(24分)
1.DE是DABC的中位线,则DADE与DABC面积的比是( )
A. 1:1
B. 1:2
C. 1:3
D. 1:4
2.如图,已知△ADE∽△ABC,相似比为2:3,则 =( )
(A)3:2 (B)2:3 (C) 2:1 (D)不能确定
3.如图,已知△ACD∽△BCA,若CD=4,CB=9,则AC等于( )
(A) 3 (B) 4 (C) 5 (D) 6
4.△ADE∽△ABC,相似比为2:3,则△ADE与△ABC的面积比为( )
(A) 2:3 (B) 3:2 (C) 9:4 (D) 4:9
5.若DE是△ABC的中位线,△ABC的周长为6,则△ADE的周长为( )
(A)4 (B)3 (C)2 (D)1
6.如图,△ABC中,DE∥BC,AD=1,DB=2,AE=2,那么EC=( )
(A)1 (B)2 (C)3 (D)4
7.如图,D是△ABC的AB边上的一点,过点D作DE∥BC交AC于E。
已知AD:DB=2:3.则S△ADE:SBCED=( )
(A)2:3(B)4:9(C)4:5(D)4:21
8.如图,已知:AD是Rt△ABC斜边BC上的高线,DE是RtCADC斜边AC上的高线,如果DC:AD=1:2,,那么等于( )
(A) 4a (B)9a(C) 1 6a (D)25a
三、解答题:(52分)
1.已知:如图4,△PMN是等边三角形,∠APB=120°。
求证:AM·PB = PN·AP。
2.如图,△ABC中,D是AC的中点,E是BC延长线上一点,过A作AH∥BE,连结ED 并延长交AB于F,交AH于H。
(1)求证:AH=CE
(2)如果AB=4AF,EH=8,求DF的长。
3.已知:如图,在△ABC中,D是BC边上的中点,且AD=AC,DE⊥BC,DE与AB相交于点E, EC与AD相交于点F。
(1)求证:△ABC∽△FCD;
(2)若S△FCD=5,BC=10,求DE的长。
后记:初中数学教学设计方案,以供各位同学和老师参考!但是更多的是根据自身的教学习惯和同学的学习情况去做数学的教学方案!。