2019-2020年七年级数学下学期第一次月考试题 新人教版 (I)

合集下载

人教版2018-2019学年度七年级下册数学第一次月考试卷(含答案)

人教版2018-2019学年度七年级下册数学第一次月考试卷(含答案)

2018-2019学年度(下)七年级数学3月月考试卷一、选择题(每小题3分,共30分)1.如图,BD ∥AC ,BE 平分∠ABD ,交AC 于点E .若∠A =50°,则∠1的度数为( A )A .65°B .60°C .55°D .50°2.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上,如果∠2=44°,那么∠1的度数是( C )A .14°B .15°C .16°D .17°3.下列说法正确的是( D )A.因为52=25,所以5是25的算术平方根 B.因为(-5)2=25,所以-5是25的算术平方根 C.因为(±5)2=25,所以5和-5都是25的算术平方根 D.以上说法都不对4..两条相交直线与另外一条直线在同一平面内,它们的交点个数是 ( D ) A.1 B.2 C.3或2 D.1或2或35.已知下列命题:①若a >b ,则c -a <c -b ;②若a >0,则√a 2=a ;其中原命题与逆命题均为真命题的个数是( A )A. 2个B. 1个C. 0个D. -1个 6.化简:38=(C )A .±2B .-2C .2D .2 27.9的倒数等于( D ) A .3B .-3C .-13D.138.下列说法正确的是( B ) A .﹣(﹣8)的立方根是﹣2B.立方根等于本身数有﹣1,0,1C.的立方根为﹣4D.一个数的立方根不是正数就是负数9.如图5-1-31,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做的依据是( D )图5-1-31A.两点之间线段最短 B.点到直线的距离C.两点确定一条直线 D.垂线段最短10.下列图形中,不能通过其中一个四边形平移得到的是( D )二、填空题(每小题3分,共18分)11.如果那么的值是__343____12.如图BE,CF相交于O,OA,OD是射线,其中构成对顶角的角是∠BOC和∠EOF,∠EOC和∠BOF .13..若=﹣,则x= ﹣;若=6,则x= ±216 .14.已知直线a∥b,b∥c,则直线a,c的位置关系是_____a∥c_____.15.如图所示,∠ABC=40°,DE∥BC,DF⊥AB于点F,则∠ADF=50°.16.|6-3|+|2-6|的值为26-1三、解答题(共72分)17..如图5-1-3,直线AB与CD相交于点O,∠AOC∶∠AOD=1∶2.求∠BOD的度数.图5-1-3解:由邻补角的性质,得∠AOC +∠AOD =180°. 由∠AOC ∶∠AOD =1∶2,得∠AOD =2∠AOC ,∠AOC +2∠AOC =180°,解得∠AOC =60°.由对顶角相等,得∠BOD =∠AOC =60°. 17.求下列各式的值:(1)3-1 000; 解:-10.(2)-3-64; 解:-4.(3)-3729+3512; 解:-1.18.如图所示,当光线从空气中射入水中时,光线的传播方向发生了变化,在物理学中这种现象叫做光的折射,∠1=43°,∠2=27°,那么光的传播方向改变了多少度?解:∠BFD =∠1=43°,∠2=27°,则∠DFE =∠BFD -∠2=43°-27°=16°,所以光的传播方向改变了16°.19.求下列各数的平方根和算术平方根:(1)1.44;解:1.44的平方根是± 1.44=±1.2,算术平方根是 1.44=1.2. (2)169289; 解:169289的平方根是±169289=±1317,算术平方根是169289=1317. 20.计算:(1)2+32-52; 解:原式=- 2.(2)38+(-2)2-14.解:原式=31 2 .21.如图,某次考古发掘出的一块梯形残缺玉片,工作人员从玉片上量得∠A=115°,∠D =100°,已知梯形的两底AD∥BC,请你帮助工作人员求出另外两个角的度数,并说明理由.解:∵AD∥BC,∠A=115°,∠D=100°,∴∠B=180°-∠A=180°-115°=65°,∠C=180°-∠D=180°-100°=80°22.有一天李小虎同学用《几何画板》画图,他先画了两条平行线AB,CD,然后在平行线间画了一点E,连接BE,CE后(如图(1)所示),他用鼠标左键点住点E,拖动后,分别得到图(2)(3)(4),这时突然想,∠B,∠D与∠BED之间的度数有没有某种联系呢?接着李小虎同学通过利用《几何画板》的“度量角度”和“计算”的功能,找到了这三个角之间的关系.(1)你能探讨出图(1)至(4)中的∠B,∠D与∠BED之间的关系吗?(2)请从所得的四个关系中,选一个说明它成立的理由.解:(1)图(1):∠BED=∠B+∠D;图(2):∠B+∠BED+∠D=360°;图(3):∠BED=∠D-∠B;图(4):∠BED=∠B-∠D.(2)选图(3).理由如下:如图所示,过点E作EF∥AB.因为AB∥CD,所以EF∥CD,所以∠D=∠DEF,∠B=∠BEF,因为∠BED=∠DEF-∠BEF,所以∠BED=∠D-∠B.23.如图,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,求∠BOF的度数.解:∵CD∥AB,∴∠AOD =180°-∠D =180°-50°=130°. ∵OE 平分∠AOD ,∴∠EOD =12∠AOD =12×130°=65°.∵OF ⊥OE ,∴∠DOF =90°-∠EOD =90°-65°=25°.∴∠BOF =180°-∠AOD -∠DOF =180°-130°-25°=25°.24.已知2a -1的平方根是±3,3a -b +2的算术平方根是4,求a +3b 的立方根.解:∵2a -1的平方根是±3,∴2a -1=9,a =5. ∵3a -b +2的算术平方根是4,∴3a -b +2=16. 又∵a =5,∴b =1. ∴a +3b =8.∴a +3b 的立方根是2.。

七年级下学期第一次月考(数学)试题含答案

七年级下学期第一次月考(数学)试题含答案

七年级下学期第一次月考(数学)(考试总分:120 分)一、 单选题 (本题共计10小题,总分30分) 1.(3分)下列运算中,正确的是( )A .2352a a a += B .()326aa -=-C .3618a a a ⋅=D .77)(ab ab -=-2.(3分)叶绿体是植物进行光合作用的场所,叶绿体DNA 最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为( ) A .40.510-⨯B .4510-⨯C .5510-⨯D .35010-⨯3.(3分)下列计算正确的是( )A 、()055-=- B 、()111=--C 、6622x x -=D 、()()122=-÷-a a4.(3分)下列等式中,成立的是( )A 、222()x y x y +=+ B 、222()x y x y -=- C 、()2222x y x xy y -=-+D 、22()()x y x y x y -+-=-5.(3分)已知α与β互余,β与γ互补,若α=50°,则γ的度数是( )A 、40°B 、50°C 、130°D 、140°6.(3分)下列各式中,不能用平方差公式计算的是( )A 、))((y x y x +--B 、))((y x y x --+-C 、))((y x y x ---D 、))((y x y x +-+7.(3分)已知5x y +=-,3xy =,则22x y +=( )A 、25B 、﹣25C 、19D 、﹣198.(3分)已已已①已④已已① 已② 已③ 已④ 已已已已已已已已∠1已∠2已已已已已已已 已已 A已①已②已③已④B.①已②已③C.①已③D.①9.(3分)已已已AB ∥CD 已∠1已∠2已∠3已130°已已∠2已已已 已已A已25°B.30°C.35°D.40°10.(3分)如图,已知a b ∥,170∠=,240∠=,则3∠=( ).A.50°B.60°C.70°D.80°二、 填空题 (本题共计8小题,总分24分) 11.(3分)计算()2323_________;a b a -⋅-=12.(3分)已知4,8,_____________;x y x y a a a +===则13.(3分)202020218(0.125)⋅-= ;()0220213--⨯= ; 14.(3分)已知248264n n n -⨯÷=,那么_________;n =15.(3分)将一个长方形纸条按图所示折叠一下,若1140=︒∠,则2=∠______;16.(3分)如图,直角三角形是直角三角形沿方向平移后所得到的图形,且与AC 相交于点P ,若6AB =,2DP =,3CF =,则图中阴影部分的面积为_______________.17.(3分)如图,已知AB CD ∥,BC 平分ABE ∠,34C =∠°,则BED =∠______________.21DEF ABC BCDE18.(3分)如图,一把长方形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若125ADE ∠=︒,则DBC ∠的度数为____________________.三、 解答题 (本题共计8小题,总分66分)19.(3分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角” (如图)就是一例.这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应()2222a b a ab b +=++展开式中各项的系数;第五行的五个数1,4,6,4,1,恰好对应着()4432234464a b a a b a b ab b +=++++展开式中各项的系数,等等.有如下三个结论:①当a =1,b =1时,代数式432234464a a b a b ab b ++++的值是1; ②当a =-1,b =2时,代数式432234464a a b a b ab b ++++的值是1;③当代数式432436942781a a a a +⨯+⨯+⨯+的值是1时,a 的值是-2或-4.上述结论中,所有正确结论的序号为____________.20.(3分)在数学课上,老师提出如下问题:小菲用两块形状、大小相同的三角尺完成了该题的作图,作法如下:老师说:“小菲的作法正确.”请回答:小菲的作图的依据是__________________________.21.(20分)(1) ()245x y +(2)4323105a b c a bc ÷(3)()()33a b a b +++- (4)2(23)(23)(3)x y x y x y +-+- (5)计算20202-2019×2021(乘法公式算)22.(8分)先化简,再求值. x xy x y y y x 2]8)4()2[(2÷-+-+ , 其中2,1x y =-= 23.(8分)已已24,a b -=已()()()22224b a b a b a b ab b ⎡⎤---++-÷⎣⎦已已已24.(10分)如图,AB BD ⊥,CD BD ⊥ ,180A AEF ∠∠︒+=.以下是小贝同学证明CD EF ∥的推理过程或理由,请你在横线上补充完整其推理过程或理由.25.(7分)(1)对于算式()()()()()2482020212121212+1______;++++=不用计算器,你能计算出来吗?直接写出计算结果。

人教版七年级数学下学期第一次月考试卷含答案详解

人教版七年级数学下学期第一次月考试卷含答案详解

七年级(下)第一次月考数学试卷一、选择题(注释)1.如图,以下条件能判定GE∥CH的是()A.∥FEB=∥ECD B.∥AEG=∥DCH C.∥GEC=∥HCF D.∥HCE=∥AEG2.如图,已知∥1=∥2=∥3=∥4,则图形中平行的是()A.AB∥CD∥EF B.CD∥EFC.AB∥EF D.AB∥CD∥EF,BC∥DE3.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对4.如图的图形中只能用其中一部分平移可以得到的是()A.B.C.D.5.下列图形不是由平移而得到的是()A.B.C.D.6.如图,哪一个选项的右边图形可由左边图形平移得到()A.B.C.D.7.下列说法中正确的是()A.两直线被第三条直线所截得的同位角相等B.两直线被第三条直线所截得的同旁内角互补C.两平行线被第三条直线所截得的同位角的平分线互相垂直D.两平行线被第三条直线所截得的同旁内角的平分线互相垂直8.下列说法正确的是()A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线9.已知,如图,AB∥CD,则∥α、∥β、∥γ之间的关系为()A.∥α+∥β+∥γ=360°B.∥α﹣∥β+∥γ=180°C.∥α+∥β﹣∥γ=180°D.∥α+∥β+∥γ=180°10.不能判定两直线平行的条件是()A.同位角相等B.内错角相等C.同旁内角相等D.都和第三条直线平行11.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐13012.如图,CD∥AB,垂足为D,AC∥BC,垂足为C.图中线段的长能表示点到直线(或线段)距离的线段有()A.1条B.3条C.5条D.7条二、填空题(注释)13.如图,设AB∥CD,截线EF与AB、CD分别相交于M、N两点.请你从中选出两个你认为相等的角.14.如图,为了把∥ABC平移得到∥A′B′C′,可以先将∥ABC向右平移格,再向上平移格.15.如图,AE∥BD,∥1=120°,∥2=40°,则∥C的度数是.16.如图,已知AB∥CD,则∥1与∥2,∥3的关系是.17.如图,AB∥CD,∥B=68°,∥E=20°,则∥D的度数为度.18.如图,直线DE交∥ABC的边BA于点D,若DE∥BC,∥B=70°,则∥ADE的度数是度.三、解答题(注释)19.如图,AB∥DE∥GF,∥1:∥D:∥B=2:3:4,求∥1的度数?20.已知:如图所示,∥1=∥2,∥3=∥B,AC∥DE,且B,C,D在一条直线上.求证:AE∥BD.21.如图,已知DE∥BC,EF平分∥AED,EF∥AB,CD∥AB,试说明CD平分∥ACB.22.如图,已知∥DAB+∥D=180°,AC平分∥DAB,且∥CAD=25°,∥B=95°(1)求∥DCA的度数;(2)求∥DCE的度数.23.如图,已知∥1+∥2=180°,∥3=∥B,试说明∥AED=∥ACB.24.如图所示,已知∥1=∥2,AC平分∥DAB,试说明DC∥AB.25.已知∥AGE=∥DHF,∥1=∥2,则图中的平行线有几对?分别是?为什么?26.已知直线a∥b,b∥c,c∥d,则a与d的关系是什么,为什么?-学年七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(注释)1.如图,以下条件能判定GE∥CH的是()A.∥FEB=∥ECD B.∥AEG=∥DCH C.∥GEC=∥HCF D.∥HCE=∥AEG【考点】平行线的判定.【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:∥FEB=∥ECD,∥AEG=∥DCH,∥HCE=∥AEG错误,因为它们不是GE、CH被截得的同位角或内错角;∥GEC=∥HCF正确,因为它们是GE、CH被截得的内错角.故选C.2.如图,已知∥1=∥2=∥3=∥4,则图形中平行的是()A.AB∥CD∥EF B.CD∥EFC.AB∥EF D.AB∥CD∥EF,BC∥DE【考点】平行线的判定.【分析】根据内错角相等,两直线平行;以及平行线的传递性即可求解.【解答】解:∥∥1=∥2=∥3=∥4,∥AB∥CD,BC∥DE,CD∥EF,∥AB∥CD∥EF.故选:D.3.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对【考点】平行线的性质.【分析】根据两边分别平行的两个角相等或互补列方程求解.【解答】解:设另一个角为x,则这一个角为4x﹣30°,(1)两个角相等,则x=4x﹣30°,解得x=10°,4x﹣30°=4×10°﹣30°=10°;(2)两个角互补,则x+(4x﹣30°)=180°,解得x=42°,4x﹣30°=4×42°﹣30°=138°.所以这两个角是42°、138°或10°、10°.以上答案都不对.故选D.4.如图的图形中只能用其中一部分平移可以得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移的性质,对选项进行一一分析,排除错误答案.【解答】解:A、图形为轴对称所得到,不属于平移;B、图形的形状和大小没有变化,符合平移性质,是平移;C、图形为旋转所得到,不属于平移;D、最后一个图形形状不同,不属于平移.故选B.5.下列图形不是由平移而得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移定义:把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移可得A、B、C都是平移得到的,选项D中的对应点的连线不平行,两个图形需要经过旋转才能得到.【解答】解:A、图形是由平移而得到的,故此选项错误;B、图形是由平移而得到的,故此选项错误;C、图形是由平移而得到的,故此选项错误;D、图形是由旋转而得到的,故此选项正确;故选:D.6.如图,哪一个选项的右边图形可由左边图形平移得到()A.B.C.D.【考点】生活中的平移现象.【分析】根据平移的性质作答.【解答】解:观察图形可知C中的图形是平移得到的.故选C.7.下列说法中正确的是()A.两直线被第三条直线所截得的同位角相等B.两直线被第三条直线所截得的同旁内角互补C.两平行线被第三条直线所截得的同位角的平分线互相垂直D.两平行线被第三条直线所截得的同旁内角的平分线互相垂直【考点】平行线的性质;同位角、内错角、同旁内角.【分析】根据平行线的性质,结合各选项进行判断即可.【解答】解:A、两平行线被第三条直线所截得的同位角相等,原说法错误,故本选项错误;B、两平行线被第三条直线所截得的同旁内角互补,原说法错误,故本选项错误;C、两平行线被第三条直线所截得的同位角的平分线互相平行,原说法错误,故本选项错误;D、两平行线被第三条直线所截得的同旁内角的平分线互相垂直,说法正确,故本选项正确;故选D.8.下列说法正确的是()A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线【考点】平行线.【分析】根据平行线的定义,即可解答.【解答】解:根据平行线的定义:在同一平面内,不相交的两条直线是平行线.A,B,C错误;D正确;故选:D.9.已知,如图,AB∥CD,则∥α、∥β、∥γ之间的关系为()A.∥α+∥β+∥γ=360°B.∥α﹣∥β+∥γ=180°C.∥α+∥β﹣∥γ=180°D.∥α+∥β+∥γ=180°【考点】平行线的性质.【分析】根据两直线平行,同旁内角互补以及内错角相等即可解答,此题在解答过程中,需添加辅助线.【解答】解:过点E作EF∥AB,则EF∥CD.∥EF∥AB∥CD,∥∥α+∥AEF=180°,∥FED=∥γ,∥∥α+∥β=180°+∥γ,即∥α+∥β﹣∥γ=180°.故选C.10.不能判定两直线平行的条件是()A.同位角相等B.内错角相等C.同旁内角相等D.都和第三条直线平行【考点】平行线的判定.【分析】判定两直线平行,我们学习了两种方法:①平行公理的推论,②平行线的判定公理和两个平行线的判定定理判断.【解答】解:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,内错角相等;和第三条直线平行的和两直线平行.故选C.11.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130【考点】平行线的性质.【分析】首先根据题意对各选项画出示意图,观察图形,根据同位角相等,两直线平行,即可得出答案.【解答】解:如图:故选:A.12.如图,CD∥AB,垂足为D,AC∥BC,垂足为C.图中线段的长能表示点到直线(或线段)距离的线段有()A.1条B.3条C.5条D.7条【考点】点到直线的距离.【分析】本题图形中共有6条线段,即:AC、BC、CD、AD、BD、AB,其中线段AB的两个端点处没有垂足,不能表示点到直线的距离,其它都可以.【解答】解:表示点C到直线AB的距离的线段为CD,表示点B到直线AC的距离的线段为BC,表示点A到直线BC的距离的线段为AC,表示点A到直线DC的距离的线段为AD,表示点B到直线DC的距离的线段为BD,共五条.故选C.二、填空题(注释)13.如图,设AB∥CD,截线EF与AB、CD分别相交于M、N两点.请你从中选出两个你认为相等的角∥1=∥5.【考点】平行线的性质.【分析】AB∥CD,则这两条平行线被直线EF所截;形成的同位角相等,内错角相等.【解答】解:∥AB∥CD,∥∥1=∥5(答案不唯一).14.如图,为了把∥ABC平移得到∥A′B′C′,可以先将∥ABC向右平移5格,再向上平移3格.【考点】坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:从点A看,向右移动5格,向上移动3格即可得到A′.那么整个图形也是如此移动得到.故两空分别填:5、3.15.如图,AE∥BD,∥1=120°,∥2=40°,则∥C的度数是20°.【考点】平行线的性质.【分析】根据两直线平行,内错角相等的性质求出∥AEC的度数,再根据三角形的内角和等于180°列式进行计算即可得解.【解答】解:∥AE∥BD,∥2=40°,∥∥AEC=∥2=40°,∥∥1=120°,∥∥C=180°﹣∥1﹣∥AEC=180°﹣120°﹣40°=20°.故答案为:20°.16.如图,已知AB∥CD,则∥1与∥2,∥3的关系是∥1=∥2+∥3.【考点】平行线的判定;三角形内角和定理.【分析】根据三角形的内角和等于180°,两直线平行同旁内角互补可得.【解答】解:∥AB∥CD,∥∥1+∥C=180°,又∥∥C+∥2+∥3=180°,∥∥1=∥+∥3.17.如图,AB∥CD,∥B=68°,∥E=20°,则∥D的度数为48度.【考点】三角形的外角性质;平行线的性质.【分析】根据平行线的性质得∥BFD=∥B=68°,再根据三角形的一个外角等于与它不相邻的两个内角和,得∥D=∥BFD﹣∥E,由此即可求∥D.【解答】解:∥AB∥CD,∥B=68°,∥∥BFD=∥B=68°,而∥D=∥BFD﹣∥E=68°﹣20°=48°.故答案为:48.18.如图,直线DE交∥ABC的边BA于点D,若DE∥BC,∥B=70°,则∥ADE的度数是70度.【考点】平行线的性质.【分析】根据两直线平行,同位角相等解答.【解答】解:∥DE∥BC,∥B=70°,∥∥ADE=∥B=70°.故答案为:70.三、解答题(注释)19.如图,AB∥DE∥GF,∥1:∥D:∥B=2:3:4,求∥1的度数?【考点】平行线的性质.【分析】首先设∥1=2x°,∥D=3x°,∥B=4x°,根据两直线平行,同旁内角互补即可表示出∥GCB、∥FCD的度数,再根据∥GCB、∥1、∥FCD的为180°即可求得x的值,进而可得∥1的度数.【解答】解:∥∥1:∥D:∥B=2:3:4,∥设∥1=2x°,∥D=3x°,∥B=4x°,∥AB∥DE,∥∥GCB=°,∥DE∥GF,∥∥FCD=°,∥∥1+∥GCB+∥FCD=180°,∥180﹣4x+x+180﹣3x=180,解得x=30,∥∥1=60°.20.已知:如图所示,∥1=∥2,∥3=∥B,AC∥DE,且B,C,D在一条直线上.求证:AE∥BD.【分析】根据平行线的性质求出∥2=∥4.求出∥1=∥4,根据平行线的判定得出AB∥CE,根据平行线的性质得出∥B+∥BCE=180°,求出∥3+∥BCE=180°,根据平行线的判定得出即可.【解答】证明:∥AC∥DE,∥∥2=∥4.∥∥1=∥2,∥∥1=∥4,∥AB∥CE,∥∥B+∥BCE=180°,∥∥B=∥3,∥∥3+∥BCE=180°,∥AE∥BD.21.如图,已知DE∥BC,EF平分∥AED,EF∥AB,CD∥AB,试说明CD平分∥ACB.【考点】平行线的判定与性质.【分析】求出EF∥CD,根据平行线的性质得出∥AEF=∥ACD,∥EDC=∥BCD,根据角平分线定义得出∥AEF=∥FED,推出∥ACD=∥BCD,即可得出答案.【解答】解:∥DE∥BC,∥∥EDC=∥BCD,∥EF平分∥AED,∥∥AEF=∥FED,∥EF∥AB,CD∥AB,∥EF∥CD,∥∥AEF=∥ACD,∥∥ACD=∥BCD,∥CD平分∥ACB.22.如图,已知∥DAB+∥D=180°,AC平分∥DAB,且∥CAD=25°,∥B=95°(1)求∥DCA的度数;(2)求∥DCE的度数.【分析】(1)利用角平分线的定义可以求得∥DAB的度数,再依据∥DAB+∥D=180°求得∥D 的度数,在∥ACD中利用三角形的内角和定理.即可求得∥DCA的度数;(2)根据(1)可以证得:AB∥DC,利用平行线的性质定理即可求解.【解答】解:(1)∥AC平分∥DAB,∥∥CAB=∥DAC=25°,∥∥DAB=50°,∥∥DAB+∥D=180°,∥∥D=180°﹣50°=130°,∥∥ACD中,∥D+∥DAC+∥DCA=180°,∥∥DCA=180°﹣130°﹣25°=25°.(2)∥∥DAC=25°,∥DCA=25°,∥∥DAC=∥DCA,∥AB∥DC,∥∥DCE=∥B=95°.23.如图,已知∥1+∥2=180°,∥3=∥B,试说明∥AED=∥ACB.【考点】平行线的判定与性质.【分析】首先判断∥AED与∥ACB是一对同位角,然后根据已知条件推出DE∥BC,得出两角相等.【解答】证明:∥∥1+∥4=180°(平角定义),∥1+∥2=180°(已知),∥∥2=∥4,∥EF∥AB(内错角相等,两直线平行),∥∥3=∥ADE(两直线平行,内错角相等),∥∥3=∥B(已知),∥∥B=∥ADE(等量代换),∥DE∥BC(同位角相等,两直线平行),∥∥AED=∥ACB(两直线平行,同位角相等).24.如图所示,已知∥1=∥2,AC平分∥DAB,试说明DC∥AB.【考点】平行线的判定.【分析】根据角平分线的性质可得∥1=∥CAB,再加上条件∥1=∥2,可得∥2=∥CAB,再根据内错角相等两直线平行可得CD∥AB.【解答】证明:∥AC平分∥DAB,∥∥1=∥CAB,∥∥1=∥2,∥∥2=∥CAB,∥CD∥AB.25.已知∥AGE=∥DHF,∥1=∥2,则图中的平行线有几对?分别是?为什么?【考点】平行线的判定.【分析】先由∥AGE=∥DHF根据同位角相等,两直线平行,得到AB∥CD,再根据两直线平行,同位角相等,可得∥AGF=∥CHF,再由∥1=∥2,根据平角的定义可得∥MGF=∥NHF,根据同位角相等,两直线平可得GM∥HN.【解答】解:图中的平行线有2对,分别是AB∥CD,GM∥HN,∥∥AGE=∥DHF,∥AB∥CD,∥∥AGF=∥CHF,∥∥MGF+∥AGF+∥1=180°∥NHF+∥CHF+∥2=180°,又∥∥1=∥2,∥∥MGF=∥NHF,∥GM∥HN.26.已知直线a∥b,b∥c,c∥d,则a与d的关系是什么,为什么?【考点】平行公理及推论.【分析】由平行线的传递性容易得出结论.【解答】解:a与d平行,理由如下:因为a∥b,b∥c,所以a∥c,因为c∥d,所以a∥d,即平行具有传递性.。

新人教版七年级数学下册第一次月考试题及答案

新人教版七年级数学下册第一次月考试题及答案

七年级下学期月考数学试题考试时间:120分钟试卷满分:150分第Ⅰ卷(本卷满分100分)一、选择题:(共10小题,每小题3分,共30分)下面每小题给出的四个选项中, 有且只有一个是正确的, 请把正确选项前的代号填在答卷指定位置.1.在同一平面内,两条直线的位置关系是A.平行.B.相交.C.平行或相交.D.平行、相交或垂直2.点P(-1,3)在A.第一象限.B.第二象限.C.第三象限.D.第四象限.3.下列各图中,∠1与∠2是对顶角的是4.如图,将左图中的福娃“欢欢”通过平移可得到图为A.B.C.D.5.下列方程是二元一次方程的是A.2xy=.B.6x y z++=.C.235yx+=.D.230x y-=.6.若0xy=,则点P(x,y)一定在A.x轴上.B.y轴上.C.坐标轴上.D.原点.7.二元一次方程21-=x y有无数多组解,下列四组值中不是该方程的解的是A.12xy=⎧⎪⎨=-⎪⎩.B.11xy=-⎧⎨=-⎩.C.1xy=⎧⎨=⎩.D.11xy=⎧⎨=⎩.8.甲原有x元钱,乙原有y元钱,若乙给甲10元,则甲所有的钱为乙的3倍;若甲给乙10元,则甲所有的钱为乙的2倍多10元.依题意可得A.103(10)102(10+10x yx y+=-⎧⎨-=+⎩).B.10310210x yx y+=⎧⎨-=+⎩.12B.12A.12C.1 2D.C .3(10)2(10)x y x y =-⎧⎨=+⎩.D .103(10)102(10)10x y x y -=+⎧⎨+=-+⎩.9.如图,点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是A .∠3=∠4.B .∠B =∠DCE .C .∠1=∠2.D .∠D+∠DAB =180°.10.下列命题中,是真命题的是A .同位角相等.B .邻补角一定互补.C .相等的角是对顶角.D .有且只有一条直线与已知直线垂直. 二、填空题(共10小题,每小题3分,共30分)下列不需要写出解答过程,请将结果直接填写在答卷指定的位置.11.剧院里5排2号可以用(5,2)表示,则7排4号用 表示.12.如图,已知两直线相交,∠1=30°,则∠2=__ _. 13.如果⎩⎨⎧-==13y x ,是方程38x ay -=的一个解,那么a =_______.14.把方程3x +y –1=0改写成含x 的式子表示y 的形式得 . 15.一个长方形的三个顶点坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标是____________.16.命题“如果两条直线都与第三条直线平行,那么这两条直线也互相平行”的题设是 ,结论是 .17.如图,AB CD ∥,BC DE ∥,则∠B 与∠D 的关系是_____________.18.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”位于 .19.如图,EG ∥BC ,CD 交EG 于点F ,那么图中与∠1相等的角共有______个.20.已知x 、y 满足方程组21232x y x y +=⎧⎨-=⎩,则3x +6y +12 +4x -6y +23 的值为 . EC 第9题图三、解答题(共40分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤.21.(每小题4分,共8分)解方程组:(1)⎩⎨⎧y =2x -3,3x +2y =8; (2)743211432x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 22.(本题满分8分)如图,∠AOB 内一点P :(1)过点P 画PC ∥OB 交OA 于点C ,画PD ∥OA 交OB 于点D ;(2)写出两个图中与∠O 互补的角;(3)写出两个图中与∠O 相等的角.23.(本题8分)完成下面推理过程:如图,已知∠1 =∠2,∠B =∠C ,可推得AB ∥CD .理由如下:∵∠1 =∠2(已知),且∠1 =∠CGD (______________ _________),∴∠2 =∠CGD (等量代换).∴CE ∥BF (___________________ ________).∴∠ =∠C (__________________________).又∵∠B =∠C (已知),∴∠ =∠B (等量代换).∴AB ∥CD (________________________________).24.(本题8分)如图,EF ∥AD ,AD ∥BC ,CE 平分∠BCF ,∠DAC =120°,∠ACF =20°,求∠FEC的度数.25.(本题8分)列方程(组)解应用题:一种口服液有大、小盒两种包装,3大盒、4小盒共装108瓶,2大盒、3小盒共装76瓶.大盒与小盒每盒各装多少瓶?第Ⅱ卷(本卷满分50分)四、解答题(共5题,共50分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤.26.(每小题5分,共10分)解方程组:(1)33(1)022(3)2(1)10x y x y -⎧--=⎪⎨⎪---=⎩ (2)04239328a b c a b c a b c -+=⎧⎪++=⎨⎪-+=⎩27.(本题8分)如图,在三角形ABC 中,点D 、F 在边BC 上,点E 在边AB 上,点G 在边AC 上,AD ∥EF ,∠1+∠FEA =180°.求证:∠CDG =∠B .28.(本题10分) 29.(本题10分)江汉区某中学组织七年级同学参加校外活动,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车刚好坐满.已知45座和60座客车的租金分别为220元/辆和300元/辆.(1)设原计划租45座客车x 辆,七年级共有学生y 人,则y = (用含x 的式子表示);若租用60座客车,则y = (用含x 的式子表示);(2)七年级共有学生多少人?(3)若同时租用两种型号的客车或只租一种型号的客车,每辆客车恰好坐满并且每个同学都有座位,共有哪几种租车方案?哪种方案更省钱?30.(本题12分)如图1,在平面直角坐标系中,A (a ,0),B (b ,0),C (-1,2),且第27题图2图1221(24)0a b a b ++++-=.(1)求a ,b 的值;(2)①在x 轴的正半轴上存在一点M ,使△COM 的面积=12△ABC 的面积,求出点M的坐标;②在坐标轴的其它位置是否存在点M ,使△COM 的面积=12△ABC 的面积仍然成立,若存在,请直接写出符合条件的点M 的坐标;(3)如图2,过点C 作CD ⊥y 轴交y 轴于点D ,点P 为线段CD 延长线上一动点,连接OP ,OE 平分∠AOP ,OF ⊥OE .当点P 运动时,OPDDOE ∠∠的值是否会改变?若不变,求其值;若改变,说明理由.七年级数学试卷参考答案第Ⅰ卷(本卷满分100分)一、1. C 2. B 3. B 4.C 5. D 6. C 7. D 8.A 9. A 10. B二、11. (7,4) 12. 30° 13. -1 14.y =1-3x 15.(3,2)16.两直线都平行于第三条直线,这两直线互相平行 17.互补 18.(3,3) 19.2 20.4三、21.(1)21xy=⎧⎨=⎩(2)1212xy=⎧⎨=⎩(每小题过程2分,结果2分)22.(1)如图…………………………………………2分(2)∠PDO,∠PCO等,正确即可;……………………………5分(3)∠PDB,∠PCA等,正确即可.……………………………8分23.对顶角相等……………………………2分同位角相等,两直线平行……………………………4分BFD两直线平行,同位角相等……………………………6分BFD内错角相等,两直线平行……………………………8分24.∵EF∥AD,(已知)∴∠ACB+∠DAC=180°.(两直线平行,同旁内角互补) …………2分∵∠DAC=120°,(已知)∴∠ACB=60°.……………………………3分又∵∠ACF=20°,∴∠FCB=∠ACB-∠ACF=40°.……………………………4分∵CE平分∠BCF,∴∠BCE=20°.(角的平分线定义)……5分∵EF∥AD,AD∥BC(已知),∴EF∥BC.(平行于同一条直线的两条直线互相平行)………………6分∴∠FEC=∠ECB.(两直线平行,同旁内角互补)∴∠FEC=20°.……………………………8分25.解:设大盒和小盒每盒分别装x瓶和y瓶,依题意得……………1分341082376x y x y +=⎧⎨+=⎩ ……………………………4分解之,得2012x y =⎧⎨=⎩ ……………………………7分答:大盒和小盒每盒分别装20瓶和16瓶.……………………8分第Ⅱ卷(本卷满分50分)26.(1)92x y =⎧⎨=⎩ ; (2)325a b c =⎧⎪=-⎨⎪=-⎩(过程3分,结果2分)27.证明:∵AD ∥EF ,(已知)∴∠2=∠3.(两直线平行,同位角相等)……………………………2分∵∠1+∠FEA=180°,∠2+∠FEA=180°,……………………………3分∴∠1=∠2.(同角的补角相等)……………………………4分∴∠1=∠3.(等量代换)∴DG ∥AB .(内错角相等,两直线平行)……6分∴∠CDG=∠B .(两直线平行,同位角相等)……………………………8分28.解:(1)画图略, ……………………………2分A 1(3,4)、C 1(4,2).……………………………4分(2)(0,1)或(―6,3)或(―4,―1).……………………………7分(3)连接AA 1、CC 1;∵1117272AC A S ∆=⨯⨯= 117272AC C S ∆=⨯⨯= ∴四边形ACC 1 A 1的面积为:7+7=14. 也可用长方形的面积减去4个直角三角形的面积:11472622121422⨯-⨯⨯⨯-⨯⨯⨯=. 答:四边形ACC 1 A 1的面积为14.……………………………10分29.(1)4515x +; 60(1)x -; ……………………………2分解:(2)由方程组451560(1)y x y x =+⎧⎨=-⎩ ……………………………4分解得5240x y =⎧⎨=⎩ ……………………………5分答:七年级共有学生240人.……………………………6分(3)设租用45座客车m 辆,60座客车n 辆,依题意得4560240m n += 即3416m n +=其非负整数解有两组为:04m n =⎧⎨=⎩和41m n =⎧⎨=⎩故有两种租车方案:只租用60座客车4辆或同时租用45座客车4辆和60座客车1辆. ……………………………8分当0,4m n ==时,租车费用为:30041200⨯=(元);当4,1m n ==时,租车费用为:220430011180⨯+⨯=(元);∵11801200<,∴同时租用45座客车4辆和60座客车1辆更省钱.………………10分30.解:(1)∵221(24)0a b a b ++++-=,又∵2210,(24)0a b a b ++≥+-≥, ∴2210(24)0a b a b ++=+-=且 .∴ 210240a b a b ++=⎧⎨+-=⎩ ∴ 23a b =-⎧⎨=⎩即2,3a b =-=. ……………………………3分(2)①过点C 做CT ⊥x 轴,CS ⊥y 轴,垂足分别为T 、S .∵A (﹣2,0),B (3,0),∴AB =5,因为C (﹣1,2),∴CT =2,CS =1,△ABC 的面积=12 AB ·CT =5,要使△COM 的面积=12△ABC 的面积,即△COM 的面积=52 ,所以12 OM ·CS =52,∴OM =5.所以M 的坐标为(0,5).……………6分 ②存在.点M 的坐标为5(,0)2-或5(,0)2或(0,5)-.………………9分 (3)OPD DOE∠∠的值不变,理由如下: ∵CD ⊥y 轴,AB ⊥y 轴 ∴∠CDO=∠DOB=90°∴AB ∥AD ∴∠OPD=∠POB∵OF ⊥OE ∴∠POF+∠POE=90°,∠BOF+∠AOE=90°∵OE 平分∠AOP ∴∠POE=∠AOE ∴∠POF=∠BOF∴∠OPD=∠POB=2∠BOF∵∠DOE+∠DOF=∠BOF+∠DOF=90° ∴∠DOE=∠BOF∴∠OPD =2∠BOF=2∠DOE ∴2OPD DOE ∠=∠.……………………………12分。

七年级下学期第一次月考数学试卷(含参考答案)

七年级下学期第一次月考数学试卷(含参考答案)

七年级下学期第一次月考数学试卷(含参考答案)(满分150分;时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,每题4分)1.计算:(12)﹣1=()A.2B.-2C.12D.﹣122.地球是人与自然共同生存的家园,在这个家园中,还住着许多常常被人们忽略的微小生命,在冰岛海岸的黄铁矿粘液池中的古菌身上,科学家发现了基因片段,并提取出了最小的生命体,它的直径仅为0.00 000 002米,将数字0.00 000 002用科学记数法表示为()A.2x10﹣7B.2x10﹣8C.2x10﹣9D.20x10﹣83.下面四个图形中,∠1与∠2是对顶角的图形是()A. B. C. D.4.下列计算正确的是( )A.a6+a2=a8B.a6÷a2=a3C.a6·a2=a12D.(a6)2=a125.下列乘法中,不能运用平方差公式进行运算的是( )A.(x+a)(x-a)B.(a+b)(-a-b)C.(-x-b)(x-b)D.(b+m)(m-b )6.如果"□×2ab=4a2b”,那么"口"内应填的代数式是()A.2bB.2abC.aD.2a7.如图,某污水处理厂要从A处把处理过的水引入排水渠PQ,为了节约用料,铺设垂直于排水渠的管道AB.这种铺设方法蕴含的数学原理是()A.两点确定一条直线B.两点之间,线段最短C.过一点可以作无数条直线D.垂线段最短(第7题图) (第10题图)8.如果a=(﹣2024)0,b=(﹣2022)﹣1,c=(-2)2024.则a ,b ,c 三数的大小关系是( ) A.c>a>b B.a>b>c C.a>c>b D.c>b>a9.若(3x+2)(3x+a )的化简结果中不含x 的一次项,则常数a 的值为( ) A.-2 B.-1 C.0 D.210.如图有两张正方形纸片A 和B ,图1将B 放置在A 内部,测得阴影部分面积为2,图2将正方形AB 开列放置后构造新正方形,测得阴影部分面积为20,若将3个正方形A 和2个正方形B 并列放置后构造新正方形如图3,(图2,图3中正方形AB 纸片均无重叠部分)则图3阴影部分面积( )A.22B.24C.42D.44 二.填空题(共6小题,每题4分) 11.计算:a(a+3)= .12.如图,用直尺和三角尺作出直线AB 、CD ,得到AB ∥CD 的理由是 .(第12题图) (第15题图)13.若x 2-kx+4一个完全平方式,则k 的值是 . 14.42020×(﹣0.25)2021= .15.一副三角板按如图方式摆放,且∠1比∠2大50°,则∠1= . 16.观察下列运算并填空: 1×2×3×4+1=25=52; 2×3×4×5+1=121=112; 3×4×5×6+1=361=192;根据以上结果,猜想并研究:(n+1)(n+2)(n+3)(n+4)+1= . 三.解答题(共16小题) 17.(12分)计算:(1)(﹣1)4+(3.14-π)0+(﹣13)﹣1 (2)(-1)3+(3+π)0-|﹣2|+(13)-2(3)(-1)2023-(3.14-π)0-(12)﹣2+|﹣3| (4)﹣12023×|﹣34|+(3.14-π)0-2﹣118.(12分)(1)(a+2b)(3a -b) (2)(12m ³-6m 2+2m)÷2m(3)x 2·x 6-(2x 2)4+x 9÷x (4)m 2·m 4+(m 3)2-m 8÷m 219.(12分)用乘法公式进行简便运算:(1)102x98 (2)10032(3)20242-20232 (4)20232-2023×2048+2024220.(6分)先化简,再求值:(2x+y)(2x -y)-(2x -y )2,其中x=﹣2,y=﹣1221.(4分)如图,已知∠2=∠3,求证:AB∥CD.证明:∵∠2=∠3(已知)又∠1=∠3()∴= ()∴AB∥CD()22.(6分)如图,CE平分∠ACD,若∠1=30°,∠2=60°,求证:AB∥CD.23.(10分)观察以下等式:(x+1)(x2-x+1)=x3+1(x+3)(x2-3x+9)=x3+27(x+6)(x2-6x+36)=x3+216...(1)按以上等式的规律,填空:(a+b)(a2-ab+b2)= ;(2)利用多项式的乘法法则,说明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2-xy+y2)-(x+2y)(x2-2xy+4y2)24.(12分)实践与探究,如图1,边长为a的大正方形有一个边长为b的小证方形,把图1中的阴影部分折成一个长方形(如图2所示)。

人教版七年级下册数学第一次月考含答案

人教版七年级下册数学第一次月考含答案

七年级下学期第一次月考数学试题(时间:80分钟 满分:120分)一、选择题:(每小题3分,共计42分)1、面积为5的正方形的边长在 ( )A 0和1之间B 1和2之间C 2和3之间D 3和4之间2、下列命题正确的是 ( )A 一个角的补角是钝角B 两条直线和第三条直线相交,同位角相等C 连接两点的线段叫两点的距离D 对顶角相等3、如图,直线AB ,CD 相交于点O ,OE AB ⊥于O ,55COE ︒∠=,则BOD ∠的度数是( ) A 40︒ B 45︒ C 30︒ D 35︒4、如图,将ABC V 沿AB 方向平移至DEF V ,且5AB =,2DB =,则CF 的长度为( )A 5B 3C 2D 15、如图,下列推理及所注明的理由都正确的是 ( )A 因为DE //BC ,所以1C ∠=∠ (同位角相等,两直线平行)B 因为23∠=∠,所以 DE //BC (两直线平行,内错角相等)C 因为DE //BC ,所以 23∠=∠ (两直线平行,内错角相等)D 因为1C ∠=∠,所以DE //BC (两直线平行,同位角相等)6、同一平面内的四条直线满足a b ⊥,b c ⊥,c d ⊥,则下列式子成立的是 ( )A a //dB a d ⊥C b d ⊥D a c ⊥7、若225a =,3b =,则a b +等于 ( )A 8-B 8±C 2±D 8±或 2±8、给出下列实数:3,3.14 ,364,5,2- ,5π,4 ,13 ,3.102100210002L L ,其中无理数有 ( ) A 2个 B 3个 C 4个 D 5个9、如图,不能判断直线AB CD //的条件的是 ( )A 13∠=∠B 24180∠+∠=dC 45∠=∠D 23∠=∠10、如图,与B ∠是同旁内角的有 ( )A 1个B 2个C 3个D 4个11、如图,AB CD // ,EF BD ⊥,垂足为E ,150∠=d,则2∠的度数为 ( )A 50dB 40dC 30dD 20d12、已知实数a ,b 在数轴上对应的点如图所示,则下列式子正确的是( ) A 0ab > B 0a b +< C a b < D 0a b -> 13、已知一个正方体的表面积为12 2dm ,则 这个正方体的棱长为 ( )A 1 dm B2dm C 6dm D 3 dm 14、关于()2a 与 2a ,下列结论中正确的是 ( )A a 为任意实数时,都有()2a =2a 成立。

最新七年级下学期第一次月考数学试卷(含答案)

最新七年级下学期第一次月考数学试卷(含答案)

七年级下学期第一次月考数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第二章《相交线与平行线》班级姓名得分一、选择题(本大题共10小题,共30.0分)1.计算6m6÷(−2m2)3的结果为()A. −mB. −1C. 34D. −342.如果(3x2y−2xy2)÷m=−3x+2y,则单项式m为()A. xyB. −xyC. xD. −y3.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A. 相等B. 互余C. 互补D. 互为对顶角4.如图,如果∠AOB=∠COD=90∘,那么∠1=∠2,这是根据()A. 直角都相等B. 等角的余角相等C. 同角的余角相等D. 同角的补角相等5.计算下列各式①(a3)2÷a5=1;②(−x4)2÷x4=x4;③(x−3)0=1(x≠3);④(−a3b)5÷12a5b2=2a4b,正确的有()A. 4个B. 3个C. 2个D. 1个6.要使(x2+ax+1)⋅(−6x3)的展开式中不含x4项,则a应等于()A. 6B. −1C. 16D. 07.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧8.在平面中,如图,两条直线最多只有1个交点,三条直线最多有3个交点……若n条直线最多有55个交点,则n的值为()A. 9B. 10C. 11D. 129.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个长方形(如图2),根据两个图形中阴影部分的面积相等,可以验证()A. (a+b)2=a2+2ab+b2B. (a−b)2=a2−2ab+b2C. (a+2b)(a−b)=a2+ab−2b2D. a2−b2=(a+b)(a−b)10.点P为直线l外一点,点A、B、C为直线l上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离是().A. 2cmB. 4cmC. 5cmD. 不超过2cm二、填空题(本大题共5小题,共20.0分)11.若(2x3y2)⋅(−3x m y3)⋅(5x2y n)=−30x7y6,则m+n=.12.天平的左边挂重为(2m+3)(2m−3)+12m,右边挂重为(2m+3)2,请你猜一猜,天平倾斜.(填“会”或“不会”)13.已知:OA⊥OC,∠AOB:∠AOC=2:3.则∠BOC的度数为__.14.如下图,直线AB,CD相交于点O,∠AOC=70°,∠BOC=2∠EOB,则∠AOE的度数为________.15.如图,直线AB,CD相交于点O,OE平分∠BOD,且∠AOE=140°,则∠AOC的度数为________________.三、解答题(本大题共10小题,共100.0分)16.(8分)计算:(1)2x⋅(3x2−x−5);ab2−4a2b)⋅(−4ab).(2)(1217.(10分)如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=70°,∠COF=90°,求:(1)∠BOD的度数;(2)写出图中互余的角;(3)∠EOF的度数.18.(10分)如果两个角的差的绝对值等于60°,就称这两个角互为友好角,例如:∠1=100°,∠2=40°,|∠1−∠2|=60°,则∠1和∠2互为友好角(本题中所有角都指大于0°且小于180°的角),将两块直角三角板如图1摆放在直线EF上,其中∠AOB=∠COD=60°,保持三角板ODC不动,将三角板AOB绕O点以每秒2°的速度顺时针旋转,旋转时间为t秒.(1)如图2,当AO在直线CO左侧时,①与∠BOE互为友好角的是____,与∠BOC互为友好角的是____,②当t=____时,∠BOE与∠AOD互为友好角;(2)若在三角板AOB开始旋转的同时,另一块三角板COD也绕点O以每秒3°的速度逆时针旋转,当OC旋转至射线OE上时两三角板同时停止,当t为何值时,∠BOC 与∠DOF互为友好角(自行画图分析).19.(10分)【注重实践探究】我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.例如:由图1可得到(a+b)2=a2+2ab+b2.(1)写出图2所表示的数学等式:;写出图3所表示的数学等式:;(2)利用上述结论,解决下列问题:已知a+b+c=11,bc+ac+ab=38,求a2+b2+c2的值.20.(10分)爱动脑筋的丽丽和娜娜在做数学小游戏,两个人各报一个整式,丽丽报的整式A作被除式,娜娜报的整式B作除式,要求商式必须为4xy(即A÷B=4xy).(1)若丽丽报的是x3y−6xy2,则娜娜应该报什么整式?(2)若娜娜也报x3y−6xy2,则丽丽应该报什么整式?21.(8分)一个棱长为103的正方体,在某种物体的作用下,其棱长以每秒扩大到原来的102倍的速度增长,求3秒后该正方体的棱长.22.(10分)已知x2−4x−1=0,求代数式(2x−3)2−(x+y)(x−y)−y2的值.23.(10分)如下图,直线AB,CD相交于点O.(1)若∠AOD比∠AOC大40°,求∠BOD的度数;(2)若∠AOD:∠AOC=3:2,求∠BOD的度数.24.(12分)在∠AOB和∠COD中,(1)如图1,已知∠AOB=∠COD=90°,当∠BOD=40°时,求∠AOC的度数;(2)如图2,已知∠AOB=82°,∠COD=110°,且∠AOC=2∠BOD时,请直接写出∠BOD的度数;(3)如图3,当∠AOB=α,∠COD=β,且∠AOC=n∠BOD(n>1)时,请直接用含有α,β,n的代数式表示∠BOD的值.25.(12分)如图,,平分,反向延长射线至.(1)和是否互补?说明理由;射线是的平分线吗?说明理由;反向延长射线至点,射线将分成了的两个角,求.答案1.D2.B3.B4.C5.C6.D7.D8.C9.D10.D11.312.会13.30°或150°14.125°15.80°16.解:(1)原式=6x3−2x2−10x(2)原式=−2a2b3+16a3b2.17.解:(1)∵∠AOC=70°∴∠BOD=∠AOC=70°;(2)∠AOC和∠BOF,∠BOD和∠BOF,∠EOF和∠EOD,∠BOE和∠EOF;(3)因为OE平分∠BOD,∠BOD=70°所以∠BOE=35°,因为∠COF=90°,且A、O、B三点在一条直线AB上,所以∠BOF=180°−70°−90°=20°,所以∠EOF=∠BOE+∠BOF=35°+20°=55°.18.解:(1)①∠AOE;∠BOD或∠AOC;②15s.(2)由题意可知:三角板旋转40秒停止,∠DOF=3t①当OB在OC左侧时,∠BOC=120°−5t|∠BOC−∠DOF|=60°,表示为|120°−5t−3t|=60°即|120°−8t|=60°去绝对值得120°−8t=60°(如图1)或8t−120°=60°(如图2)∴t=7.5或t=22.5②当OB在OC右侧时,∠BOC=5t−120°|∠BOC−∠DOF|=60°,表示为|5t−120°−3t|=60°即|2t−120°|=60°去绝对值得2t−120°=60°或120°−2t=60°(如图3)∴t=90(不符合题意,应舍去)或t=30综合①②,故当t为7.5s、22.5s、30s时,∠BOC与∠DOF互为友好角.19.解:(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(a−b−c)2=a2+b2+c2+2bc−2ab−2ac;(2)由(1)可得a2+b2+c2=(a+b+c)2−(2ab+2bc+2ac)=(a+b+c)2−2(ab+bc+ac)=112−2×38=45.20.解:(1)∵A=x3y−6xy2,∴B=(x3y−6xy2)÷4xy=14x2−32y,∴娜娜应该报的整式为14x2−32y;(2)A=(x3y−6xy2)×4xy=4x4y2−24x2y3;21.解:3秒后该正方体的棱长为109.22.解:(2x−3)2−(x+y)(x−y)−y2=4x2−12x+9−x2+y2−y2=3x2−12x+9.因为x2−4x−1=0,所以x2−4x=1.所以原式=3(x2−4x)+9=3+9=12.23.解:(1)设∠AOC=x,则∠AOD=x+40°,∴x+x+40°=180°,∴∠BOD=x=70°.(2)设∠AOD=3x,∠AOC=2x,∴3x+2x=180°,x=36°,∴∠BOD=∠AOC=72°.24.解:(1)如图1,∵∠AOB=∠COD=90°,∠BOD=40°,∴∠AOC=∠AOB+∠COD−∠BOD=90°+90°−40°=140°,答:∠AOC的度数为140°;(2)如图2,∵∠AOB=82°,∠COD=110°,∴∠AOC=∠AOB+∠COD−∠BOD=82°+110°−∠BOD,又∵∠AOC=2∠BOD,∴2∠BOD=82°+110°−∠BOD,∴∠BOD=82°+110°=64°,3答:∠BOD的度数为64°;(3)如图3,∵∠AOB=α,∠COD=β,∴∠AOC=∠AOB+∠COD−∠BOD=α+β−∠BOD,又∵∠AOC=n∠BOD,∴n∠BOD=α+β−∠BOD,∴∠BOD=α+β,n+1答:∠BOD=α+β.n+125.解:(1)互补.理由:因为∠AOD+∠BOC=360°−∠AOB−∠DOC=360°−90°−90°=180°,所以∠AOD和∠BOC互补.(2)OF是∠BOC的平分线.理由:因为OE平分∠AOD,所以∠AOE=∠DOE,因为∠COF=180°−∠DOC−∠DOE=90°−∠DOE,∠BOF=180°−∠AOB−∠AOE=90°−∠AOE,所以∠COF=∠BOF,即OF是∠BOC的平分线.(3)因为OG将∠COF分成了4:3的两个部分,所以∠COG:∠GOF=4:3或者∠COG:∠GOF=3:4.①当∠COG:∠GOF=4:3时,设∠COG=4x°,∠GOF=3x°,由(2)得:∠BOF=∠COF=7x°因为∠AOB+∠BOF+∠FOG=180,所以90+7x+3x=180,解方程得:x=9,所以∠AOD=180−∠BOC=180−14x=54.②当∠COG:∠GOF=3:4时,设∠COG=3x°,∠GOF=4x°,同理可列出方程:90+7x+4x=180,,解得:x=9011所以∠AOD=180−∠BOC=180−14x=720.11)°.综上所述,∠AOD的度数是54°或(72011。

七年级数学下第一次月考试题

七年级数学下第一次月考试题

(A )D C B A (B )DC B A (C )D C B A(D )D CB A七年级数学下学期第一次月考试题一、选择题(每题3分,共24分) 1、下列计算中正确的是( )A. B. C.= D.2、已知:2×2x=212,则x 的值为( )A 、5B 、10C 、11D 、12 3、以下列各组线段长为边,能组成三角形的是( )A .1cm ,2cm ,4 cmB .8 crn ,6cm ,4cmC .12 cm ,5 cm ,6 cmD .2 cm ,3 cm ,6 cm4、下列多项式相乘的结果是a 2-a-6的是( )A .(a-2)(a+3)B .(a+2)(a-3)C .(a-6)(a+1)D .(a+6)(a-1)5、下列运算,结果正确的是 ( ) A .B .C .D .6、下列各式是完全平方式的是( ) A .B .C .D .7、在下列各图的△ABC 中,正确画出AC 边上的高的图形是( )8、如图,长方形的长为a ,宽为b ,横向阴影部分为长方形,另一阴影部分为平行四边形,它们的宽都为c,则空白部分的面积是 ( )A. ab -bc +ac -c 2B. ab -bc -ac +c 2C.ab -ac -bcD.ab -ac -bc -c 2二、填空题(每题3分,共30分)9、氢原子中电子和原子核之间的距离为,用科学记数法表示这个距离是 cm. 10、若8x=4x+2,则x=______11、若计算(x+m )(x+2)的结果不含关于字母x 的一次项,则m=_______5322a a a =+532a a a =∙32a a ∙6a 532a a a =+0.00000000529cm12、化简a 4b 3÷(ab )3的结果是_______。

13、写出下列用科学记数法表示的数的原来的数:2.35×10=14、从边长为的大正方形纸板中挖去一个边长为的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式_________15、当x =___________________时,多项式取得最小值.16、如果16a 2 + Mab +9 b 2是一个完全平方式,则M=_______17、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则89的个位数字是__________________18、已知: ··· , 若(为正整数),则 .三、解答题(本大题共有10小题,共96分.解答时请写出必要的过程) 19.计算(每小题5分,共30分) (1)(2)(﹣2a )3﹣(﹣a )•(3a )2(3)(x+2)2﹣(x ﹣1)(x ﹣2) (4)(a+b )2(a ﹣b )22-,=+,,15441544833833322322222⨯⨯=+⨯=+ba b a ⨯=21010+b a 、=+b a(5)(a﹣3)(a+3)(a2+9)(6)(m﹣2n+3)(m+2n﹣3)20先化简再求值(8分)21.已知:26=a2=4b, 求a+b的值.(8分)22..已知: ,求x的值.(8分)23),6)(2()3)(2(2=-+-+---+bababababa)其中(()1=2-4-2xx23.(10分)我们规定一种运算:,例如,.按照这种运算规定,当x 等于多少时,24. (10分)如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分的面积为_______________;(用a 、b 的代数式表示)(4分)(2)观察图2请你写出 (a +b ) 2、(a -b ) 2、ab 之间的等量关系是_____________________;(2分) (3)根据(2)中的结论,若, 则;(2分) (4)实际上通过计算图形的面积可以探求相应的等式.如图3,你有什么发现? .(2分)图1 图2 图3b c d a ad bc =- 3 5364524 6=⨯-⨯=- -3462 4x x =+ 1 x 30x-2 x-1x ++=49,5=⋅=+y x y x =-y x25. (本题10分)李叔叔刚分到一套新房,其结构如图所示(单位:m),他打算除卧室外,其余部分铺地砖. (1)至少需要多少平方米地砖? (5分)(2)如果铺的这种地砖的价格为每平方米75元,那么李叔叔至少需要花多少元钱?(5分)26.(本题12分)阅读下列材料:一般地,n个相同的因数a相乘记为a n,记为a n.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24= ,log216= ,log264= .(每空1分)(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(A )D C B A (B )D
C B A (C )
D C B A
(D )
D C
B A
2019-2020年七年级数学下学期第一次月考试题 新人教版 (I)
一、选择题(每题3分,共24分) 1、下列计算中正确的是( )
A.5322a a a =+
B.532a a a =∙
C.32a a ∙=6a
D.532a a a =+ 2、已知:2×2x
=212
,则x 的值为( )
A 、5
B 、10
C 、11
D 、12 3、以下列各组线段长为边,能组成三角形的是( )
A .1cm ,2cm ,4 cm
B .8 crn ,6cm ,4cm
C .12 cm ,5 cm ,6 cm
D .2 cm ,3 cm ,6 cm
4、下列多项式相乘的结果是a 2
-a-6的是( )
A .(a-2)(a+3)
B .(a+2)(a-3)
C .(a-6)(a+1)
D .(a+6)(a-1)
5、下列运算,结果正确的是 ( ) A .
B .
C .
D .
6、下列各式是完全平方式的是( ) A .
B .
C .
D .
7、在下列各图的△ABC 中,正确画出AC 边上的高的图形是( )
8、如图,长方形的长为a ,宽为b ,横向阴影部分为长方形,另一阴影
部分为平行四边形,它们的宽都为c,则空白部分的面积是 ( )
A. ab -bc +ac -c 2
B. ab -bc -ac +c 2
C.ab -ac -bc
D.ab -ac -bc -c 2
二、填空题(每题3分,共30分)
9、氢原子中电子和原子核之间的距离为0.00000000529cm ,用科学记数法表示这个距离是 cm. 10、若8x
=4x+2
,则x=______
11、若计算(x+m )(x+2)的结果不含关于字母x 的一次项,则m=_______
12、化简a 4b 3
÷(ab )3
的结果是_______。

13、写出下列用科学记数法表示的数的原来的数:2.35×102
-=
14、从边长为的大正方形纸板中挖去一个边长为
的小正方形后,将其裁成四个相同的等
腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式_________
15、当x =___________________时,多项式取得最小值.
16、如果16a 2 + Mab +9 b 2
是一个完全平方式,则M=_______
17、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28
=256,…,
则89
的个位数字是__________________
18、已知: ,
=+,,154
41544833833322322222⨯⨯=+⨯=+
··· , 若b
a b a ⨯=2
1010+(b a 、为正整数),则 =+b a .
三、解答题(本大题共有10小题,共96分.解答时请写出必要的过程) 19.计算(每小题5分,共30分) (1)
(2)(﹣2a )3
﹣(﹣a )•(3a )2
(3)(x+2)2﹣(x ﹣1)(x ﹣2) (4)(a+b )2(a ﹣b )2
(5)(a ﹣3)(a+3)(a 2
+9) (6)(m ﹣2n+3)(m+2n ﹣3)
20先化简再求值(8分)
023),6)(2()3)(2(2
=-+-+---+b a b a b a b a b a )其中(
21.已知:26=a 2=4b , 求a+b 的值.(8分)
22..已知: ()1=2-4
-2
x x ,求x 的值.(8分)
23.(10分)我们规定一种运算:
b c d
a ad bc =-,例如
3 536452
4 6
=⨯-⨯=-,
-3462 4
x x =+.按照这种运算规定,当x 等于多少时,
1 x 30x-
2 x-1
x ++=
24. (10分)如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).
(1)图2中的阴影部分的面积为_______________;(用a 、b 的代数式表示)(4分)
(2)观察图2请你写出 (a +b ) 2、(a -b ) 2
、ab 之间的等量关系是_____________________;
(2分) (3)根据(2)中的结论,若4
9
,5=
⋅=+y x y x , 则=-y x ;(2分) (4)实际上通过计算图形的面积可以探求相应的等式.
如图3,你有什么发现? .(2分)
图1 图2 图3
25. (本题10分)李叔叔刚分到一套新房,其结构如图所示(单位:m),他打算除卧室外,其余部分铺地砖. (1)至少需要多少平方米地砖? (5分)
(2)如果铺的这种地砖的价格为每平方米75元,那么李叔叔至少需要花多少元钱?(5分)
26.(本题12分)阅读下列材料:
一般地,n个相同的因数a相乘记为a n,记为a n.如2×2×2=23=8,此时,3叫做
以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).
(1)计算以下各对数的值:
log24= ,log216= ,log264= .(每空1分)
(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式。

(3分)
(3)由(2)的结果,你能归纳出一个一般性的结论吗?
log a M+log a N= ;(a>0且a≠1,M>0,N>0)(3分)
(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.(3分)
1-8 BCBB BACB
19.(1)原式=﹣4+1﹣(﹣2)=﹣1;
(2)原式=﹣8a3+9a3=a3;
(3)原式=x2+4x+4﹣(x2﹣3x+2)=x2+4x+4﹣x2+3x﹣27x+2;(4)原式=(a2﹣b2)2=a4﹣2a2b2+b4;
(5)原式=(a2﹣9)(a2+9)=a4﹣81;
(6)原式=m2﹣(2n﹣3)2=m2﹣4n2+12n﹣9.
26.解:(1)log24=2,log216=4,log264=6;
(2)4×16=64,log24+log216=log264;
(3)log a M+log a N=log a(MN);
(4)证明:设log a M=b1,log a N=b2,
则=M,=N,
∴MN=,
∴b1+b2=log a(MN)即log a M+log a N=log a(MN).。

相关文档
最新文档