上海市上海中学2016-2017学年高一数学上册专题汇编(实验班)专题2-函数
2016-2017年上海市上海中学高一上期中数学试卷

上海中学高一期中数学卷2016.11一. 填空题1. 设集合{0,2,4,6,8,10}A =,{4,8}B =,则A C B =2. 已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B =I3. “若1x =且1y =,则2x y +=”的逆否命题是4. 若2211()f x x x x +=+,则(3)f = 5. 不等式9x x>的解是 6. 若不等式2(1)0ax a x a +++<对一切x R ∈恒成立,则a 的取值范围是7. 不等式2(3)30x --<的解是8. 已知集合{|68}A x x =-≤≤,{|}B x x m =≤,若A B B ≠U 且A B ≠∅I ,则m 的 取值范围是9. 不等式1()()25a x y x y++≥对任意正实数,x y 恒成立,则正实数a 的最小值为 10. 设0a >,0b >,且45ab a b =++,则ab 的最小值为 11. 已知二次函数22()42(2)21f x x p x p p =----+,若在区间[1,1]-内至少存在一个 实数c ,使()0f c >,则实数p 的取值范围是 12. 已知0a >,0b >,2a b +=,则2221a b a b +++的最小值为二. 选择题1. 不等式||x x x <的解集是( )A. {|01}x x <<B. {|11}x x -<<C. {|01x x <<或1}x <-D. {|10x x -<<或1}x >2. 若A B ⊆,A C ⊆,{0,1,2,3,4,5,6}B =,{0,2,4,6,8,10}C =,则这样的A 的个数 为( )A. 4B. 15C. 16D. 323. 不等式210ax bx ++>的解集是11(,)23-,则a b -=( ) A. 7- B. 7 C. 5- D. 54. 已知函数2()f x x bx =+,则“0b <”是“(())f f x 的最小值与()f x 的最小值相等” 的( )条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要三. 解答题1. 解不等式:(1)|2||23|4x x -+-<; (2)2232x x x x x -≤--;2. 已知,,,a b c d R ∈,证明下列不等式:(1)22222()()()a b c d ac bd ++≥+; (2)222a b c ab bc ca ++≥++;3. 已知二次函数2()1f x ax bx =++,,a b R ∈,当1x =-时,函数()f x 取到最小值,且 最小值为0;(1)求()f x 解析式;(2)关于x 的方程()|1|3f x x k =+-+恰有两个不相等的实数解,求实数k 的取值范围;4. 设关于x 的二次方程2(1)10px p x p +-++=有两个不相等的正根,且一根大于另一根 的两倍,求p 的取值范围;5. 已知二次函数2()f x ax bx c =++(0)a ≠,记[2]()(())fx f f x =,例:2()1f x x =+, 则[2]222()(())1(1)1f x f x x =+=++;(1)2()f x x x =-,解关于x 的方程[2]()fx x =; (2)记2(1)4b ac ∆=--,若[2]()fx x =有四个不相等的实数根,求∆的取值范围;参考答案一. 填空题1. {0,2,6,10}2. {1,0,1}-3. 若2x y +≠,则1x ≠或1y ≠;4. 75. (3,0)(3,)-+∞U6. 1(,)3-∞-7. (0,6)8. [6,8)- 9. 16 10. 25 11. 3(3,)2- 12. 2+二. 选择题1. C2. C3. C4. A三. 解答题1.(1)1(,3)3;(2)(1,0]{1}(2,)-+∞U U ;2. 略;3.(1)2()21f x x x =++;(2)3k <或134k =; 4. 107p <<; 5.(1)0x =或2x =;(2)4∆>;。
上海市上海中学2016-2017学年高一数学上册专题汇编(实验班)专题5-数列

专题5:数列1、数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函数,数列的通项公式也就是相应函数的解析式。
【例1】(1)已知*2()156n na n N n =∈+,则在数列{}n a 的最大项为__(2)数列}{n a 的通项为1+=bn ana n ,其中b a ,均为正数, 则n a 与1+n a 的大小关系为__ _(3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(4)一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是 ( )A B C D2.等差数列的有关概念:(1)等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。
【例2】设{}n a 是等差数列,求证:以b n =na a a n+++ 21 *n N ∈为通项公式的数列{}n b 为等差数列。
(2)等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。
【例3】(1)等差数列{}n a 中,1030a =,2050a =,则通项n a =(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______(3)等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+。
【例4】(1)数列 {}n a 中,*11(2,)2n n a a n n N -=+≥∈,32n a =,前n 项和152n S =-, 则1a = _,n = _(2)已知数列 {}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T =(4)等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a bA +=。
上海市上海中学2016-2017学年高一上学期数学周练11 含

上海中学高一周练数学卷2016.12.01一. 填空题1. 函数3()8f x x =-的零点为2. 设函数(1)()()x x a f x x++=为奇函数,则a = 3. 若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是 4. 命题“若()f x 是奇函数,则()f x -是奇函数”的否命题是5. 函数,0()1,0x a x f x x x -+≥⎧=⎨--<⎩是R 上的减函数,则实数a 的取值范围是6. 函数y =的最大值为7. 设()f x ()x R ∈为奇函数,1(1)2f =,(2)()(2)f x f x f +=+,则(5)f = 8. 若()f x 是定义在R 上的偶函数,在(,0]-∞上是减函数,且(2)0f =,则使()0f x <的 x 的取值范围是9. 已知2()y f x x =+是奇函数,且(1)1f =,若()()2g x f x =+,则(1)g -=10. 已知函数1()42x f x =+,若函数1()4y f x m =+-为奇函数,则实数m =11. 已知函数()f x =(1)a ≠,若()f x 在区间(0,1]上是减函数,则实数a 的取值 范围是 12. 对于函数1()42x x f x m +=-⋅,若存在实数0x ,使得00()()f x f x -=-,则实数m 的取值范围是二. 选择题 13. 已知函数()f x 、()g x 定义在R 上,()()()h x f x g x =⋅,则“()f x 、()g x 均为奇函 数”是“()h x 为偶函数”的( )条件A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件14. 若函数1()21x f x =+,则该函数在R 上( ) A. 单调递减无最小值 B. 单调递减有最小值C. 单调递增无最大值D. 单调递增有最大值15. 设奇函数()f x 在(0,)+∞上为增函数且(1)0f =,则不等式()()0f x f x x --<的解集 为( )A. (1,0)(1,)-+∞B. (,1)(0,1)-∞-C. (,1)(1,)-∞-+∞D.(1,0)(0,1)-16. 设()f x 是偶函数,且当0x ≥时,()f x 是单调函数,则满足3()()4x f x f x +=+的所有 x 之和为( )A. 3-B. 3C. 8-D. 8三. 解答题17. 根据函数单调性的定义,证明:函数31y x =-是R 上的递减函数;18. 已知a 是实数,函数2()223f x ax x a =+--,如果函数()y f x =在区间[1,1]-上有零点,求a 的取值范围;19. 已知函数2()4x f x x =-; (1)指出函数()f x 的单调性,并予以证明;(2)画出函数()f x 的大致图像;20. 已知2()a f x x x=+()a R ∈; (1)判断函数()f x 的奇偶性,说明理由;(2)若()f x 在区间[1,)+∞上是增函数,求实数a 的取值范围;21. 设函数()f x =,其中2k <-;(1)求函数()f x 的定义域;(2)写出()f x 的单调区间;参考答案一. 填空题1. 22. 1-3. 10[2,]34. 若()f x 不是奇函数,则()f x -不是奇函数5. 1a ≤-52 8. (2,2)- 9. 1- 10. 12 11. (,0)(1,3]-∞ 12. 12m ≥二. 选择题 13. A 14. A 15. D 16. C三. 解答题17. 略;18. ([1,)-∞+∞; 19.(1)在(,2)-∞-、(2,2)-和(2,)+∞上单调递减,证明略;(2)略;20.(1)当0a =,偶函数,当0a ≠,非奇非偶函数;(2)2a ≤;21.(1)(,1(12,1)(1,12)(12,)k k k -∞--------+---+-+∞;(2)在(,1-∞-上单调递增,在(11)--单调递减,在(1,1--上单调递增,在(1)-+∞单调递减;。
上海市上海中学2016-2017学年高一上学期数学周练07 含

上海中学高一周练数学卷2016.10.27一. 填空题1. 求出下列不等式的解集:(1)42280x x +-< (2)22x >(3)22102x x x +≤-- (4121x >+(5)2(20x x +-≥ 2. 已知,a b 为实数且0ab ≠,有下列不等式:①222a b ab +≥;②||||2b a a b +≥;③ 2b a a b+≥;④222a b a b ++≥;其中恒成立的不等式序号为 3. 设0x ≠,则22352x x --的最大值为 4. 已知,x y R ∈,且0xy <,则下列不等式:①||||x y x y +>-;②||||x y x y +<-; ③||||||||x y x y -<-;④||||||x y x y -<+;其中正确的是5. x ≥(0)a >解集为{|}x m x n ≤≤,且21n m a -=-,则a =6. 若定义运算“*”满足:21a a b b-*=,则不等式(1)0x x *+<的解集为 7. 已知关于x 的不等式|1|x ax -<的解集为M ,Z 为整数集,若{1,2}MZ =,则实 数a 的取值范围为8. 若x R +∈,则22x x +的取值范围为 9. 已知不等式1|2|2x a x +>对一切不为零的实数x 恒成立,则实数a 的范围为 10. 设x y z >>,11n x y y z x z+≥---*()n N ∈恒成立,则n 的最大值为 11. 已知,,a b c 都是非负数,则c a b a b c c +++的最小值为 12. 某地街道呈现东—西、南—北向的网格状,相邻街距都为1,两街道相交的点称为格点, 若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点(2,2)-、(3,1)、(3,4)、 (2,3)-、(4,5)、(6,6)为报刊零售点,请确定一个格点(除零售点外) 为发行站,使6个零售点沿街道到发行站之间路程的和最短二. 选择题13. 已知甲:两实数,a b 满足||2a b -<;乙:两实数,a b 满足|1|1a -<,|1|1b -<, 则甲是乙的( )条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要14. 若,x y 是不相等的两个正数且1xy ≠,则下列代数式中值最大的是( ) A. 11()()x y x y ++ B. 1xy xy + C. 11()()x y y x ++ D. 11()()x y x y++ 15. 设集合2{|230}A x x x =+->,集合2{|210,0}B x x ax a =--≤>,若A B 中恰 有一个整数,则实数a 的取值范围是( ) A. 3(0,)4 B. 34[,)43 C. 3[,)4+∞ D. (1,)+∞ 16. 若k R ∈2的最小值为( )A. 4B. 2C. kD. 不能确定三. 解答题17. 若关于x 的不等式||2ax b +<(0)a ≠的解集为(2,6),求a 、b 的值;18. 解关于x 1ax ≤;19. 求表面积为18平方分米的长方体体积的最大值;20. 若正数,a b满足111a b+=,求1411a b+--的最小值,并求此时,a b的值;参考答案一. 填空题1.(1)( (2)[4,)+∞ (3)1(,1)[,2)2-∞-- (4){3}[2,)-+∞(5)1(,)(0,1)2-∞- 2. ①② 3. 5-② 5. 26. {|1x x <且1}x ≠-7. 12(,]238. (0,49. a <10. 4 11. 2 12. (3,3)二. 选择题 13. B 14. A 15. B 16. D三. 解答题17. 1a =,4b =-或1a =-4b =;18. 分类讨论,略;19.20. 最小值为4,此时 1.5a =,3b =;。
上海市上海中学2016-2017学年高一上学期周练(12)数学试题Word版含答案

上海中学2019届高一数学周练十二2016.12.08一. 填空题1. 幂函数23y x -=的定义域为 ,值域为2. 定义在[4,4]-上的偶函数()g x 满足:当0x ≤时,()g x 单调递增,若(1)()g m g m -<, 则m 的取值范围是3. 若函数2()|21|f x x x a a =++-+的图像关于y 轴对称,则实数a =4. 若函数()y f x =是定义在(0,)+∞上的减函数,则函数2(2)y f x x =-的单调递增区间 是5. 已知点(,)A a b ()a b ≠位于直角坐标平面的第一象限,点A 以及点A 关于直线y x =的 对称点B 都在一个幂函数()y f x =的图像上,则()f x =6. 设函数()y f x =对一切实数x 均满足(5)(5)f x f x +=-,且方程()0f x =恰有7个不 同的实根,则这7个实根的和为7. 已知函数()||f x x a x b =-+,给出下列命题:(1)当0a =时,()f x 的图像关于点(0,)b 成中心对称;(2)当(,)x a ∈+∞时,()f x 是递增函数;(3)当0x a ≤≤时,()f x 的最大值为24a b +,其中正确的序号是 8. 已知函数()y f x =是R 上的增函数,则0a b +>是()()()()f a f b f a f b +>-+-的 条件9. 函数(2)y f x =+的图像过点(1,3)-,则函数()y f x =的图像关于x 轴对称的图像一定 经过点10. 函数122010()1232011x x x x f x x x x x +++=+++⋅⋅⋅+++++的图像的对称中心为 11. 设函数1()f x x x =+的图像为1C ,1C 关于点(2,1)A 对称的图像为2C ,2C 对应的函数 为()g x ,则()g x 的解析式为12. 若函数()f x 满足(||)|()|f x f x =,则称()f x 为对等函数,给出以下三个命题:(1)定义域为R 的对等函数,其图像一定过原点(2)两个定义域相同的对等函数的乘积一定是对等函数(3)若定义域是D 的函数()y f x =是对等函数,则{|(),}{|0}y y f x x D y y =∈⊆≥其中真命题的个数是二. 选择题13. 幂函数223()(1)m m f x m m x +-=--在(0,)+∞上是减函数,则实数m =( )A. 2或1-B. 1-C. 2D. 2-或114. 已知函数:f R R →,则对所有实数x ,满足221()(())4f x f x -≥,且对不同的x , ()f x 也不同,这样的函数()f x ( )A. 不存在B. 有限多个C. 唯一存在D. 无穷多个15. 函数()y f x =的定义域和值域都是(,0)-∞,则()y f x =-的图像一定位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限16. 已知集合{()|()A f x f x =是幂函数且为奇函数},集合{()|()B f x f x =是幂函数且 在R 上单调递增},集合{()|()C f x f x =是幂函数且图像过原点},则( )A. A B C =B. B A C =C. C A B =D. A B C =17. 定义域和值域均为[,]a a -(常数0a >)的函数()y f x =和()y g x =的图像如图所示,给出下列四个命题:(1)方程(())0f g x =有且仅有三个解;(2)方程(())0g f x =有且仅 有三个解;(3)方程(())0f f x =有且仅有九个解;(4)方程(())0g g x =有且仅有一个解; 那么,其中正确命题的个数是( )A. 4B. 3C. 2D. 1三. 解答题18. 画出下列函数图像:(1)34y x =;(2)2y x -=;19. 若函数34220()(42)(1)f x mx x m x mx -=++++-+的定义域为R ,求实数m 的范围;20. 已知函数22()k k f x x -++=()k Z ∈满足(2)(3)f f <;(1)求k 的值并求出相应的()f x 的解析式;(2)对于(1)中的()f x ,试判断是否存在q (0)q >,使函数()1()(21)g x qf x q x =-+- 在区间[1,2]-上的值域为17[4,]8-?若存在,求出q ;若不存在,请说明理由;21. 已知函数()f x = (1)求函数()f x 的定义域和值域;(2)若00()f x x =,求0x 的值;参考答案一. 填空题1. (,0)(0,)-∞+∞,(0,)+∞ 2. 1[3,)2- 3. 12 4. (,0)-∞ 5. 1x - 6. 35 7. (1)(3) 8. 充要 9. (1,3)-10. (1006,2011)- 11. 1()24g x x x =-+- 12. 1二. 选择题13. B 14. A 15. D 16. B 17. C三. 解答题18. 略;19. 1,2);20.(1)0k =或1,2()f x x =;(2)2q =;21.(1)定义域[1,0)[1,)-+∞,值域[0,)+∞;(2;。
上海市上海中学2016-2017学年高一上数学周练07

上海中学高一周练数学卷2016.10.27一. 填空题1. 求出下列不等式的解集:(1)42280x x +-< (2)22x +>(3)22102x x x +≤-- (4121x >+(5)2(20x x +-≥2. 已知,a b 为实数且0ab ≠,有下列不等式:①222a b ab +≥;②||||2b a a b+≥;③ 2b a a b+≥;④222a b a b ++≥;其中恒成立的不等式序号为 3. 设0x ≠,则22352x x --的最大值为 4. 已知,x y R ∈,且0xy <,则下列不等式:①||||x y x y +>-;②||||x y x y +<-; ③||||||||x y x y -<-;④||||||x y x y -<+;其中正确的是5. x ≥(0)a >解集为{|}x m x n ≤≤,且21n m a -=-,则a =6. 若定义运算“*”满足:21a a b b-*=,则不等式(1)0x x *+<的解集为 7. 已知关于x 的不等式|1|x ax -<的解集为M ,Z 为整数集,若{1,2}MZ =,则实 数a 的取值范围为8. 若x R +∈,则22x x +的取值范围为 9. 已知不等式1|2|2x a x +>对一切不为零的实数x 恒成立,则实数a 的范围为 10. 设x y z >>,11n x y y z x z+≥---*()n N ∈恒成立,则n 的最大值为 11. 已知,,a b c 都是非负数,则c a b a b c c+++的最小值为 12. 某地街道呈现东—西、南—北向的网格状,相邻街距都为1,两街道相交的点称为格点, 若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点(2,2)-、(3,1)、(3,4)、 (2,3)-、(4,5)、(6,6)为报刊零售点,请确定一个格点(除零售点外) 为发行站,使6个零售点沿街道到发行站之间路程的和最短二. 选择题13. 已知甲:两实数,a b 满足||2a b -<;乙:两实数,a b 满足|1|1a -<,|1|1b -<, 则甲是乙的( )条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要14. 若,x y 是不相等的两个正数且1xy ≠,则下列代数式中值最大的是( ) A. 11()()x y x y ++ B. 1xy xy + C. 11()()x y y x ++ D. 11()()x y x y++ 15. 设集合2{|230}A x x x =+->,集合2{|210,0}B x x ax a =--≤>,若A B 中恰 有一个整数,则实数a 的取值范围是( ) A. 3(0,)4 B. 34[,)43 C. 3[,)4+∞ D. (1,)+∞ 16. 若k R ∈2的最小值为( )A. 4B. 2C. kD. 不能确定三. 解答题17. 若关于x 的不等式||2ax b +<(0)a ≠的解集为(2,6),求a 、b 的值;18. 解关于x 1ax ≤;19. 求表面积为18平方分米的长方体体积的最大值;20. 若正数,a b满足111a b+=,求1411a b+--的最小值,并求此时,a b的值;参考答案一. 填空题1.(1)( (2)[4,)+∞ (3)1(,1)[,2)2-∞-- (4){3}[2,)-+∞(5)1(,)(0,1)2-∞- 2. ①② 3. 5- 4. ② 5. 26. {|1x x <且1}x ≠-7. 12(,]238. (0,]4 9. a <10. 4 11. 2 12. (3,3)二. 选择题13. B 14. A 15. B 16. D三. 解答题17. 1a =,4b =-或1a =-4b =;18. 分类讨论,略;19.20. 最小值为4,此时 1.5a =,3b =;。
2016-2017-高一上期末考-上海中学(2017.01)

上海中学2016学年第一学期期末考试数学试卷2017.1一. 填空题1.函数2()lg(31)f x x =+的定义域为2. 函数2()f x x =(1x ≥)的反函数为1()f x -=3. 若幂函数()f x 的图像经过点1(27,)9,则该函数解析式为()f x = 4. 若对任意不等于1的正数a ,函数2()3x f x a +=-的图像都过点P ,则点P 的坐标是5. 已知2()f x ax bx =+是定义在[3,2]a a -上的偶函数,那么a = ,b =6. 方程224log (1)log (1)5x x +++=的解为8. 已知()f x 是定义在R 上的奇函数,当0x <时,2()f x x x =+,则函数()f x 的解析式 为()f x = 9. 函数2|65|0.3xx y -+=的单调增区间为10. 设函数()y f x =存在反函数1()f x -,若满足1()()f x f x -=恒成立,则称()f x 为“自反函数”,如函数()f x x =,()g x b x =-,()kh x x=(0k ≠)等都是“自反函数”,试写 出一个不同于上述例子的“自反函数”y =二. 选择题13. 已知3()1f x ax bx =++(0ab ≠),若(2017)f k =,则(2017)f -=( ) A. k B. k - C. 1k - D. 2k -14. 定义在R 上的函数()y f x =在区间(,2)-∞上是增函数,且函数(2)y f x =+的图像关 于直线1x =对称,则( )A. (1)(5)f f <B. (1)(5)f f >C. (1)(5)f f =D. (0)(5)f f = 15. 汽车的“燃油效率”是指汽车每消耗1升汽油行使的里程,下图描述了甲、乙、丙三辆 汽车在不同速度下得燃油效率情况,下列叙述中正确的是( )A. 消耗1升汽油,乙车最多可行使5千米B. 以相同速度行使相同路程,三辆车中,甲车消耗汽油最多C. 甲车以80千米/小时的速度行使1小时,消耗10升汽油D. 某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油A. [3,3)-B. (3,3]-C. (,3)-∞D. (3,)-+∞三. 解答题17. 在平面直角坐标系中,作出下列函数的图像; (1)13y x =; (2)||1()12x y =-;18. 已知集合226{|310330,}xx D x x R +=-⋅+≤∈,求函数2()log 2x f x =⋅ (x D ∈)的值域;19. 设函数()x x f x k a a -=⋅-(0a >且1a ≠)是奇函数; (1)求常数k 的值; (2)若8(1)3f =,且函数22()2()x xg x a a mf x -=+-在区间[1,)+∞上的最小值为2-,求 实数m 的值;(1)当2m =时,判断()f x 在(,0)-∞上的单调性并证明; (2)若对任意x R ∈,不等式(2)0xf >恒成立,求m 的取值范围; (3)讨论函数()y f x =的零点个数;参考答案一. 填空题1. 1(,1)3-2.(1)x ≥ 3. 23x - 4. (2,2)-- 5. 1,06. 3x =7. {0,2}8. 22,0,0x x x x x x ⎧-+≥⎪⎨+<⎪⎩ 9. (,1]-∞和[3,5]10. y =(0)x ≥ 11. (,6)(6,)-∞-+∞ 12. (,1)(1,)-∞-+∞二. 选择题13. D 14. C 15. D 16. B三. 解答题17. 略; 18. 1[,0]4-; 19.(1)1k =;(2)2m =;20.(1)递减;(2)14m >;(3)当11(,)(,)44m ∈-∞-+∞,1个零点;当11{,0,}44m ∈-,2个零点;当11(,0)(0,)44m ∈-,3个零点;21.(1)1(,1)2;(2)8a ≥;(3)2a =或3a =;。
上海市上海中学2016-2017学年高一上学期数学周练12

上海中学高一周练数学卷2016.12.08一. 填空题1. 幂函数23y x -=的定义域为 ,值域为2. 定义在[4,4]-上的偶函数()g x 满足:当0x ≤时,()g x 单调递增,若(1)()g m g m -<, 则m 的取值范围是3. 若函数2()|21|f x x x a a =++-+的图像关于y 轴对称,则实数a =4. 若函数()y f x =是定义在(0,)+∞上的减函数,则函数2(2)y f x x =-的单调递增区间 是5. 已知点(,)A a b ()a b ≠位于直角坐标平面的第一象限,点A 以及点A 关于直线y x =的 对称点B 都在一个幂函数()y f x =的图像上,则()f x =6. 设函数()y f x =对一切实数x 均满足(5)(5)f x f x +=-,且方程()0f x =恰有7个不 同的实根,则这7个实根的和为7. 已知函数()||f x x a x b =-+,给出下列命题:(1)当0a =时,()f x 的图像关于点(0,)b 成中心对称;(2)当(,)x a ∈+∞时,()f x 是递增函数;(3)当0x a ≤≤时,()f x的最大值为24a b +,其中正确的序号是 8. 已知函数()y f x =是R 上的增函数,则0a b +>是()()()()f a f b f a f b +>-+-的 条件9. 函数(2)y f x =+的图像过点(1,3)-,则函数()y f x =的图像关于x 轴对称的图像一定 经过点10. 函数122010()1232011x x x x f x x x x x +++=+++⋅⋅⋅+++++的图像的对称中心为 11. 设函数1()f x x x=+的图像为1C ,1C 关于点(2,1)A 对称的图像为2C ,2C 对应的函数 为()g x ,则()g x 的解析式为12. 若函数()f x 满足(||)|()|f x f x =,则称()f x 为对等函数,给出以下三个命题: (1)定义域为R 的对等函数,其图像一定过原点 (2)两个定义域相同的对等函数的乘积一定是对等函数(3)若定义域是D 的函数()y f x =是对等函数,则{|(),}{|0}y y f x x D y y =∈⊆≥其中真命题的个数是二. 选择题13.幂函数223()(1)mm f x m m x +-=--在(0,)+∞上是减函数,则实数m =( )A. 2或1-B. 1-C. 2D. 2-或1 14. 已知函数:f R R →,则对所有实数x ,满足221()(())4f x f x -≥,且对不同的x , ()f x 也不同,这样的函数()f x ( )A. 不存在B. 有限多个C. 唯一存在D. 无穷多个15. 函数()y f x =的定义域和值域都是(,0)-∞,则()y f x =-的图像一定位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D.第四象限16. 已知集合{()|()A f x f x =是幂函数且为奇函数},集合{()|()B f x f x =是幂函数且 在R 上单调递增},集合{()|()C f x f x =是幂函数且图像过原点},则( ) A. A BC = B. B A C = C. C A B = D. A B C =17. 定义域和值域均为[,]a a -(常数0a >)的函数()y f x =和()y g x =的图像如图所示,给出下列四个命题:(1)方程(())0f g x =有且仅有三个解;(2)方程(())0g f x =有且仅 有三个解;(3)方程(())0f f x =有且仅有九个解;(4)方程(())0g g x =有且仅有一个解; 那么,其中正确命题的个数是( )A. 4B. 3C. 2D. 1三. 解答题18. 画出下列函数图像:(1)34y x =;(2)2y x -=;19. 若函数34220()(42)(1)f x mx x m x mx -=++++-+的定义域为R ,求实数m 的范围;20. 已知函数22()kk f x x -++=()k Z ∈满足(2)(3)f f <;(1)求k 的值并求出相应的()f x 的解析式;(2)对于(1)中的()f x ,试判断是否存在q (0)q >,使函数()1()(21)g x qf x q x =-+- 在区间[1,2]-上的值域为17[4,]8-?若存在,求出q ;若不存在,请说明理由;21. 已知函数()f x =; (1)求函数()f x 的定义域和值域;(2)若00()f x x =,求0x 的值;参考答案一. 填空题 1. (,0)(0,)-∞+∞,(0,)+∞ 2. 1[3,)2- 3. 124. (,0)-∞5. 1x - 6. 35 7. (1)(3) 8. 充要 9. (1,3)- 10. (1006,2011)- 11. 1()24g x x x =-+- 12. 1二. 选择题13. B 14. A 15. D 16. B 17. C三. 解答题 18. 略;19. 1,2);20.(1)0k =或1,2()f x x =;(2)2q =;21.(1)定义域[1,0)[1,)-+∞,值域[0,)+∞;(2;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数1.同一函数的概念。
构成函数的三要素是定义域,值域和对应法则。
而值域可由定义域和对应法则唯一确定,因此当两个函数的定义域和对应法则相同时,它们一定为同一函数。
【例1】下列各题中的两个函数是否表示同一函数 (1)2)(,)(t t g x x f ==; (2);,2x y x y ==(3);1,112-=-⋅+=x y x x y (4);)(,)(33x x g x x f ==(5);2)(,24)(2+=--=x x g x x x f (6)2)(,)2()(2+=+=x x g x x f2.求函数定义域的常用方法(在研究函数问题时要树立定义域优先的原则): (1)根据解析式要求如偶次根式的被开方大于零,分母不能为零,对数log a x 中0,0x a >>且1a ≠,三角形中0A π<<, 最大角3π≥,最小角3π≤等。
【例2】(1)函数lg 3y x =-的定义域是(2)若函数2743kx y kx kx +=++的定义域为R ,则k ∈_______(3)设函数2()lg(21)f x ax x =++,①若()f x 的定义域是R ,求实数a 的取值范围 ; ②若()f x 的值域是R ,求实数a 的取值范围 。
(2)复合函数的定义域:①若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域由不等式()a g x b ≤≤解出即可;②若已知[()]f g x 的定义域为[,]a b ,求()f x 的定义域,相当于当[,]x a b ∈时,求()g x 的值域(即()f x 的定义域)。
【例3】(1)若函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,则)(log 2x f 的定义域为_______(2)若函数2(1)f x +的定义域为[2,1)-,则函数()f x 的定义域为________3.求函数值域(最值)的方法:(1)配方法――二次函数(二次函数在给出区间上的最值有两类: 一是求闭区间[,]m n 上的最值;二是求区间定(动),对称轴动(定)的最值问题。
求二次函数的最值问题,勿忘数形结合,注意“两看”:一看开口方向;二看对称轴与所给区间的相对位置关系),【例4】(1)当]2,0(∈x 时,函数3)1(4)(2-++=x a ax x f 在2=x 时取得最大值,则a 的取值范围是_ _(2)()3(24)x bf x x -=≤≤图像过点(2,1),则1212()[()]()F x f x f x --=-值域为____(2)换元法――通过换元把一个较复杂的函数变为简单易求值域的函数,其函数特征是函数解析式含有根式或三角函数公式模型,【例5】(1)22sin 3cos 1y x x =--的值域为__ ___(2)21y x =+的值域为 (3)sin cos sin cos y x x x x =++的值域为(4)4y x =++的值域为____(3)函数有界性法――直接求函数的值域困难时,可以利用已学过函数的有界性,来确定所求函数的值域,最常用的就是三角函数的有界性,【例6】求函数2sin 11sin y θθ-=+,313xxy =+,2sin 11cos y θθ-=+的值域?(4)单调性法――利用一次函数,反比例函数,指数函数,对数函数等函数的单调性,【例7】求1(19)y x x x =-<<,229sin 1sin y x x=++,52log x y -=+?(5)数形结合法――函数解析式具有某种几何意义,如两点的距离、直线斜率、等等, 【例8】(1)已知点(,)P x y 在圆221x y +=上,求2yx +及2y x -的取值范围?(2)求函数y =的值域?(3)求函数y =及y =的值域?(6)判别式法――对分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其它方法进行求解,不必拘泥在判别式法上,也可先通过部分分式后,再利用均值不等式:①2by k x =+型,可直接用不等式性质, 【例9】求232y x=+的值域?②2bxy x mx n=++型,先化简,再用均值不等式,【例10】(1)求21xy x =+的值域(2)求函数y =的值域③22x m x n y x mx n''++=++型,通常用判别式法;【例11】已知函数2328log 1mx x ny x ++=+的定义域为R ,值域为[0,2],求常数,m n 值?④2x m x n y mx n''++=+型,可用判别式法或均值不等式法,【例12】求211x x y x ++=+的值域(7)不等式法――利用基本不等式:,)a b a b R ++≥∈求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。
【例13】设12,,,x a a y 成等差数列,12,,,x b b y 成等比数列,则21221)(b b a a +的取值范围是____________.4.分段函数的概念。
分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。
在求分段函数的值0()f x 时,一定首先要判断0x 属于定义域的哪个子集,然后再代相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集。
【例14】(1)设函数2(1).(1)()41)x x f x x ⎧+<⎪=⎨≥⎪⎩,则使得()1f x ≥的自变量x 的取值范围是__________(2)已知1(0)()1(0)x f x x ≥⎧=⎨-<⎩ ,则不等式(2)(2)5x x f x +++≤的解集是________5.求函数解析式的常用方法:(1)待定系数法――已知所求函数的类型(二次函数的表达形式有三种: 一般式:2()f x ax bx c =++;顶点式:2()()f x a x m n =-+; 零点式:12()()()f x a x x x x =--,要会根据已知条件的特点,灵活地选用二次函数的表达形式。
【例15】已知()f x 为二次函数,且 )2()2(--=-x f x f ,且f(0)=1,图像在x 轴上截得的线段长为22,求()f x 的解析式?【一题多解】(2)代换(配凑)法――已知形如(())f g x 的表达式,求()f x 的表达式。
【例16】(1)已知,sin )cos 1(2x x f =- 求()2x f 的解析式(2)若221)1(xx x x f +=-,则函数)1(-x f =_____ (3)若函数)(x f 是定义在R 上的奇函数,且当),0(+∞∈x 时,)1()(3x x x f +=,那么当)0,(-∞∈x 时,)(x f =________(3)方程的思想――已知条件是含有()f x 及另外一个函数的等式,可抓住等式的特征对等式的进行赋值,从而得到关于()f x 及另外一个函数的方程组。
【例17】(1)已知()2()32f x f x x +-=-,求()f x 的解析式(2)已知()f x 是奇函数,)(x g 是偶函数,且()f x +)(x g =11-x ,则()f x =__6. 反函数:(1)存在反函数的条件是对于原来函数值域中的任一个y 值,都有唯一的x 值与之对应,故单调函数一定存在反函数,但反之不成立;偶函数只有()0({0})f x x =∈有反函数;周期函数一定不存在反函数。
【例18】函数223y x ax =--在区间[1, 2]上存在反函数的充要条件是( ) A 、(],1a ∈-∞ B 、[)2,a ∈+∞C 、[1,2]a ∈D 、(],1a ∈-∞[)2,+∞(2)求反函数的步骤:【反表示法】①反求x ;②互换 x 、y ;③注明反函数的定义域(原来函数的值域)。
注意函数(1)y f x =+的反函数不是1(1)y f x -=+,而是1()1y f x -=-。
【例19】设)0()1()(2>+=x xx x f .求)(x f 的反函数)(1x f -=(3)反函数的性质:①反函数的定义域是原来函数的值域,反函数的值域是原来函数的定义域。
【例20】单调递增函数)(x f 满足条件)3(+ax f = x ,其中a ≠ 0 ,若)(x f 的反函数)(1x f -的定义域为⎥⎦⎤⎢⎣⎡a a 4,1 ,则)(x f 的定义域是____________②函数()y f x =的图像与其反函数1()y f x -=的图像关于直线y x =对称,注意函数()y f x =的图像与1()x f y -=的图像相同。
【例21】(1)已知函数()y f x =的图像过点(1,1),那么()4f x -的反函数的图像一定经过点(2)已知函数132)(-+=x x x f ,若函数()y g x =与)1(1+=-x f y 的图像关于直线x y =对称,求(3)g 的值=③1()()f a b fb a -=⇔=。
【例22】(1)已知函数)24(log )(3+=xx f ,则方程4)(1=-x f 的解=x ______ (2)设函数f (x )图像关于点(1,2)对称,存在反函数1()f x -,f (4)=0,1(4)f -=____④互为反函数的两个函数具有相同的单调性和奇函数性。
⑤设()f x 的定义域为A ,值域为B ,则有1[()]()f f x x x B -=∈,1[()]f f x x -=()x A ∈,但11[()][()]f f x f f x --≠。
【例23】已知()f x 是R 上的增函数,点()()1,1,1,3A B -在它的图像上,()1f x -是它的反函数,那么不等式()12log 1f x -<的解集为________7.函数的奇偶性。
(1)【定义域优先原则】具有奇偶性的函数的定义域的特征:定义域必须关于原点对称!为此确定函数的奇偶性时,务必先判定函数定义域是否关于原点对称。
【例24】若函数)(x f 2sin(3)x θ=+,[25,3]x απα∈-为奇函数,其中)2,0(πθ∈,则θα-的值是(2)确定函数奇偶性的常用方法(若所给函数的解析式较为复杂,应先化简,再判断其奇偶性):①定义法:【例25】判断函数y =____②利用函数奇偶性定义的等价形式:()()0f x f x ±-=或()1()f x f x -=±(()0f x ≠)。
③图像法:奇函数的图像关于原点对称;偶函数的图像关于y 轴对称。