新人教A版必修1高中数学一元二次不等式及其解法(1)学案

合集下载

2022年高中数学新人教版A版精品教案《一元二次不等式及其解法》

2022年高中数学新人教版A版精品教案《一元二次不等式及其解法》

一元二次不等式及其解法〔一〕教材:人教版?普通高中课程标准实验教科书·数学〔A版〕?必修5课题:一元二次不等式及其解法〔一〕一、教学目标知识目标:正确理解一元二次方程、二次函数与一元二次不等式的关系,掌握一元二次不等式的解法;能力目标:通过看图象找解集,培养学生“从形到数〞的转化能力和从“特殊到一般〞的归纳能力;德育目标:学习“三个二次〞的关系,体会事物之间普遍联系的辩证思想;情感目标:创设问题情境,培养学生的探索精神和合作意识。

二、教学重点、难点1教学重点:一元二次不等式的解法2教学难点:理解一元二次方程、二次函数与一元二次不等式的关系三、教学过程设计1一元二次不等式概念的引入〔1〕创设情境,引入概念春天来了,熊猫饲养员方案在靠墙的位置为它们圈建一个矩形的室外活动室。

现有可以做出2021栏的材料,要求使得活动室的面积不小于42m2,你能确定与墙平行的栅栏的长度范围吗?分析可得如下数学模型:≥42(1)设与墙平行的栅栏长度为〔00(2)a2bc>0师生活动:教师再次展开抢答竞赛,其中命题〔4〕的判断中,教师要说明二次项系数a可能为0,也可能不为0。

设计意图:通过问题辨析,加深概念的理解,让学生区别一元二次不等式与其他不等式.〔1〕题可使学生明确定义中“一元〞的意思,〔3〕〔4〕使学生明确定义中“二次〞的意思.2 一元二次不等式解法的探究此时,学生已经认识到2-2021≤0是一个一元二次不等式,那么如何确定这个不等式的解集,以得到熊猫活动室栅栏的长度范围呢?(1)回忆旧知,寻找方案观察一元二次不等式2-2021≤0左边的形式,在学过的哪些知识中出现过?一元二次方程2-2021=0二次函数= 2-2021猜测:利用三者之间的关系来解一元二次不等式2-2021≤0师生活动:根据“温故而知新〞的教育理念,教师引导学生观察这个一元二次不等式左边的形式,在学过的哪些知识中出现过?由此得到求这个一元二次不等式解集的猜测方案。

数学人教A版高中必修1一元二次不等式及其解法优秀学案

数学人教A版高中必修1一元二次不等式及其解法优秀学案

一元二次不等式及其解法导学案【使用说明及学法指导】1.结合导学案,完成问题导学部分,并标记自己的疑难点;2.若预习完可对合作探究部分认真审题,做不完的正课时再做;3.找出自己的疑惑和需要谈论的问题准备上课谈质论疑.【学习目标】 1.复习二次函数图象; 2.根据二次函数图象解一元二次不等式;3.归纳一元二次不等式的解法; 4.一元二次不等式的解法的综合运用.【重难点】一元二次不等式的解法和综合运用【问题导学】画二次函数图象应画清楚:1.开口方向,2.对称轴,3.顶点,4.与x 轴的交点(如果有的话)问题 1. 二次函数的图像和性质,如223y x x =--的开口方向、顶点坐标、与x 轴的交点坐标及对称轴分别是什么?并作出它的草图.(1)开口方向: ; (2)顶点坐标: ; (3)与x 轴的交点坐标: ; (4)对称轴为: . 问题2. 根据草图填空:1. 当x = 或 时,0y =,即2230x x --=;2. 当x ∈ 时,函数的图像位于x 轴的下方,则y 0,即223x x -- 0;(填≥、>、≤或<). 所以不等式2230x x --<的解集是 ; 3. 当x ∈ 时,函数的图像位于x 轴的上方,则y 0,即223x x -- 0;(填≥、>、≤或<). 所以不等式2230x x -->的解集是 ;总结归纳:上述方法可以推广到求一般的一元二次不等式20ax bx c ++>或20ax bx c ++<(0)a > 的解集;问题3:完成下表格,并回答思考问题:ac b 42-=∆ 0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程02=++c bx ax()0>a 的根有两相异实根)(,2121x x x x < 有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax的解集)0(02><++a c bx ax小结1:解一元二次不等式的基本步骤:小结2:二次函数、一元二次方程与一元二次不等式解集的关系是什么?例1:解下列不等式:(1)2340x x --≥ (2)2230x x -++>(3)2450x x -+> (4)2690x x -+>例2:解下列不等式:(1)(1)()0x x a +-< (1)a >- (2)22560x ax a -+>(0)a ≠课后练习:一、 解下列不等式(1)22320x x --> (2)2352x x -+≥-(3)24310x x -+> (4)2230x x ++<二、选择题1.下面所给关于x 的几个不等式:①3x +4<0;②x 2+mx -1>0;③ax 2+4x -7>0;④x 2<0.其中一定为一元二次不等式的有( )A .1个B .2个C .3个D .4个 2.不等式x (2-x )>3的解集是( ) A .{x |-1<x <3} B .{x |-3<x <1} C .{x |x <-3或x >1} D .∅ 3.若集合A ={x |(2x +1)( 3-x )>0},B ={x |x ∈N *,x ≤5},则A ∩B 是( ) A .{1,2,3} B .{1,2} C .{4,5} D .{1,2,3,4,5}4.不等式组⎩⎪⎨⎪⎧x 2-1<0x 2-3x <0的解集是( )A .{x |-1<x <1}B .{x |0<x <3}C .{x |0<x <1}D .{x |-1<x <3}5.二次方程ax 2+bx +c =0的两根为-2,3,a <0,那么ax 2+bx +c >0的解集为( ) A .{x |x >3或x <-2} B .{x |x >2或x <-3} C .{x |-2<x <3} D .{x |-3< x <2} 三、解答题1、已知方程ax 2+bx +2=0的两根为-12和2,解不等式ax 2+bx -1>0.2、若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的取值范围。

高中数学新人教版A版精品教案《一元二次不等式及其解法》

高中数学新人教版A版精品教案《一元二次不等式及其解法》

3.2.1一元二次不等式及其解法(第一课时)一、教材分析本节课是人民教育出版社数学(必修5)第三章第二节第一部分内容,本节课内容的地位体现在它的基础性,作用体现在它的工具性。

一元二次不等式的解法是高中数学教学的重点和难点之一。

从内容上看,二次不等式、二次方程与二次函数密不可分,该内容涉及的知识点较多且应用广泛。

从思想层次上看,它涉及到数形结合、分类转化、方程函数等数学思想,这些内容和思想将在中学数学中产生广泛而深远的影响。

一元二次不等式的解法是以后研究函数的定义域、值域等问题的最要工具,它可渗透到中学数学的几乎所有领域中,对今后的学习起着十分重要的作用。

二、学情分析本节内容对学生来说不算陌生,由于一元二次不等式的解法与二次函数联系紧密,而二次函数又是学生在初中学习的薄弱环节,因此很多学生对此学习表现出困惑,对达成所规定的要求带来影响。

三、教学目标知识与技能:理解一元二次方程、一元二次不等式与二次函数的关系,掌握图像法解一元二次不等式的方法;培养数形结合的能力,培养抽象概括能力和逻辑思维能力。

过程与方法:通过函数图像探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法。

情感与价值观:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。

四、重点与难点重点:一元二次不等式的解法难点:理解二次函数、一元二次方程与一元二次不等式解集的关系要点:运用数形结合的思想方法,帮助学生将所学知识有机联系五、教法与学法1.教学方法的选择:创设问题情境,采用启发诱导式的教学模式引导学生探索讨论,学生主动参与提出问题、探索问题和解决问题的过程,突出以学生为主体的探究性学习活动。

2.教学方法的选择:为使学生积极参与课堂学习,我主要指导了以下的学习方法: ①.让学生自己发现问题,自己通过观察图像归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力。

②.分组竞赛。

新人教A版高中数学必修第一册2.2 基本不等式 教学设计(1)

新人教A版高中数学必修第一册2.2 基本不等式 教学设计(1)

第二章 一元二次函数、方程和不等式 2.2 基本不等式(共2课时)(第1课时)本节课是人教版普通高中课程标准实验教科书数学必修1第二章第二节《基本不等式》第1课时。

从内容上看学生原有知识的掌握情况为:初中的勾股定理知识及三角形相似的知识、圆的相关知识,会用作差比较法证明简单的不等式,所以在学法上要指导学生:从代数与几何的角度理解基本不等式。

引导学生学会观察几何图形,进行几何与代数的结合运用,培养数学结合的思想观点,发展学生数学抽象、直观想象、逻辑推理等数学核心素养。

1.教学重点:的证明过程,会用此不等式求某些简单函数的最值;2.教学难点:基本不等式ab ba ≤+2等号成立条件; 多媒体2a b+新人教A 版 必修第一册教学过程教学设计意图 核心素养目标 (一)、情景导学如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,赵爽是为了证明勾股定理而绘制了弦图。

弦图既标志着中国古代的数学成就,又象一只转动的风车,欢迎来自世界各地的数学家们。

教师引导学生从面积的关系去找相等关系或不等关系. 思考1:这图案中含有怎样的几何图形?思考2:你能发现图案中的相等关系或不等关系吗? (二)、探索新知1.探究图形中的不等关系将图中的“风车”抽象成如图,在正方形A BCD 中有4个全等的直角三角形.设直角三角形的两条直角边 长为a,b (a ≠b ),那么正方形的边长为.这样,4个直角三角形的面积的和是2ab ,正方形的面积为.由于4个直角三角形的面积之和小于正方形的面积,我们就得到了一个不等式:.当直角三角形变为等腰直角三角形,即a=b 时, 正方形EFGH 缩为一个点,这时有.(通过几何画板演示当a=b 时的图像)2.得到结论(重要不等式):一般的,对于任意实数a,b ,我们有,当且仅当a=b 时,等号成立。

3.思考证明:你能给出它的证明吗?(设计意图:证明:因为通过介绍第24届国际数学家大会会标 的背景,进行设问,引导学生观察分析,发现图形中蕴藏的基本不等式,培养学生数学抽象和逻辑推理的核心素养,同时渗透数学文化,和爱国主义教育。

高中-数学-人教A版-必修(第一册)-2.3 一元二次不等式的解法 教案

高中-数学-人教A版-必修(第一册)-2.3 一元二次不等式的解法 教案

数学教研室个人课堂教学设计学科数学主讲人课型教案序号授课题目 2.3 二次函数与一元二次方程、不等式授课时间课标要求
教材分析本节主要内容是从实际问题中建立一元二次不等式,并能解一元二次不等式。

这一节共分2个课时,本节课属于第一课时,课题为《一元二次不等式及其解法》。

学数学的目的在于用数学,除了让学生探究并掌握一元二次不等式的解法外,更重要的是要领悟函数、方程、不等式的密切联系,体会数形结合,分类讨论,等价转换等数学思想。

学情分析学生在初中就开始接触不等式,并会解一元一次不等式。

教学目标知识与技能:通过学生自主预习与课上探究掌握一元二次方程、一元二次不等式、二次函数之间的关系和一元二次不等式的解法;
过程与方法:自主探究与讨论交流过程中,培养学生运用等价转化和数形结合等数学思想解决数学问题的能力;
情感态度价值观:培养学生的合作意识和创新精神
教学重点一元二次不等式的解法
教学难点一元二次方程、一元二次不等式和二次函数的关系。

教学方法探究式教学方法
教学过程
教学环节教师活动学生活动设计意图环节一:
课前2分钟
回顾一元一次不等式的解法学生活动
环节二:课堂导入任务1.请画出二次函数的图像
并写出当(1)y=0时,x取何值
(2)y>0时,x取何值
(3)y<0时,x取何值
学生自己画二
次函数,并通过
函数图像写出
当y取不同值
时,x的取值
锻炼数形结合的能力。

人教A版高中学案数学必修第一册 第二章 一元二次函数、方程和不等式 等式性质、不等式性质、基本不等式

人教A版高中学案数学必修第一册 第二章 一元二次函数、方程和不等式 等式性质、不等式性质、基本不等式
4



16
5
C. + 的最小值是6D.2 + 2 的最小值为


[解析]对于A选项, = ⋅ ⋅ ≤




+
⋅(
) =





A选项正确.对于B选项,( + )( + ) = +
由 =

,

=



,解得



对于C选项, + =
− ≥ ,当且仅当 = −, = 时取等号,故选C.
3.下列说法中,正确的个数是() B
①2 + 2 ≥ 2 成立的条件是 ≥ 0, ≥ 0②2 + 2 ≥ 2 成立的条件是, ∈
③ + ≥ 2 成立的条件是 > 0, > 0④ + ≥ 2 成立的条件是 > 0
等号成立,故有最大值−.故选C.


− = −,当且仅当− =

,即

= −时,
5.[2024扬州期末]对于实数,,,下列命题正确的是()
C
A.若 > ,则 2 > 2 B.若 > ,则2 > 2


C.若 > ,则|| > ||D.若 > > > 0,则
又 < ,∴ − < < ,− > ,∴ > − > > −.
2.已知 = 2 + 4 + 1, = − 2 + 2 − 4,则() C
A. > B. < C. ≥ D. ≤

人教统编部编版高中数学必修一A版第二章《一元二次函数、方程和不等式》全章节教案教学设计含章末综合复习

人教统编部编版高中数学必修一A版第二章《一元二次函数、方程和不等式》全章节教案教学设计含章末综合复习

【新教材】人教统编版高中数学必修一A版第二章教案教学设计2.1《等式性质与不等式性质》教案教材分析:等式性质与不等式性质是高中数学的主要内容之一,在高中数学中占有重要地位,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应,有着重要的实际意义.同时等式性质与不等式性质也为学生以后顺利学习基本不等式起到重要的铺垫.教学目标与核心素养:课程目标1. 掌握等式性质与不等式性质以及推论,能够运用其解决简单的问题.2. 进一步掌握作差、作商、综合法等比较法比较实数的大小.3. 通过教学培养学生合作交流的意识和大胆猜测、乐于探究的良好思维品质。

数学学科素养1.数学抽象:不等式的基本性质;2.逻辑推理:不等式的证明;3.数学运算:比较多项式的大小及重要不等式的应用;4.数据分析:多项式的取值范围,许将单项式的范围之一求出,然后相加或相乘.(将减法转化为加法,将除法转化为乘法);5.数学建模:运用类比的思想有等式的基本性质猜测不等式的基本性质。

教学重难点:重点:掌握不等式性质及其应用.难点:不等式性质的应用.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

教学过程:一、情景导入在现实世界和日常生活中,大量存在着相等关系和不等关系,例如多与少、大与小、长与短、轻与重、不超过或不少于等.举例说明生活中的相等关系和不等关系.要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本37-42页,思考并完成以下问题 1.不等式的基本性质是?2.比较两个多项式(实数)大小的方法有哪些?3.重要不等式是?4.等式的基本性质?5.类比等式的基本性质猜测不等式的基本性质?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1、 两个实数比较大小的方法 作差法 {a −b >0⟺a >ba −b =0⟺a =b a −b <0⟺a <b作商法{ ab >1⟺a >b ab =1⟺a =b ab <1⟺a <b2.不等式的基本性质3.重要不等式四、典例分析、举一反三 题型一 不等式性质应用 例1 判断下列命题是否正确:(1)c a b c b a >⇒>>,( ) (2)22bc ac b a >⇒> ( ) (3)bd ac d c b a >⇒>>,( ) (4)b a cb c a >⇒>22 ( ) (5) 22b a b a >⇒> ( ) (6)22b a b a >⇒> ( ) (7) dbc ad c b a >⇒>>>>0,0 ( ) 【答案】(1)× (2) × (3)× (4)√ (5)× (6) √ (7 )×解题技巧:(不等式性质应用)可用特殊值代入验证,也可用不等式的性质推证. 跟踪训练一1、用不等号“>”或“<”填空:(1)如果a>b ,c<d ,那么a-c ______ b-d ; (2)如果a>b>0,c<d<0,那么ac______bd ; (3)如果a>b>0,那么1a 2 ______1b 2 (4)如果a>b>c>0,那么ca _______ cb【答案】(1) > (2) < (3) < (4) < 题型二 比较大小例2 (1).比较(x+2)(x+3)和(x+1)(x+4)的大小 (2).已知a >b >0,c >0,求ca >cb 。

新教材高中数学一元二次函数方程和不等式 第1课时基本不等式学案含解析新人教A版必修第一册

新教材高中数学一元二次函数方程和不等式 第1课时基本不等式学案含解析新人教A版必修第一册

2.2 基本不等式第1课时 基本不等式[目标] 1.理解基本不等式的内容及证明;2.能熟练运用基本不等式来比较两个实数的大小;3.能初步运用基本不等式证明简单的不等式.[重点] 基本不等式的内容及证明. [难点] 运用基本不等式证明简单的不等式.知识点 两个不等式[填一填]1.重要不等式:∀a ,b ∈R ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.2.基本不等式:如果a ,b ∈R +,那么ab ≤a +b 2,当且仅当a =b 时,等号成立.其中a +b2叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数.所以两个正数的算术平均数不小于它们的几何平均数.[答一答]1.下面是基本不等式ab ≤a +b2的一种几何解释,请你补充完整. 如图所示,AB 为⊙O 的直径,AC =a ,CB =b ,过点C 作CD ⊥AB 交⊙O 上半圆于D ,连接OD ,AD ,BD .(1)由射影定理可知,CD =ab ,而OD =a +b2;(2)因为OD ≥CD ,所以a +b2≥ab 当且仅当C 与O 重合,即a =b 时,等号成立;(3)基本不等式ab ≤a +b2的几何意义是半径不小于半弦.2.不等式a 2+b 2≥2ab 和基本不等式ab ≤a +b2成立的条件有什么不同?提示:不等式a 2+b 2≥2ab 对任意实数a ,b 都成立;ab ≤a +b2中要求a ,b 都是正实数.3.(1)基本不等式中的a ,b 可以是代数式吗? (2)a +b 2≥ab 与⎝⎛⎭⎫a +b 22≥ab 是等价的吗?提示:(1)可以.但代数式的值必须是正数,否则不成立. (2)不等价,前者条件是a >0,b >0,后者是a ,b ∈R .类型一 用基本不等式比较大小[例1] 若0<a <1,0<b <1,且a ≠b ,试找出a +b ,a 2+b 2,2ab ,2ab 中的最大者. [解] ∵0<a <1,0<b <1,且a ≠b ,∴a +b >2ab ,a 2+b 2>2ab ,∴四个数中最大的应从a +b ,a 2+b 2中选择. 而a 2+b 2-(a +b )=a (a -1)+b (b -1), ∵0<a <1,0<b <1,∴a (a -1)<0,b (b -1)<0, ∴a 2+b 2-(a +b )<0,即a 2+b 2<a +b , ∴a +b 最大.利用基本不等式比较实数大小的注意事项(1)利用基本不等式比较大小,常常要注意观察其形式(和与积),同时要注意结合函数的性质.(2)利用基本不等式时,一定要注意条件是否满足a >0,b >0.[变式训练1] (1)已知a ,b ∈R ,且ab >0,则下列结论恒成立的是( D ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b≥2 解析:对于A,当a =b 时,a 2+b 2=2ab ,所以A 错误;对于B,C,ab >0只能说明a ,b 同号,当a ,b 都小于0时,B,C 错误;对于D,因为ab >0,所以b a >0,a b >0,所以b a +ab ≥2b a ·a b ,即b a +ab≥2成立.(2)已知a ,b 是不相等的正数,x =a +b2,y =a +b ,试比较x ,y 的大小.解:a ,b 是不相等的正数,由x =a +b 2得x 2=a +b +2ab 2<a +b +a +b2=a +b ,又∵y =a +b ,即y 2=a +b ,∴x 2<y 2,即x <y . 类型二 用基本不等式证明不等式[例2] (1)已知a ,b ,c 为不全相等的正实数,求证:a +b +c >ab +bc +ca . (2)已知a ,b ,c 为正实数,且a +b +c =1, 求证:⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1≥8.[分析] (1)左边是和式,右边是带根号的积式之和,所以用基本不等式,将和变积,并证得不等式.(2)不等式右边数字为8,使我们联想到左边因式分别使用基本不等式,可得三个“2”连乘,又1a -1=1-a a =b +c a ≥2bc a,可由此变形入手. [证明] (1)∵a >0,b >0,c >0,∴a +b ≥2ab >0,b +c ≥2bc >0,c +a ≥2ca >0.∴2(a +b +c )≥2(ab +bc +ca ), 即a +b +c ≥ab +bc +ca .由于a ,b ,c 为不全相等的正实数,故等号不成立. ∴a +b +c >ab +bc +ca . (2)∵a ,b ,c 为正实数,且a +b +c =1, ∴1a -1=1-a a =b +c a ≥2bc a , 同理1b -1≥2ac b ,1c -1≥2ab c.由上述三个不等式两边均为正,分别相乘,得⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1≥2bc a ·2ac b ·2ab c =8. 当且仅当a =b =c =13时,等号成立.利用基本不等式证明不等式的策略与注意事项1.利用基本不等式证明不等式,关键是所证不等式中必须有“和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和”式,从而达到放缩的效果.2.注意多次运用基本不等式时等号能否取到.3.解题时要注意技巧,当不能直接利用基本不等式时,可将原不等式进行组合、构造,以满足能使用基本不等式的形式.[变式训练2] 已知a ,b ,c 为正数,且a +b +c =1,证明:1a +1b +1c≥9.证明:1a +1b +1c =a +b +c a +a +b +c b +a +b +c c =3+(b a +a b )+(c a +a c )+(c b +b c )≥3+2+2+2=9.当且仅当a =b =c =13时,等号成立.1.给出下列条件:①ab >0;②ab <0;③a >0,b >0;④a <0,b <0,其中能使b a +ab ≥2成立的条件有( C )A .1个B .2个C .3个D .4个解析:当b a ,a b 均为正数时,b a +ab ≥2,故只须a 、b 同号即可.所以①③④均可以.2.已知x >0,y >0,且2x +1y =1,若x +2y >m 恒成立,则实数m 的取值范围是( D )A .{m |m <6}B .{m |m ≤6}C .{m |m ≤8}D .{m |m <8}解析:本题考查基本不等式的应用.x +2y =(x +2y )·⎝⎛⎭⎫2x +1y =4+4y x +x y≥4+24=8(当且仅当4y x =xy ,即x =4,y =2时等号成立),所以x +2y >m 恒成立,只需(x +2y )min >m .所以m <8.故选D.3.设b >a >0,且a +b =1,则四个数12,2ab ,a 2+b 2,b 中最大的是( A )A .bB .a 2+b 2C .2abD.12解析:因为b >a >0,所以a 2+b 2>2ab .又因为a +b =1,所以b >12.又b =b (b +a )=b 2+ab >b 2+a 2,所以b 最大,故选A.4.若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是①③⑤(写出所有正确命题的序号).①ab ≤1;②a +b ≤2;③a 2+b 2≥2;④a 3+b 3≥3;⑤1a +1b ≥2.解析:因为a >0,b >0,a +b =2,所以ab ≤(a +b 2)2=1,所以①恒成立; a +b ≤2(a )2+(b )22=2,所以②不恒成立; a 2+b 2≥(a +b )22=2,所以③恒成立;当a =b =1时,a 3+b 3=2<3,所以④不恒成立; 1a +1b =12(a +b )(1a +1b )=12(2+a b +ba )≥2, 所以⑤恒成立. 5.已知x ,y 都是正数. 求证:(1)y x +xy≥2;(2)(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3. 证明:(1)∵x ,y 都是正数,∴x y >0,yx >0,∴y x +x y≥2y x ·x y =2,即y x +x y≥2, 当且仅当x =y 时,等号成立. (2)∵x ,y 都是正数,∴x +y ≥2xy >0, x 2+y 2≥2x 2y 2>0,x 3+y 3≥2x 3y 3>0.∴(x +y )(x 2+y 2)(x 3+y 3)≥2xy ·2x 2y 2·2x 3y 3=8x 3y 3,即(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3, 当且仅当x =y 时,等号成立.——本课须掌握的两大问题1.两个不等式a 2+b 2≥2ab 与a +b2≥ab 都是带有等号的不等式,对于“当且仅当…时,取‘=’”这句话的含义要有正确的理解.一方面:当a =b 时,a +b 2=ab ;另一方面:当a +b2=ab 时,也有a =b .2.在利用基本不等式证明的过程中,常需要把数、式合理的拆成两项或多项或把恒等式变形配凑成适当的数、式,以便于利用基本不等式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学 一元二次不等式及其解法(1)学案
新人教A 版必修1
学习目标:
1、理解一元二次方程、一元二次不等式与二次函数的关系,
2、掌握图象法解一元二次不等式的方法;
3、培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力; 学习重点:掌握一元二次不等式的解法
学习难点:理解一元二次不等式、一元二次函数及一元二次方程的关系 一、新课探究:
⒈一次函数,一元一次方程,一元一次不等式关系:
2、二次函数,一元二次方程,一元二次不等式关系:
问题1. 二次函数的图像和性质,如223y x x =--的开口方向、顶点坐标、与x 轴的交点坐标及
对称轴分别是什么?并作出它的草图.
(1)开口方向: ;(2)顶点坐标: ;
(3)与x 轴的交点坐标: ;(4)对称轴为: . 问题2. 根据草图填空:
1. 当x = 或 时,0y =,即2
230x x --=;
2. 当x ∈ 时,函数的图像位于x 轴的下方,则y 0,即2
23x x -- 0; (填≥、>、≤或<). 所以不等式2
230x x --<的解集是 ; 3. 当x ∈ 时,函数的图像位于x 轴的上方,则y 0, 即2
23x x -- 0;(填≥、>、≤或<).
所以不等式2
230x x -->的解集是 ;
总结归纳:上述方法可以推广到求一般的一元二次不等式2
0ax bx c ++>或
20ax bx c ++<(0)a > 的解集;
问题3:完成下表格,并回答思考问题:
小结1:利用二次函数的图像解一元二次不等式的步骤是: 二、例题讲解
例1 解不等式:2
3520x x +->. 例2 解不等式:2
9610x x -+>.
例3 解不等式:2
450x x -+>. 例4 解不等式:2
210x x -++>.
例5 解不等式:2
230x x -+->.
练习:
1.
2
1710x -≤()3x 2(2)250x x -+-< 2(3)440x x -+-<
21
(4)04
x x -+
> 2(5)23x x -+<- 2(6)1231200x x -+>
2(7)350x x +< 2(8)445x x -> 2(9)1340x ->
2(10)3100x x --> (11)(9)0x x -> 2(11)42025x x -<
(12)(3)(7)0x x --< 2(13)3540x x -+-> (14)(1)(23)1x x x x ->-+
课后作业: 1:解下列不等式:
(1)(1)()0x x a +-< (2)22
560x ax a -+>(0)a ≠
2:已知一元二次不等式2
60ax bx ++>的解集为{|23}x x -<<,求a ,b 的值.。

相关文档
最新文档