苏教版高中数学必修二导学案答案
高中数学必修二导学案:第一章第一节柱锥台球的结构特征第二课时

第一章第一节柱锥台球的结构特征第二课时三维目标1.了解圆柱、圆锥、圆台、球的定义,认识圆柱、圆锥、圆台、球的结构特征;2. 会用柱、锥、台、球的结构特征描述简单组合体的结构特征;3. 了解柱、锥、台体的关系.________________________________________________________________________________ 目标三导学做思1问题1. (1)图①中的几何体叫做________,O叫它的________,OA叫它的________,AB叫它的________.(2)图②中的几何体叫________,AB、CD都是它的________,⊙O和⊙O′及其内部是它的________.(3)图③中的几何体叫做________,SB为叫它的________.(4)图④中的几何体叫做________,AA′叫它的________,⊙O′及其内部叫它的________,⊙O及其内部叫它的________,它还可以看作直角梯形OAA′O′绕它的________________旋转一周后,其他各边所形成的面所围成的旋转体.(5).什么是简单组合体?简单几何体有哪几种基本形式?指出下图中的组合形式.【学做思2】1.如图,AB为圆弧»BC所在圆的直径,45BAC∠=o.将这个平面图形绕直线AB旋转一周,得到一个组合体,试说明这个组合体的结构特征.2.已知圆台的两底半径分别为2和3,母线长为5,求展开后的弧所对的圆心角度数.3.圆锥底面半径为1cm,高为2cm,其中有一个内接正方体,求这个内接正方体的棱长. 【变式】已知球的内接正方体棱长为2,求球的半径.达标检测1.如图所示的四个几何体中,是圆柱的为________;是圆锥的为________.2.说出如图所示几何体的主要结构特征.3.如图所示,下列几何体可看作由什么图形旋转360°得到?画出平面图形和旋转轴.4.如图,长方体ABCD—A1B l C l D1中,AD=3,AA l=4,AB=5,则从A点沿表面到C l的最短距离为______.5.一个圆台的母线长为12cm,两底面面积分别为4πcm2和25πcm2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.。
高一下学期数学必修二导学案(总体离散程度的估计)

9.2.4 总体离散程度的估计【学习目标】1.会求样本的标准差、方差;2.理解离散程度参数的统计含义;3.会应用相关知识解决实际统计问题.【知识梳理】一、请同学们预习课本9.2.4节(第209-213页),完成下列知识梳理。
1、预习课本中的问题3,回答下列问题(1)计算甲乙两名运动员射击成绩的平均数、中位数、众数是、、。
(2)作出两名运动员射击成绩的频率图(如下)甲的成绩比较,乙的成绩相对,即甲的成绩波动幅度比较大,而乙的成绩比较稳定。
可见,他们的射击成绩是存在差异的。
2、度量数据离散程度的方法-极差度量数据程度的一种方法是用极差。
极差在一定程度上刻画了数据的程度.但因为极差只使用了数据中、两个值的信息,对其他数据的取值情况没有涉及,所以极差所含的信息量很少。
3、平均距离的一种表示形式假设一组数据是x1,x2,⋯,x n,用x̅表示这组数据的平均数. 我们用每个数据与平均数的差的绝对值作为“距离”,即|x i−x̅|(i=1,2,⋯,n)作为x i到x̅的“距离”.可以得到这组数据x1,x2,⋯,x n到x̅的“平均距离”为1 n ∑|x i−x| ni=14、方差和标准差(1)一组数据是x1,x2,⋯,x n,这组数据的方差是1 n ∑(x i−x)2ni=1,或1n∑x i2ni=1−x̅2,(你能证明两者是相等的吗?)(2)由于方差的单位是原始数据的单位的,为了使二者数据单位一致,我们取方差的算术平方根,得到这组数据的标准差√1n∑(x i−x)2ni=1,或 √1n∑x i2ni=1−x̅2,(3)总体方差S2和总体标准差S=√S2S2=1N∑(Y i−Y)2Ni=1=1N∑Y i2Ni=1−Y̅2,也可以写成加权的形式S2=1N∑f i(Y i−Y)2ki=1,(4)样本方差s2和样本标准差s=√s2s2=1n∑(y i−y)2ni=1(5)标准差刻画了数据的程度或幅度,标准差越大,数据的离散程度越;标准差越小,数据的离散程度越。
苏教版数学高一高中数学苏教版必修2导学案 圆的方程2

2.2.1 圆的方程(2)学习目标1. 掌握圆的一般方程,会判断二元二次方程022=++++F Ey Dx y x 是否是圆的一般方程,2. 能将圆的一般方程转化为标准方程,从而写出圆心坐标和圆的半径.3. 会用代定系数法求圆的一般方程.学习过程一 学生活动问题1.已知一个圆的圆心坐标为)11( ,,半径为2,求圆的标准方程.问题2.在半径与圆心不能确定的情况下仍用圆的标准方程来解行不行?如ABC ∆的顶点坐标)34( ,A ,)25( ,B ,)01( ,C ,求ABC ∆外接圆方程.这道题怎样求?有几种方法?二 建构知识1.圆的一般方程的推导过程.2.若方程Ey Dx y x +++22+F =0表示圆的一般方程,有什么要求?三 知识运用例题例1 已知ABC ∆的顶点坐标)34( ,A ,)25( ,B ,)01( ,C ,求ABC ∆外接圆的方程.变式训练:已知ABC ∆的顶点坐标)11( ,A 、)13( ,B 、)33( ,C ,求ABC ∆外接圆的方程.例2 某圆拱梁的示意图如图所示,该圆拱的跨度m AB 36=,拱高m OP 6=,每隔m 3需要一个支柱支撑,求支柱22P A 的长(精确到m 01.0).例3 已知方程0834222=+++++k y kx y x 表示一个圆,求k 的取值范围.变式训练:若方程02)1(22222=+-+-+m y m mx y x 表示一个圆,且该圆的圆心位于第一象限,求实数m 的取值范围.巩固练习1.下列方程各表示什么图形?(1)0)2()1(22=++-y x ;(2)044222=-+-+y x y x ; (3)0422=-+x y x ;(4)02222=-++b ax y x ; (5)052422=+--+y x y x .2.如果方程Ey Dx y x +++22+F =0)04(22>-+F E D 所表示的曲线关于直线x y =对称,那么必有( )A .E D =B .F D =C .F E =D .FE D ==3.求经过点)14( ,A ,)36( -,B ,)03( ,C 的圆的方程.2P P B A O y x 2A四 回顾小结圆的一般方程的推导及其条件;圆标准方程与一般方程的互化;用代定系数法求圆的一般方程.五 学习评价双基训练:1圆222440x y x y ++--=的圆心坐标为________,半径r=__________.2已知圆220x y Dx Ey F ++++=的圆心坐标为(-2,3),半径为4,则D ,E ,F 的值分别是___________.3若方程224250x y kx y k ++-+=表示的图形是圆,则实数k 的取值范围是_________. 4经过点O(0,0),A(2,0),B(0,4)的圆的一般方程是__________________.5经过两点O(0,0),A(2,2)的所有圆中面积最小的圆的一般方程为__________________. 6若圆220x y Dx Ey F ++++=与y 轴切于原点,则D ,E ,F 满足____________. 7求满足下列条件的圆的一般方程:a) 经过点A (4,1),B (-6,3),C (3,0);b) 在x 轴上的截距分别为1和3,在y 轴上的截距为-1.8.点A 是圆C :22450x y ax y +++-=上任意一点,且A 关于直线210x y +-=的对称点也在圆C 上,求实数a 的值.拓展延伸:9、 等腰梯形ABCD 的底边长分别为6和4,高为3,求这个等腰梯形的外接圆的方程,并指出圆的圆心和半径.。
高中数学(苏教版)必修2精品教学案全集:立体几何 部分参考(含单元测试)答案

参考答案(部分)第1课时 棱柱、棱锥、棱台1.A 2.D 3.B 4.5,9,3,6 5.4,4 ,三 6.不能,没有四个面的棱台,至少有5个面.7.略.8.(1)平行四边形(2)三角形9.可能是:三角形,四边形,五边形和六边形第2课时 圆柱、圆锥、圆台、球1.C 2.C 3.B 4.C 5.不是,绕x 轴旋转一周所得的几何体,为圆柱内挖去一个圆锥,绕y 轴旋转一周所得的几何体为圆锥。
6.一个圆柱内挖去一个圆锥7.(1)矩形(2)扇形,扇环(3)不能8.一个圆柱加一个圆锥(2)直角三角形内接矩形第3课时 中心投影和平行投影1.C 2.左 3.略 4.3,左后最上方 5.略 6.略第4课时 直观图画法1.D 2. D3.26164.略 5.略 6.略 7.略 第5课时 平面的基本性质(1)1.A 2. C 3. B 4.B 5.1 6.略 7.略第6课时 平面的基本性质(2)1.B 2. A 3. B 4.C 5.D 6.略 7.略第7课时 空间两条直线的位置关系1.C 2. D 3. B 4.3 5.40°或140° 6.略 7略8.(1)略 (2) 略(3)AC=BD 且,AC ⊥BD第8课时 异面直线1.B 2.C 3.60° 4.相交或异面 5.①③ 6.提示:反证法 760°7.2个 8.一定异面 证略 9.不一定第9课时 直线和平面的位置关系1.B 2.B 3.平行 4.在平面ABB 1A 1中,过点M作GH//BB 1,GH 分别交AB, A 1 B 1于点E,G ,连接EH,GF ,则平面γ与次三棱柱表面的交线是GH,EH,GF,EF 5.证明:因为AC//BD,所以AC与BD可确定一个平面β,然后证四边形ABCD为平行四边形,则AC=BD 6.(1)证:EF//GH,(2)略7.取BD中点E,连接AE,NE,证AMNE为平行四边形。
第10课时 直线平面垂直1.B 2.B 3.a ⊥b 4.D PAB ,D PAD ,D PDC ,D PBC5.BD1⊥AC,BD1⊥B1C,BD1⊥平面ACB16.证明:过P作PG⊥平面ABC,G为垂足,连接AG,CG,BG,则PG⊥AG,PG⊥CG,PG⊥BG,∵PA=PB=PC∴DPGA≌DPGC≌DPGB∴AG=BG=CG∴G与O重合∴PO⊥平面ABC7.已知:一点A和平面α求证:经过点A和平面α垂直的直线只有一条证明:假使过点A至少有平面α的两条垂线:AB,AC那么AB和AC是两条相交直线,它们确定一个平面β设β∩α=a∴AB⊥α,AC⊥α∴在内有两条直线与a垂直,矛盾所以:经过点A和平面α垂直的直线只有一条8.证明:∵b⊥平面α∴b与平面α相交设b∩α=A则a与A确定一个平面β设β∩α=a′∵a//α∴a// a′又∵b⊥α∴b⊥a′∴b⊥a第11课时直线和平面垂直(2)4.PA=PB=PC 5.①②③④⑤1.D 2.C 3.26.连接AO并延长交BC于D∵O为重心∴AD⊥BC而PO平面ABC∴BC⊥PA7.(1) ∵PA⊥平面ABCD而BC⊥AB,CD⊥AD∴BC⊥PB,CD⊥PD∴D PBC, D PDC是Rt D。
2019学年苏教版高中数学必修2全册学案

高中数学必修2全册学案目录1.1.1棱柱、棱锥和棱台1.1.2圆柱、圆锥、圆台和球1.1.4直观图画法1.2.1平面的基本性质1.2.2空间两条直线的位置关系1.2.3 第1课时直线与平面平行的判定1.2.3 第2课时直线与平面平行的性质1.2.3 第3课时直线与平面垂直的判定1.2.3 第4课时直线与平面垂直的性质1.2.3 第5课时线面垂直的综合应用1.2.4 第3课时两平面垂直的性质1.3.1空间几何体的表面积1.3.2空间几何体的体积2.1.1直线的斜率2.1.2 第1课时点斜式2.1.2 第2课时两点式2.1.2 第3课时一般式2.1.3 第1课时两条直线的平行2.1.3 第2课时两条直线的垂直2.1.4两条直线的交点2.1.5平面上两点间的距离2.1.6点到直线的距离2.2.1 第1课时圆的标准方程2.2.1 第2课时圆的一般方程2.2.2直线与圆的位置关系2.2.3圆与圆的位置关系2.3空间直角坐标系2习题课圆的方程的应用2习题课直线与方程章末复习课1章末复习课21.1.1棱柱、棱锥和棱台学习目标 1.通过观察实例,概括出棱柱、棱锥、棱台的定义.2.掌握棱柱、棱锥、棱台的结构特征及相关概念.3.能说出棱柱、棱锥、棱台的性质,并会画简单的棱柱、棱锥、棱台.知识点一棱柱的结构特征思考观察下列多面体,有什么共同特点?梳理棱柱的结构特征名称定义图形及表示相关概念分类棱柱由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱如图可记作:棱柱ABCDEF—A′B′C′D′E′F′底面:平移起止位置的两个面,侧面:多边形的边平移所形成的面,侧棱:相邻侧面的公共边,顶点:侧面与底面的公共顶点底面为三角形、四边形、五边形……的棱柱分别称为三棱柱、四棱柱、五棱柱……思考观察下列多面体,有什么共同特点?梳理棱锥的结构特征名称定义图形及表示相关概念分类棱锥当棱柱的一个底面收缩为一点时,得到的几何体叫做棱锥如图可记作:棱锥S—ABCD底面(底):多边形面,侧面:有公共顶点的各个三角形面,侧棱:相邻侧面的______,顶点:由棱柱的一个底面收缩而成按底面多边形的边数分:三棱锥、四棱锥、……知识点三棱台的结构特征思考观察下列多面体,分析其与棱锥有何区别与联系?梳理棱台的结构特征名称定义图形及表示相关概念分类棱台用一个______的平面去截棱锥,得到两个几何体,一个仍然是棱锥,另一个我们称之为棱台如图可记作:棱台ABCD—A′B′C′D′上底面:原棱锥的截面,下底面:原棱锥的底面,侧面:其余各面,侧棱:相邻侧面的公共边,顶点:侧面与上(下)底面的公共顶点由三棱锥、四棱锥、五棱锥、……截得的棱台分别叫做三棱台、四棱台、五棱台、……知识点四多面体思考一般地,怎样定义多面体?围成多面体的各个多边形,相邻两个多边形的公共边,以及这些公共边的公共点分别叫什么名称?梳理类别多面体定义由一些______________围成的几何体图形相关概念面:围成多面体的各个________,棱:相邻两个面的________,顶点:棱与棱的公共点类型一棱柱、棱锥、棱台的结构特征命题角度1棱柱的结构特征例1下列关于棱柱的说法:①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④被平行于底面的平面截成的两部分可以都是棱柱.其中正确说法的序号是________.反思与感悟关于棱柱的辨析(1)紧扣棱柱的结构特征进行有关概念辨析.①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.(2)多注意观察一些实物模型和图片便于反例排除.特别提醒:求解与棱柱相关的问题时,首先看是否有两个平行的面作为底面,再看是否满足其他特征.跟踪训练1关于棱柱,下列说法正确的是__________.(填序号)①有两个面平行,其余各面都是平行四边形的几何体是棱柱;②棱柱的侧棱长相等,侧面都是平行四边形;③上、下底面是菱形,各侧面是全等的正方形的四棱柱一定是正方体.命题角度2棱锥、棱台的结构特征例2(1)判断如图所示的物体是不是棱锥,为什么?(2)如图所示的多面体是不是棱台?反思与感悟棱锥、棱台结构特征问题的判断方法(1)举反例法结合棱锥、棱台的定义举反例直接说明关于棱锥、棱台结构特征的某些说法不正确. (2)直接法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点①棱台的侧面一定不会是平行四边形;②由四个平面围成的封闭图形只能是三棱锥;③棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.类型二棱柱、棱锥、棱台的画法例3画出一个三棱柱和一个四棱台.反思与感悟在平面几何中,虚线表示作的辅助线,但在空间图形中,虚线表示被遮挡的线.在空间图形中作辅助线时,被遮挡的线作成虚线,看得见的线仍作成实线.作图时要使用铅笔、直尺等,力求准确.跟踪训练3画一个六面体.(1)使它是一个四棱柱;(2)使它是由两个三棱锥组成;(3)使它是五棱锥.类型三空间问题与平面问题的转化例4如图所示,在侧棱长为23的正三棱锥V—ABC中,∠AVB=∠BVC=∠CVA=40°,过A作截面AEF,求截面△AEF周长的最小值.反思与感悟求几何体表面上两点间的最小距离的步骤(1)将几何体沿着某棱剪开后展开,画出其侧面展开图.(2)将所求曲线问题转化为平面上的线段问题.(3)结合已知条件求得结果.跟踪训练4如图所示,在所有棱长均为1的直三棱柱上,有一只蚂蚁从点A出发,围着三棱柱的侧面爬行一周到达点A1,则爬行的最短路程为________.1.有下列三个命题:①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.其中正确的有________个.2.三棱锥的四个面中可以作为底面的有________个.3.下列说法错误的是________.(填序号)①多面体至少有四个面;②九棱柱有9条侧棱,9个侧面,侧面为平行四边形;③长方体、正方体都是棱柱;④三棱柱的侧面为三角形.4.下列几何体中,________是棱柱,________是棱锥,________是棱台.(仅填相应序号)5.下图中不可能围成正方体的是________.(填序号)1.棱柱、棱锥及棱台定义的关注点(1)棱柱的定义有以下两个要点,缺一不可:①有两个平面(底面)互相平行.②其余各面(侧面)每相邻两个面的公共边(侧棱)都互相平行.(2)棱锥的定义有以下两个要点,缺一不可:①有一个面(底面)是多边形.②其余各面(侧面)是有一个公共顶点的三角形.(3)棱台是由一个平行于棱锥底面的平面截得的.2.棱柱、棱锥、棱台之间的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).3.根据几何体的结构特点判定几何体的类型,首先要熟练掌握各几何体的概念,把握好各类几何体的性质,其次要有一定的空间想象能力.答案精析问题导学知识点一思考(1)有两个面是全等的多边形,且对应边互相平行;(2)其余各面都是平行四边形.知识点二思考(1)有一个面是多边形;(2)其余各面都是有一个公共顶点的三角形.梳理公共边知识点三思考(1)区别:有两个面相互平行.(2)联系:用平行于棱锥底面的平面去截棱锥,其底面和截面之间的部分即为该几何体.梳理平行于棱锥底面知识点四思考多面体是由若干个平面多边形围成的几何体.围成多面体的各个多边形叫多面体的面;相邻两个面的公共边叫多面体的棱;棱和棱的公共点叫多面体的顶点.梳理平面多边形多边形公共边题型探究例1③④跟踪训练1②例2(1)解该物体不是棱锥.因为棱锥的定义中要求:各侧面有一个公共顶点,但侧面ABC与侧面CDE没有公共顶点,所以该物体不是棱锥.(2)解根据棱台的定义,可以得到判断一个多面体是棱台的标准有两个:一是共点,二是平行.即各侧棱的延长线要交于一点,上、下两个底面要平行,二者缺一不可.据此,图①中多面体侧棱延长线不相交于同一点,故不是棱台;图②中多面体不是由棱锥截得的,不是棱台;图③中多面体虽是由棱锥截得的,但截面与底面不平行,因此也不是棱台.跟踪训练2①②例3解(1)画三棱柱可分以下三步完成:第一步,画上底面——画一个三角形;第二步,画侧棱——从三角形的每一个顶点画平行且相等的线段;第三步,画下底面——顺次连结这些线段的另一个端点(如图所示).(2)画四棱台可分以下三步完成:第一步,画一个四棱锥;第二步,在它的一条侧棱上取一点,然后从这点开始,顺次在各个侧面内画出与底面对应边平行的线段;第三步,将多余的线段擦去(如图所示).跟踪训练3解如图所示.图1是一个四棱柱.图2是一个由两个三棱锥组成的几何体.图3是一个五棱锥.例4解将三棱锥沿侧棱VA剪开,并将其侧面展开平铺在一个平面上,如图所示.线段AA1的长为所求△AEF周长的最小值.取AA1的中点D,则VD⊥AA1,∠AVD=60°,可知AD=3,则AA1=6.即截面△AEF周长的最小值为6.跟踪训练410当堂训练1.0 2.4 3.④ 4.①③④⑥⑤ 5.④1.1.2圆柱、圆锥、圆台和球学习目标 1.认识圆柱、圆锥、圆台、球的结构特征.2.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.知识点一圆柱、圆锥、圆台的概念思考数学中常见的旋转体圆柱、圆锥、圆台、球是如何形成的?梳理将矩形、直角三角形、直角梯形分别绕着它的________、_______、____________所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥、圆台.如图所示:知识点二球思考球也是旋转体,它是由什么图形旋转得到的?梳理球的结构特征球定义相关概念图形及表示球半圆绕着它的直径所在的直线旋转一周所形成的曲面叫做球面,球面围成的几何体叫做球体,简称球球心:半圆的______,半径:半圆的______,直径:半圆的______ 如图可记作:球O知识点三旋转面与旋转体一条平面曲线绕它所在平面内的____________旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体称为__________.圆柱、圆锥、圆台和球都是特殊的旋转体.类型一旋转体的基本概念例1判断下列各说法是否正确:(1)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的母线;(2)一直角梯形绕下底所在的直线旋转一周,所形成的曲面围成的几何体是圆台;(3)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(4)在空间中,到定点的距离等于定长的点的集合是球.反思与感悟(1)圆柱、圆锥、圆台和球都是一个平面图形绕其特定边(弦)旋转而成的几何体,必须准确认识各旋转体对旋转轴的具体要求.(2)只有理解了各旋转体的生成过程,才能明确由此产生的母线、轴、底面等概念,进而判断与这些概念有关的说法的正误.跟踪训练1下列说法正确的是________.(填序号)①以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④以等腰三角形的底边上的高所在直线为旋转轴,其余各边旋转180°形成的曲面围成的几何体是圆锥;⑤球面上四个不同的点一定不在同一平面内;⑥球的半径是球面上任意一点和球心的连线段;⑦球面上任意三点可能在一条直线上.类型二旋转体中的有关计算例2一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2,求:(1)圆台的高;(2)将圆台还原为圆锥后,圆锥的母线长.反思与感悟用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的经过旋转轴的截面(轴截面)的性质,利用相似三角形中的相似比,构设相关几何变量的方程组而得解.跟踪训练2圆台的两底面面积分别为1,49,平行于底面的截面面积的2倍等于两底面面积之和,求圆台的高被截面分成的两部分的比.类型三复杂旋转体的结构分析例3直角梯形ABCD如图所示,以DA所在直线为轴旋转,试说明所得几何体的形状.引申探究若本例中直角梯形分别以AB、BC所在直线为轴旋转,试说明所得几何体的形状.反思与感悟(1)判断旋转体形状的关键是轴的确定,看是由平面图形绕哪条直线旋转所得,同一个平面图形绕不同的轴旋转,所得的旋转体一般是不同的.(2)在旋转过程中观察平面图形的各边所形成的轨迹,应利用空间想象能力或亲自动手做出平面图形的模型来分析旋转体的形状.跟踪训练3如图所示,已知在梯形ABCD中,AD∥BC,且AD<BC.当梯形ABCD绕AD 所在直线旋转一周时,其他各边旋转形成的面围成一个几何体,试描述该几何体的结构特征.1.下列说法正确的是________.(填序号)①圆锥的母线长等于底面圆的直径;②圆柱的母线与轴平行;③圆台的母线与轴平行;④球的直径必过球心.2.可以通过旋转得到下图的平面图形的序号为________.3.一个圆锥的母线长为20 cm,母线与轴的夹角为30°,则圆锥的高为________cm.4.下列说法正确的有________个.①球的半径是球面上任意一点与球心的连线;②球的直径是球面上任意两点间的线段;③用一个平面截一个球,得到的是一个圆;④用一个平面截一个球,得到的截面是一个圆面.5.如图所示的平面图形绕轴l旋转一周后,形成的几何体是由哪些简单几何体构成?1.圆柱、圆锥、圆台的关系如图所示.2.处理台体问题常采用还台为锥的补体思想.3.处理组合体问题常采用分割思想.4.重视圆柱、圆锥、圆台的轴截面在解决几何问题中的特殊作用,切实体会空间几何平面化的思想.答案精析问题导学知识点一思考将矩形、直角三角形、直角梯形分别绕着它的一边、一直角边,垂直于底边的腰所在的直线旋转一周后,形成的几何体分别叫做圆柱、圆锥、圆台.梳理一边一直角边垂直于底边的腰圆柱OO′圆锥SO圆台OO′知识点二思考以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体.梳理圆心半径直径知识点三一条定直线旋转体题型探究例1解(1)错.由圆柱母线的定义知,圆柱的母线应平行于轴.(2)错.直角梯形绕下底所在的直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的几何体,如图所示.(3)正确.(4)错.应为球面.跟踪训练1④⑥例2解(1)圆台的轴截面是等腰梯形ABCD(如图所示).由已知可得O 1A =2 cm ,OB =5 cm. 又由题意知腰长为12 cm , 所以高AM =122-(5-2)2 =315(cm).(2)如图所示,延长BA ,OO 1,CD ,交于点S ,设截得此圆台的圆锥的母线长为l , 则由△SAO 1∽△SBO , 可得l -12l =25,解得l =20(cm).即截得此圆台的圆锥的母线长为20 cm. 跟踪训练2 h 1∶h 2=2∶1例3 解 以AD 为轴旋转可得到一个圆柱,上面挖去一个圆锥,如图所示.引申探究解以AB为轴旋转可得到一个圆台,如图①所示.以BC为轴旋转可得一个圆柱和一个圆锥的组合体.如图②所示.跟踪训练3解如图所示,旋转所得的几何体可看成由一个圆柱挖去两个圆锥后剩余部分而成的组合体.当堂训练1.②④ 2.④ 3.103 4.25.解过原图形中的折点向旋转轴引垂线,这样便可得到三个规则图形:矩形、直角梯形、直角三角形,旋转后的图形如图所示,由一个圆柱O1O2、一个圆台O2O3和一个圆锥OO3组成.1.1.4直观图画法学习目标 1.掌握斜二测画法的作图规则.2.会用斜二测画法画出简单几何体的直观图.知识点斜二测画法思考1边长为2 cm的正方形ABCD水平放置的直观图如下,在直观图中,A′B′与C′D′有何关系?A′D′与B′C′呢?在原图与直观图中,AB与A′B′相等吗?AD与A′D′呢?思考2正方体ABCD-A1B1C1D1的直观图如图所示,在此图形中各个面都画成正方形了吗?梳理(1)用斜二测画法画水平放置的平面图形的直观图的规则(2)立体图形直观图的画法规则画立体图形的直观图,在画轴时,要多画一条与平面x′O′y′垂直的轴O′z′,且平行于O′z′的线段长度不变,其他同平面图形的画法.类型一平面图形的直观图例1画出如图水平放置的直角梯形的直观图.引申探究若将本例中的直角梯形改为等腰梯形,其直观图如何?反思与感悟在画水平放置的平面图形的直观图时,选取适当的直角坐标系是关键之一,一般要使平面多边形尽可能多的顶点落在坐标轴上,以便于画点.原图中不平行于坐标轴的线段可以通过作平行于坐标轴的线段来作出其对应线段.确定多边形顶点的位置是关键之二,借助于平面直角坐标系确定顶点后,只需把这些顶点顺次连结即可.跟踪训练1如图所示,为一个水平放置的正方形ABCO,它在直角坐标系xOy中,点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为________.类型二直观图的还原与计算命题角度1由直观图还原平面图形例2如图所示,△A′B′C′是水平放置的平面图形的斜二测直观图,将其还原成平面图形.反思与感悟由直观图还原平面图形的关键(1)平行x ′轴的线段长度不变,平行y ′轴的线段扩大为原来的2倍.(2)对于相邻两边不与x ′、y ′轴平行的顶点可通过作x ′轴,y ′轴的平行线确定其在xOy 中的位置.跟踪训练2 如图所示,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,C ′D ′=2 cm ,则原图形是________.命题角度2 原图形与直观图的面积的计算例3 如图所示,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图.若A 1D 1∥O ′y ′,A 1B 1∥C 1D 1,A 1B 1=23C 1D 1=2,A 1D 1=O ′D 1=1.试画出原四边形的形状,并求出原图形的面积.反思与感悟 (1)由原图形求直观图的面积,关键是掌握斜二测画法,明确原来实际图形中的高,在直观图中变为与水平直线成45°角且长度为原来一半的线段,这样可得出所求图形相应的高.(2)若一个平面多边形的面积为S ,它的直观图面积为S ′,则S ′=24S . 跟踪训练3 如图所示,一个水平放置的三角形的斜二测直观图是等腰直角三角形A ′B ′O ′,若O ′B ′=1,那么原三角形ABO 的面积是________.类型三 简单几何体的直观图例4 用斜二测画法画长、宽、高分别为4 cm 、3 cm 、2 cm 的长方体ABCD —A ′B ′C ′D ′的直观图.反思与感悟 直观图中应遵循的基本原则(1)用斜二测画法画空间图形的直观图时,图形中平行于x 轴、y 轴、z 轴的线段在直观图中应分别画成平行于x ′轴、y ′轴、z ′轴的线段.(2)平行于x 轴、z 轴的线段在直观图中长度保持不变,平行于y 轴的线段长度变为原来的12.(3)直观图画法口诀“一斜、二半、三不变”.跟踪训练4 用斜二测画法画出六棱锥P -ABCDEF 的直观图,其中底面ABCDEF 为正六边形,点P 在底面上的投影是正六边形的中心O .(尺寸自定)1.利用斜二测画法画出边长为3 cm 的正方形的直观图,正确的是图中的________.(填序号)2.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积为__________.3.已知两个底面半径相等的圆锥,底面重合在一起(底面平行于水平面),其中一个圆锥顶点到底面的距离为2 cm ,另一个圆锥顶点到底面的距离为3 cm ,则其直观图中这两个顶点之间的距离为________ cm.4.如图所示为一平面图形的直观图,则此平面图形可能是下图中的________.(填序号)5.画出一个正三棱台的直观图.(尺寸:上,下底面边长分别为1 cm,2 cm ,高为2 cm)1.画水平放置的平面图形的直观图,关键是确定直观图的顶点.确定点的位置,可采用直角坐标系.建立恰当的坐标系是迅速作出直观图的关键,常利用图形的对称性,并让顶点尽量多地落在坐标轴上或与坐标轴平行的直线上.2.用斜二测画法画图时要紧紧把握住:“一斜”、“二测”两点:(1)一斜:平面图形中互相垂直的Ox、Oy轴,在直观图中画成O′x′、O′y′轴,使∠x′O′y′=45°或135°.(2)二测:在直观图中平行于x轴的长度不变,平行于y轴的长度取一半,记为“横不变,纵折半”.答案精析问题导学 知识点思考1 A ′B ′∥C ′D ′,A ′D ′∥B ′C ′, A ′B ′=AB ,A ′D ′=12AD .思考2 没有都画成正方形.梳理 45° 135° 水平面 x ′轴或y ′轴的线段 保持原长度不变 一半 题型探究例1 解 (1)在已知的直角梯形OBCD 中,以底边OB 所在直线为x 轴,垂直于OB 的腰OD 所在直线为y 轴建立平面直角坐标系.画出对应的x ′轴和y ′轴,使∠x ′O ′y ′=45°,如图①②所示.(2)在x ′轴上截取O ′B ′=OB ,在y ′轴上截取O ′D ′=12OD ,过点D ′作x ′轴的平行线l ,在l 上沿x ′轴正方向取点C ′使得D ′C ′=DC .连结B ′C ′,如图②.(3)所得四边形O ′B ′C ′D ′就是直角梯形OBCD 的直观图,如图③.引申探究解 画法:(1)如图①所示,取AB 所在直线为x 轴,AB 中点O 为原点,建立直角坐标系,画出对应的坐标系x ′O ′y ′,使∠x ′O ′y ′=45°.(2)以O ′为中点在x ′轴上取A ′B ′=AB ,在y 轴上取O ′E ′=12OE ,以E ′为中点画出C ′D ′∥x ′轴,并使C ′D ′=CD . 连结B ′C ′,D ′A ′,如图②所示.(3)所得的四边形A′B′C′D′就是水平放置的等腰梯形ABCD的直观图,如图③所示.跟踪训练12 2例2解①画出直角坐标系xOy,在x轴的正方向上取OA=O′A′,即CA=C′A′;②过B′作B′D′∥y′轴,交x′轴于点D′,在OA上取OD=O′D′,过D作DB∥y 轴,且使DB=2D′B′;③连结AB,BC,得△ABC.则△ABC即为△A′B′C′对应的平面图形,如图所示.跟踪训练2菱形例3解如图,建立直角坐标系xOy,在x轴上截取OD=O′D1=1,OC=O′C1=2.在过点D 的y 轴的平行线上截取DA =2D 1A 1=2. 在过点A 的x 轴的平行线上截取AB =A 1B 1=2. 连结BC ,即得到了原图形.由作法可知,原四边形ABCD 是直角梯形,上、下底长度分别为AB =2,CD =3,直角腰的长度AD =2,所以面积为S =2+32×2=5.跟踪训练32例4 解 (1)画轴.如图,画x 轴、y 轴、z 轴,三轴相交于点O ,使∠xOy =45°,∠xOz =90°.(2)画底面.以点O 为中点,在x 轴上取线段MN ,使MN =4 cm ;在y 轴上取线段PQ ,使PQ =32 cm.分别过点M 和N 作y 轴的平行线,过点P 和Q 作x 轴的平行线,设它们的交点分别为A ,B ,C ,D ,四边形ABCD 就是长方体的底面ABCD .(3)画侧棱.过A ,B ,C ,D 各点分别作z 轴的平行线,并在这些平行线上分别截取2 cm 长的线段AA ′,BB ′,CC ′,DD ′.(4)成图.顺次连结A ′,B ′,C ′,D ′(去掉辅助线,将被遮挡的部分改为虚线),就得到长方体的直观图.跟踪训练4 解 (1)画出六棱锥P -ABCDEF 的底面.①在正六边形ABCDEF 中,取AD 所在的直线为x 轴,对称轴MN 所在的直线为y 轴,两轴相交于点O ,如图(1),画出相应的x ′轴、y ′轴、z ′轴,三轴相交于O ′,使∠x ′O ′y ′=45°,∠x ′O ′z ′=90°,如图(2);②在图(2)中,以O ′为中点,在x ′轴上取A ′D ′=AD ,在y ′轴上取M ′N ′=12MN ,以点N ′为中点,画出B ′C ′平行于x ′轴,并且等于BC ,再以M ′为中点,画出E ′F ′平行于x ′轴,并且等于EF ;③连结A ′B ′,C ′D ′,D ′E ′,F ′A ′,得到正六边形ABCDEF 水平放置的直观图A ′B ′C ′D ′E ′F ′.(2)画出正六棱锥P -ABCDEF 的顶点.在z ′轴正半轴上截取点P ′,点P ′异于点O ′. (3)成图.连结P ′A ′,P ′B ′,P ′C ′,P ′D ′,P ′E ′,P ′F ′,并擦去x ′轴、y ′轴和z ′轴,便可得到六棱锥P -ABCDEF 的直观图P ′-A ′B ′C ′D ′E ′F ′,如图(3).当堂训练1.③ 2.16或64 3.5 4.③5.解(1)作水平放置的下底面等边三角形的直观图△ABC,其中O为△ABC的重心,BC =2 cm,线段AO与x轴的夹角为45°,AO=2OD.(2)过O作z轴,使∠xOz=90°,在z轴上截取OO′=2 cm,作上底面等边三角形的直观图△A′B′C′,其中B′C′=1 cm,连结AA′,BB′,CC′,得正三棱台的直观图.。
高中数学:解析几何导学案苏教版必修2

§2.1.4 两条直线的交点【教学目标】1.知道两条直线的相交、平行和重合三种位置关系,对应于相应的二元一次方程组有唯一解、无解和无穷多组解2.当两条直线相交时,会求交点坐标3.学生通过一般形式的直线方程解的讨论,加深对解析法的理解,培养转化能力【教学重点】根据直线的方程判断两直线的位置关系和已知两直线相交求交点【教学难点】对方程组系数的分类讨论与两直线位置关系对应情况的理解【自主预习】.两条直线的交点设两条直线的方程分别是1l :0111=++C y B x A ,2l :0222=++C y B x A .【典例示X 】 例1.分别判断下列直线是否相交,若相交,求出它们的交点:(1)1l :72=-y x ,2l :0723=-+y x ;(2)1l :0462=+-y x ,2l :08124=+-y x ;(3)1l :0424=++y x ,2l :32+-=x y .例2.直线l 经过原点,且经过另外两条直线0832=++y x ,01=--y x 的交点,求直线l 的方程.跟踪1:(1)求证:无论m 为何实数,l :5)12()1(-=-+-m y m x m 恒过一定点,求出此定点坐标.(2)求经过两条直线0332=--y x 和02=++y x 的交点,且与直线013=-+y x 垂直的直线的方程.例3.(教科书P 83例3)某商品的市场需求1y (万件)、市场供求量2y (万件)、市场价格x (元/件)分别近似地满足下列关系:202,70-=+-=x y x y .当21y y =时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量.(1)求市场平衡价格和平衡需求量;(2)若要使平衡需求量增加4万件,政府对每件商品应给予多少元补贴?【归纳总结】通过对两直线方程联立方程组来研究两直线的位置关系,得出了方程组的解的个数与直线位置关系的联系.培养同学们的数形结合、分类讨论和转化的数学思想方法.【巩固拓展】已知直线1l :310x my +-=,2l :3250x y --=,3l :650x y +-=,(1)若这三条直线交于一点,求m 的值;(2)若三条直线能构成三角形,求m 的值。
高中数学第23课时立体几何复习2导学案苏教版必修2(2021学年)

江苏省宿迁市高中数学第23课时立体几何复习2导学案苏教版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省宿迁市高中数学第23课时立体几何复习2导学案苏教版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省宿迁市高中数学第23课时立体几何复习2导学案苏教版必修2的全部内容。
第23课时立体几何复习2【学习目标】1.复习与巩固直线与平面、平面与平面位置关系的概念、判定和性质。
2.会求异面直线所成的角、直线与平面所成的角、二面角。
3.会求柱、锥、台、球的表面积和体积.【基础训练】1。
.半径为R的半圆卷成一个圆锥,则它的体积为.2。
圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小的底面半径是 .3.等腰直角三角形AB C沿斜边上的高A D折成直二面角B—AD—C,则BD与平面ABC所成角的正切值为.4.下列四个命题:①l∥m,m∥n,n⊥α⇒l⊥α; ②l∥m,m⊥α,n⊥α⇒l∥n③l∥m,l⊥α,⇒m⊥α;④l∥α,m⊥α⇒l⊥m其中错误命题的个数是( )(A)0个 (B)1个(C)2个 (D)3个5.如图,平面⊥平面,∩=l,A∈,B∈,且AB与l所成的角为60,A、B到l的距离分别为1、3,则线段AB的长是 .ﻬ【合作探究】1。
如图l,等腰梯形ABCD中,AD∥BC,AB=AD,∠ABC=600,E是BC的中点.如图2,将△ABE沿AE折起,使二面角B—AE—C成直二面角,连结BC,BD,F是CD的中点,P是棱BC 的中点.(1)求证:AE⊥BD; (2)求证:平面PEF⊥平面AECD;(3)判断DE 能否垂直于平面A BC?并说明理由.2.在四棱锥P -AB CD中,四边形ABCD 是梯形,AD∥BC,∠ABC=90°,平面PA B⊥平面ABCD ,平面PAD⊥平面ABC D.(1)求证:PA⊥平面ABC D;(2)若平面PAB 平面PC Dl =,问:直线l能否与平面ABCD 平行?请说明理由.3. 正方体1111ABCD-A B C D ,1AA =2,E为棱1CC 的中点.(Ⅰ) 求证:11B D AE ⊥; (Ⅱ) 求证://AC 平面1B DE ;(Ⅲ)求三棱锥A-BDE 的体积.ABCDE 例1图1A例1图211A ECACDBPMQ4.如图,在四棱锥ABCD P -中,底面ABCD 中为菱形, 60=∠BAD ,Q 为AD 的中点。
高中数学苏教版必修2导学案答案

解析几何2.1.1 直线的斜率1. 2. 3. 4.3,3 5. 6.17.(1)m>1或m<-5; (2)m=-5; (3)-5<m<1. 8.a=1或a=29.(1)A,B,C的坐标只要满足即可;(2)根据第1问的答案,这里答案各不相同,但所求斜率k必须满足;(3)2.1.2 直线的方程——点斜式(略)2.1.2 直线的方程——两点式1.y=;2.;3.;4.;5.2或;6.;7.4x+3y=0或x+y+1=0;8.;9.;10.a=.2.1.3 两条直线的平行与垂直(1)1.(1)平行;(2)不平行;2.-8;3.m=2或m=-3;4.4x+3y-16=0;5.2x-3y-7=0,;6.m=-2,n=0或10 ,7.平行四边形;8.m=4 ,9.a=2,b=-2或a=2/3,b=2.2.1.3 两条直线的平行与垂直(2)1.3x-y+2=0,2.(1)垂直;(2)不垂直3.2a-b=0;4.3 ,5.(-1,0),6.2x+y-5=07.3x+4y+12=0或3x+4y-12=0 ,8.2x+y-7=0,x-y+1=0,x+2y-5=0;9. 4x-3y.2.1.4 两条直线的交点1.;2.6或-6;3.;4.;5.10,-12,-2;6;7.;8.m=4,或m=-1,或m=1;9.(1)表示经过和的交点(-3,-1)的直线(不包括直线);(2)2.1.5 平面上两点间的距离1.;2.正方形;3.(6,5);4.;2.1.6 点到直线的距离(1)3.4. 5.3 6.2.1.6 点到直线的距离(2)1. 2. 5.3x-4y-17=0和3x-4y-1=0 8. 5x-12y-5=0,5x-12y+60=0,,9.x+3y+7=0,3x-y-3=0和3x-y+9=0.2.2.1 圆的方程(1)1. 2.3. 4.2 5.6.7.可求已只知圆心(3,4)关于已知直线的对称点为(-3,-4),半径不变,所以要求的圆的方程为8.由题可设圆的方程为,将点A(1,2)带入上述方程得a=1或5,所以所求的圆的方程为.9.略2.2.1 圆的方程(2)1.(-1,2),3;2. 4,-6.-3;3. ;4.x2+y2-2x-4y=0;5. x2+y2-2x-2y=0;6.D0且E=F=0;7.(1)x2+y2+x-9y-12=0;(2)x2+y2-4x+3y=0;8.a=-10;9.以AB的中点O为坐标原点,AB所在直线为x轴建立坐标系.则A(-3,0),B(3,0),C(2,3).设圆的方程为,则,故所求圆的方程为2.2.2 直线与圆的位置关系2.2.3 圆与圆的位置关系(略)2.3.1 空间直角坐标系1~4.略;5.在空间直角坐标系中,yOz 坐标平面与x 轴垂直,xOz 坐标平面与y 轴垂直,xOy 坐标平面与z 轴垂直;6.在空间直角坐标系中,落在x 轴上的点的纵坐标和竖坐标都是0,如(2,0,0),(-3,0,0),(5,0,0);xOy 坐标平面内的点的竖坐标为0,如(1,1,0),(-1,2,0),(1,2,0);7.(2,3,0),(0,3,4),(2,0,4);(2,0,0),(0,3,0),(0,0,4);8.(-1,-3,5);(1,-3,5);9.若两点坐标分别为和,则过这两点的直线方程为2.3.2 空间两点间的距离1.(1); (2)2.M(0,0,-3).3.略.4.(1)x+3y-2z-6=0; (2)2x-y-2z+3=0.5.(x+1)2+y 2+(z-4)2=9.6.x=4,y=1,z=2.7.D(3,0,2).8.A(2,-4,-7),B(0,0,5),C(6,4,-1).9.(1)(1,2,1);(2)x=1,y=8,z=9.直线和圆单元测试1. 2. 3.[] 4.直角三角形 5.(,1)∪(1,) 6. 7.8. 9.(-∞,)∪(,+∞)10.{4,5,6,7} 11. 12.34513. 14. 15.解:设D 点的坐标为(x 0, y 0),∵直线AB: 即3x+y —6=0,∴. 解得x 0= y 0=.由|PD|=2|BD|, 得λ=. ∴由定比分点公式得x p =.将P()代入l 的方程, 得a=10. ∴k 1= -. 故得直线l 的倾斜角为120°16. 解:(1)由题意知此平面区域表示的是以构成的三角形及其内部,且△是直角三角形, 所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),半径是,所以圆的方程是.(2)设直线的方程是:.因为,所以圆心到直线的距离是,即解得:.所以直线的方程是:.17.解: 依题意知四边形PAQB 为矩形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何2.1.1 直线的斜率︒ 2.11,,172- 3. 4.3,3 5.180α︒- 6.1 7.(1)m>1或m<-5; (2)m=-5; (3)-5<m<1. 8.a=1或a=29.(1)A ,B ,C 的坐标只要满足26)2y x x -=<<-即可;(2)根据第1问的答案,这里答案各不相同,但所求斜率k 1k <<;(3)1,3045k α≤≤︒≤≤︒ 2.1.2 直线的方程——点斜式(略) 2.1.2 直线的方程——两点式1.y=6301111x +;2.123x y -=;3.142x y -=;4.32-;5.2或12;6.126x y+=;7.4x+3y=0或x+y+1=0;8.123a ≤≤;9.4332k k ≤-≥或;2.1.3 两条直线的平行与垂直(1)1.(1)平行;(2)不平行;2.-8;3.m=2或m=-3;4.4x+3y-16=0;5.2x-3y-7=0,;6.m=-2,n=0或10 ,7.平行四边形;8.m=4 ,9.a=2,b=-2或a=2/3,b=2.2.1.3 两条直线的平行与垂直(2)1.3x-y+2=0,2.(1)垂直;(2)不垂直3.2a-b=0;4.3 ,5.(-1,0),6.2x+y-5=07.3x+4y+12=0或3x+4y-12=0 ,8.2x+y-7=0,x-y+1=0,x+2y-5=0;9. 4x-3y 0±=.2.1.4 两条直线的交点1.36477⎛⎫⎪⎝⎭,;2.6或-6;3.12-;4.4390x y -+=;5.10,-12,-2;61162k -<<; 7.230x y --=;8.m=4,或m=-1,或m=1;9.(1)表示经过210x y -+=和2390x y ++=的交点(-3,-1)的直线(不包括直线2390x y ++=);(2)30,40x y x y -=++=2.1.5 平面上两点间的距离1.()53,;2.正方形;3.(6,5);1122y y+=+=;5.47240;6.23120;7.(1,0)150;9.x y x y P x y +-=+-=--=且略2.1.6 点到直线的距离(1)1.(1,2),(2,1);-52.;23.21±4.43±=m5.36.x y 43±=7.(4,7),(6,1)(8,3),(6,3);C D C D ---或8.220,3420,2;9,560x y x y x x y --±=-+==-+=2.1.6点到直线的距离(2)1.1017 2.343.3450,34350x y x y --=--=4.05;d <≤5.3x-4y-17=0和3x-4y-1=0 6.230;7.(4,7),(6,1)(8,3),(6,3);x y C D C D -+=---或8. 5x-12y-5=0,5x-12y+60=0,260≤<d ,9. x+3y+7=0,3x-y-3=0和3x-y+9=0.2.2.1 圆的方程 (1)1.22(8)(3)25x y -++=2.22(5)(6)10x y -+-=3.22(5)(4)16x y ++-=4. 25.222;0;;a b r a r b r a b +=====6.22(2)(3)13x y -++=7.可求已只知圆心(3,4)关于已知直线的对称点为(-3,-4),半径不变,所以要求的圆的方程为22(3)(4)1x y +++=8.由题可设圆的方程为222222()()()()x a y a a x a y a a -++=-+-=或,将点A (1,2)带入上述方程得a=1或5,所以所求的圆的方程为2222(1)(1)1(5)(5)25x y x y -+-=-+-=和.9.略2.2.1 圆的方程(2)1.(-1,2),3;2. 4,-6.-3;3. 114k k <>或;4.x 2+y 2-2x-4y=0;5. x-2+y 2-2x-2y=0;6.D ≠0且E=F=0;7.(1)x 2+y 2+x-9y-12=0;(2)x 2+y 2-4x+3y=0;8.a=-10;9.以AB 的中点O 为坐标原点,AB 所在直线为x 轴建立坐标系.则A (-3,0),B (3,0),C (2,3).设圆的方程为220x y Dx Ey F ++++=,则0439D E F =⎧⎪⎪=-⎨⎪=-⎪⎩,故所求圆的方程为224903x y Dx y ++-+= 2.2.2 直线与圆的位置关系1. 2.4;相离; 3.3;4. 5.点在圆外;相切;6.1a =-7.(1)25;(2)3450,1;(3)x y x y x +=-+==略;22228.16;9.(1)(1)2(1)(1)2m x y x y =-+++=-+-=或2.2.3 圆与圆的位置关系(略)2.3.1 空间直角坐标系1~4.略;5.在空间直角坐标系中,yOz 坐标平面与x 轴垂直,xOz 坐标平面与y 轴垂直,xOy 坐标平面与z 轴垂直;6.在空间直角坐标系中,落在x 轴上的点的纵坐标和竖坐标都是0,如(2,0,0),(-3,0,0),(5,0,0);xOy 坐标平面内的点的竖坐标为0,如(1,1,0),(-1,2,0),(1,2,0);7.(2,3,0),(0,3,4),(2,0,4);(2,0,0),(0,3,0),(0,0,4);8.(-1,-3,5);(1,-3,5);9.若两点坐标分别为111(,,)x y z 和222(,,)x y z ,则过这两点的直线方程为111212121x x y y z z x x y y z z ---==---121212(,,)x x y y z z ≠≠≠ 2.3.2 空间两点间的距离31,)2231,,4).22-- 2.M(0,0,-3). 3.略. 4.(1)x+3y-2z-6=0; (2)2x-y-2z+3=0. 5.(x+1)2+y 2+(z-4)2=9. 6.x=4,y=1,z=2. 7.D(3,0,2). 8.A(2,-4,-7),B(0,0,5),C(6,4,-1). 9.(1)(1,2,1); (2)x=1,y=8,z=9.直线和圆单元测试1.32π 2.),2(]4,0[πππ⋃ 3.[5,1212ππ] 4.直角三角形 5.(,1)∪(1,) 6.3± 7.328.22± 9.(-∞,)∪,+∞) 10.{4,5,6,7} 11.)3,3(- 12.345 13.030 14.B D ,15.解:设D 点的坐标为(x 0, y 0),∵直线AB:1,26x y+=即3x+y —6=0,∴000000113,3120360OD AB y k k x x y x y ⎧⎧=-=⎪⎪⎨⎨⎪⎪+-=+-=⎩⎩即. 解得x 0=,518 y 0=)56,518(56D 即,.由|PD|=2|BD|, 得λ=23-=PD BP . ∴由定比分点公式得x p =542554-=p y ,.将P(542,554-)代入l 的方程, 得a=103. ∴k 1= -3. 故得直线l 的倾斜角为120°16. 解:(1)由题意知此平面区域表示的是以(0,0),(4,0),(0,2)O P Q 构成的三角形及其内部,且△OPQ 是直角三角形,所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),, 所以圆C 的方程是22(2)(1)5x y -+-=. (2)设直线l 的方程是:y x b =+.因为CA CB ⊥u u u r u u u r ,所以圆心C 到直线l,=解得:1b =-±.所以直线l 的方程是:1y x =-±.17.解: 依题意知四边形PAQB 为矩形。
设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP中,|AR |=|PR |又因为R 是弦AB 的中点,依垂径定理 在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得 x 2+y 2=56,这就是所求的轨迹方程18. 解(1)①当直线l 垂直于x 轴时,则此时直线方程为1=x ,l 与圆的两个交点坐标为()3,1和()3,1-,其距离为32,满足题意②若直线l 不垂直于x 轴,设其方程为()12-=-x k y ,即02=+--k y kx设圆心到此直线的距离为d ,则24232d -=,得1=d ∴1|2|12++-=k k ,34k =, 故所求直线方程为3450x y -+=综上所述,所求直线为3450x y -+=或1=x (2)设点M 的坐标为()00,y x ,Q 点坐标为()y x ,则N 点坐标是()0,0y∵OQ OM ON =+u u u r u u u u r u u u r ,∴()()00,,2x y x y = 即x x =0,20y y =又∵42020=+y x ,∴4422=+y x由已知,直线m //ox 轴,所以,0y ≠,∴Q 点的轨迹方程是221(0)164y x y +=≠19.解:(1)设(2,)(02).P a a a ≤≤(0,2),M MP ==Q解得1a =或15a =-(舍去).(2,1).P ∴由题意知切线PA 的斜率存在,设斜率为k .所以直线PA 的方程为1(2)y k x -=-,即210.kx y k --+= Q 直线PA 与圆M 相切,1=,解得0k =或4.3k =-∴直线PA 的方程是1y =或43110.x y +-= (2)设(2,)(24).P a a t a t ≤≤+PA Q 与圆M 相切于点A ,.PA MA ∴⊥∴经过,,A P M 三点的圆的圆心D 是线段MP 的中点.(0,2),M D ∴Q 的坐标是(,1).2aa +设222225524().()(1)1().24455a DO f a f a a a a a =∴=++=++=++当225t >-,即45t >-时,2min 5()()1;2162t tf a f t ==++ 当22252t t ≤-≤+,即24455t -≤≤-时,min 24()();55f a f =-= 当2225t +<-,即245t <-时 22min 515()(2)(2)(2)138242216t t t f a f t t =+=++++=++则45244()55245t L t t t >-=-≤≤-<- 20.解:(1)设M (a ,ka ),N (b ,-kb ),(a>0,b>0)。