最新人教版九年级数学下册期中检测题
2023年人教版九年级数学下册期中考试卷及参考答案

2023年人教版九年级数学下册期中考试卷及参考答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分) 1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-3.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x ,则可得方程( )A .2560(1)1850x +=B .2560560(1)1850x ++=C .()25601560(1)1850x x +++=D .()25605601560(1)1850x x ++++= 4.已知实数x 满足()()2224120x x x x ----=,则代数式21x x -+的值是( )A .7B .-1C .7或-1D .-5或35.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A .∠BAC=∠DCAB .∠BAC=∠DAC C .∠BAC=∠ABD D .∠BAC=∠ADB6.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .77.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .8.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A .∠ABP=∠CB .∠APB=∠ABC C .AP AB AB AC =D .AB AC BP CB= 9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .1910.已知0ab <,一次函数y ax b =-与反比例函数ay x =在同一直角坐标系中的图象可能( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________.2.分解因式(xy ﹣1)2﹣(x+y ﹣2xy )(2﹣x ﹣y )=_______.3.若实数a ,b 满足(4a +4b)(4a +4b -2)-8=0,则a +b =__________.4.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于__________.5.如图,C 为半圆内一点,O 为圆心,直径AB 长为2 cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B ′OC ′,点C ′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_________cm 2.6.如图,已知Rt △ABC 中,∠B=90°,∠A=60°,AC=23+4,点M 、N 分别在线段AC 、AB 上,将△ANM 沿直线MN 折叠,使点A 的对应点D 恰好落在线段BC 上,当△DCM 为直角三角形时,折痕MN 的长为__________. 三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.4.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且AD DF AC CG=.(1)求证:△ADF∽△ACG;(2)若12ADAC=,求AFFG的值.5.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、A5、C6、C7、D8、D9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、(y﹣1)2(x﹣1)2.3、-12或14、8.5、4π6三、解答题(本大题共6小题,共72分)1、2x=2.3、(1)略(2-14、(1)略;(2)1.5、(1)50;(2)见解析;(3)16.6、(1)120件;(2)150元.。
(精品卷)2022-2023学年新人教版初中数学九年级下册【期中】综合能力提升测试卷(附参考答案)

2022-2023学年新人教版初中数学九年级下册期中综合能力提升测试卷一、单选题(共24分)1.(本题2分)下列图形中,既是轴对称又是中心对称图形的是()A .B .C .D .2.(本题2分)已知数a 在数轴上的位置如图所示,则化简21a a +--的结果为().A .3-B .3C .21a --D .21a +3.(本题2分)某种细菌的半径约为0.000335厘米,将0.000335这个数用科学记数法表示为()A .633.510-⨯B .63.3510-⨯C .43.3510-⨯D .40.33510-⨯4.(本题2分)关于x 的方程2310kx x +-=有实数根,则k 的取值范围是()A .94k ≤-B .94k ≥-且0k ≠C .94k ≥-D .94k >-且0k ≠5.(本题2分)如图,一个正方体纸盒的展开图,正方体的各面标有数字1,1,-6,x ,y ,12,相对面上的两个数互为倒数,则xy 的值是()A .3-B .13-C .3D .136.(本题2分)如图,下列条件中,不能判断直线12l l ∥的是()A .13∠=∠B .23∠∠=C .45∠=∠D .24180∠+∠=︒7.(本题2分)如图,A ABC CB =∠∠,BD 、CD 、AD 分别平分ABC 的内角ABC ∠、外角ACF ∠、外角EAC ∠,以下结论:①AD BC ∥;②ACB ADB Ð=Ð;③12BDC BAC ∠=∠;④90ADC ABD ∠+∠=︒.其中正确的结论有()A .1个B .2个C .3个D .4个8.(本题2分)下列等式不成立的是().A .()()21644m m m -=-+B .()244m m m m +=+C .()228164m m m -+=-D .()22393m m m ++=+9.(本题2分)将一些小圆点按如图规律摆放,前4个图形中分别有小圆点6个,10个,16个,24个,依此规律,第20个图形中,小圆点有________个.()A .414B .418C .420D .42410.(本题2分)如图所示,在O 中,60AOC ∠=︒,点D E 、是弧BC 的三等分点,连结CE ,则OCE ∠的度数为()A .40︒B .50︒C .60︒D .70︒11.(本题2分)图1中是由6个相同的小正方块组成的几何体,移动其中一个小正方块,变成图2中的几何体,则移动前后()A .正面看的图改变,从上面看的图改变B .正面看的图不变,从上面看的图改变C .正面看的图不变,从上面看的图不变D .正面看的图改变,从上面看的图不变12.(本题2分)如图,以点O 为位似中心,把ABC放大为原图形的2倍得到DEF ,以下说法中错误..的是()A .ABC DEF ∽△△B .AB DE ∥C .:1:2OA OD =D .4EF BC=二、填空题(共10分)13.(本题2分)在平面直角坐标系xOy 中,若反比例函数2023k y x-=的图象位第二、四象限,则k 的取值范围是______14.(本题2分)设有5个型号相同的杯子,其中一等品4个,二等品1个,从中任意取1个杯子是一等品杯子的概率为______.15.(本题2分)不等式组10360x x -≤⎧⎨+>⎩的整数解的和为___________.16.(本题2分)某校七年级1班对同学们上周课外阅读时间进行统计,得到频数分布直方图(每组含前一个边界值,不含后一个边界值)如图所示.课外阅读时间不少于6小时的学生人数是_________人.17.(本题2分)如图,AB BD ⊥,CD BD ⊥,6cm AB =,4cm CD =,14cm BD =,点P 在BD 上,由点B 向点D 方向移动,当APB △与CPD △相似时,BP 的值为______cm .三、解答题(共86分)18.(本题8分)先化简,再求值:2211121x x x x x -⎛⎫-÷ ⎪--+⎝⎭,其中1x =-解不等式组:()35122134x x x x -≤+⎧⎨->-⎩并把它的解集在数轴上表示出来。
人教版九年级数学下册期中考试题及答案【完整版】

人教版九年级数学下册期中考试题及答案【完整版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的相反数是()A. B. C. D.2.将直线向右平移2个单位, 再向上平移3个单位后, 所得的直线的表达式为()A. B. C. D.3. 抛物线y=3(x﹣2)2+5的顶点坐标是()A. (﹣2, 5)B. (﹣2, ﹣5)C. (2, 5)D. (2, ﹣5)4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题: ”一百馒头一百僧, 大僧三个更无争, 小僧三人分一个, 大小和尚各几丁?”意思是: 有100个和尚分100个馒头, 如果大和尚1人分3个, 小和尚3人分1个, 正好分完, 试问大、小和尚各多少人?设大和尚有x人, 依题意列方程得()A. =100 B. =100C. D.5.体育测试中, 小进和小俊进行800米跑测试, 小进的速度是小俊的1.25倍, 小进比小俊少用了40秒, 设小俊的速度是米/秒, 则所列方程正确的是()A. B.C. D.6.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(, m), 则不等式组mx﹣2<kx+1<mx的解集为()A. x>B. <x<C. x<D. 0<x<7.在以下绿色食品、回收、节能、节水四个标志中, 是轴对称图形的是()A. B. C. D.8.如图, 下列条件不能判定△ADB∽△ABC的是()A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB2=AD•ACD.9.扬帆中学有一块长, 宽的矩形空地, 计划在这块空地上划出四分之一的区域种花, 小禹同学设计方案如图所示, 求花带的宽度.设花带的宽度为, 则可列方程为()A. B.C. D.10.如图, 二次函数的图象经过点, , 下列说法正确的是()A. B.C. D. 图象的对称轴是直线二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算( -)×+2 的结果是_____________.2. 分解因式: _______.3. 已知、为两个连续的整数, 且, 则=________.4. 如图, 矩形ABCD面积为40, 点P在边CD上, PE⊥AC, PF⊥BD, 足分别为E,F. 若AC=10, 则PE+PF=__________.5. 如图, 某高速公路建设中需要测量某条江的宽度AB, 飞机上的测量人员在C 处测得A, B两点的俯角分别为和若飞机离地面的高度CH为1200米, 且点H, A, B在同一水平直线上, 则这条江的宽度AB为______米结果保留根号.6. 如图, 在平面直角坐标系中, 已知点A(1, 0), B(1﹣a, 0), C(1+a, 0)(a>0), 点P在以D(4, 4)为圆心, 1为半径的圆上运动, 且始终满足∠BPC=90°, 则a的最大值是__________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1.x2.(1)求k的取值范围;(2)若x1+x2=1﹣x1x2, 求k的值.3. 如图, 矩形ABCD中, AB=6, BC=4, 过对角线BD中点O的直线分别交AB,CD边于点E, F.(1)求证: 四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时, 求EF的长.4. 如图, 在平面直角坐标系中, 的三个顶点坐标分别为、、, 平分交于点, 点、分别是线段、上的动点, 求的最小值.5. 抚顺某中学为了解八年级学生的体能状况, 从八年级学生中随机抽取部分学生进行体能测试, 测试结果分为A, B, C, D四个等级. 请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数, 并补全条形图;(3)若该中学八年级共有700名学生, 请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生, 做为该校培养运动员的重点对象, 请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.6. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元, 甲种图书每本的售价是乙种图书每本售价的1.4倍, 若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者, 决定甲种图书售价每本降低3元, 乙种图书售价每本降低2元, 问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.B2.A3.C4.B5.C6.B7、D8、D9、D10、D二、填空题(本大题共6小题, 每小题3分, 共18分)1.2.3.114.45.6.6三、解答题(本大题共6小题, 共72分)1、x=3.2.(1);(2)3、(1)略;(2).4.5.(1)50;(2)16;(3)56(4)见解析6、(1)甲种图书售价每本28元, 乙种图书售价每本20元;(2)甲种图书进货533本, 乙种图书进货667本时利润最大.。
2022-2023年人教版九年级数学下册期中考试卷及答案【完美版】

2022-2023年人教版九年级数学下册期中考试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120202.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.若式子2(m 1)-有意义,则实数m 的取值范围是( ) A .m 2>- B .m 2>-且m 1≠C .m 2≥-D .m 2≥-且m 1≠ 4.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m ≤7D .4<m ≤75.已知点A (m ,n )在第二象限,则点B (|m|,﹣n )在( )A .第一象限B .第二象限C .第三象限D .第四象限6.下列性质中,菱形具有而矩形不一定具有的是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .邻边互相垂直7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图,正方形ABCD 的边长为2cm ,动点P ,Q 同时从点A 出发,在正方形的边上,分别按A D C →→,A B C →→的方向,都以1/cm s 的速度运动,到达点C 运动终止,连接PQ ,设运动时间为x s ,APQ ∆的面积为2y cm ,则下列图象中能大致表示y 与x 的函数关系的是( )A .B .C .D .9.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:110.如图,抛物线y =ax 2+bx +c(a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分)1.计算:23a a⋅=______________.2.分解因式:x2-2x+1=__________.3.已知二次函数y=x2,当x>0时,y随x的增大而_____(填“增大”或“减小”).4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=__________.5.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点P(m,n)在第二象限的概率为__________.6.如图,菱形ABCD顶点A在例函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠DAB=30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=12.已知关于x 的一元二次方程(a+c )x 2+2bx+(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.3.如图,直线y 1=﹣x +4,y 2=34x +b 都与双曲线y =k x交于点A (1,m ),这两条直线分别与x 轴交于B ,C 两点.(1)求y 与x 之间的函数关系式;(2)直接写出当x >0时,不等式34x +b >k x的解集; (3)若点P 在x 轴上,连接AP 把△ABC 的面积分成1:3两部分,求此时点P 的坐标.4.如图,AB 是圆O 的直径,O 为圆心,AD 、BD 是半圆的弦,且∠PDA=∠PBD .延长PD 交圆的切线BE 于点E(1)判断直线PD 是否为⊙O 的切线,并说明理由;(2)如果∠BED=60°,3,求PA 的长;(3)将线段PD 以直线AD 为对称轴作对称线段DF ,点F 正好在圆O 上,如图2,求证:四边形DFBE为菱形.105阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.6.我区“绿色科技公司”研发了一种新产品,该产品的成本为每件3000元.在试销期间,营销部门建议:①购买不超过10件时,每件销售价为3600元;②购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为3200元.根据以上信息解决下列问题:(1)直接写出:购买这种产品件时,销售单价恰好为3200元;(2)设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y 元,求y与x之间的函数表达式;(3)在试销期间销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使销售数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、A5、D6、C7、B8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、a 52、(x-1)2.3、增大.415、3166、三、解答题(本大题共6小题,共72分)1、x=12、(1) △ABC 是等腰三角形;(2)△ABC 是直角三角形;(3) x 1=0,x 2=﹣1.3、(1)3y x =;(2)x >1;(3)P (﹣54,0)或(94,0) 4、(1)略;(2)1;(3)略.5、(1)5,20,80;(2)图见解析;(3)35.6、(1)90;(2)2200(90)5650(1090)≥⎧=⎨-+<<⎩x x y x x x ;(3)3325元.。
人教版九年级数学下册期中检测4附答案

人教版九年级数学下册期中检测4附答案一、选择题 (每小题4分,共40分)1、函数的值是是二次函数,则m x m y m 12)1(++=( )B.-1C.1D.以上都不对2、如图,已知的面积比为与,则:的相似比为与ABC ADE ABC ADE ∆∆∆∆21( )A.1:2B.1:4C.2:1D.4:13.下列四个函数图像中,当x>o 时,y 谁x 的增大而增大的是( )4、下列不等式中,成立的是( )A.sin30 <cos45 <tan30B.sin30 <cos45 <tan45C.sin30 <tan45 <cos45D.sin30 <sin60 <sin45 5.ABC ∆若~,C B A '''∆='∠=∠=∠C B A 则,70,30( ) A.30 B.70 C. 100 D.806.如图所示,水库大坝横断面为梯形,坝顶宽为6米,坝高为24米,斜坡AB 的坡度为45,斜坡CD 的坡度为i=1:2,则坝底AD 的长为( )A.42米B.(30+243)米C.78米D.(30+83)米7.的顶点坐标是抛物线3)2(2+-=x y ( )A.(2, 3)B.(-2, 3 )C.( 2 -3 )D.( -2 -3 ) 8.在Rt ∆ABC 中,∠c=90 ,sinA=53,则tanB 值是( ) 34.A B.54 C 45 D 43 轴的交点个数有与x x x y 32.92--=( )A.0个B.1个C.2个D.3个1.±A._______________,)11(.112,顶点坐标是对称轴是的开口抛物线+-=x y .____,//,//,.16对相似三角形则图中共有中AC DF BC DE ABC ∆ 是,那么中,、在ABC C com B ABC ∆=-=∆21)90(sin 10 ( )A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形二、填(每小题4分,空题共24分) 13.矩形的周长为20cm ,则当矩形的边长为_____cm 时.面积有最大值 ___cm 2.14.计算sin60∙cos30.________=15.如图,在平行四边形ABCD 中,E 是BC 边上的点,AE 交BD 于点F,如果32=BC BE ,那么._____=DFBF三,解答题 (每小题6分,共24分)17.计算:2sin60 -3tan30 +20100)1()31(-+-( 1 )画出函数的图像(219.如图,在D 、E 分别是AB 、AC 边上一点,且∠ADE=∠C,求证:∆ABC ~∆ E_____sin =α则.43..12),(轴上,另一条边经过点一条边在的顶点在原点已知P x α∠1.18=x y 已知二次函数20.如图,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m 、与旗杆相距22m ,求旗杆的高度。
2023年人教版九年级数学下册期中测试卷【附答案】

2023年人教版九年级数学下册期中测试卷【附答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.函数1y x =-的自变量x 的取值范围是( )A .1x >B .1x <C .1x ≤D .1≥x2.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .23.下列判断正确的是( )A .带根号的式子一定是二次根式B .5a 一定是二次根式C .21m +一定是二次根式D .二次根式的值必定是无理数4.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上5.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x 2>0,那么x >0.A .1个B .2个C .3个D .4个6.下列运算正确的是( )A .(﹣2a 3)2=4a 6B .a 2•a 3=a 6C .3a +a 2=3a 3D .(a ﹣b )2=a 2﹣b 27.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°8.如图,已知,5,3AB AC AB BC ===,以AB 两点为圆心,大于12AB 的长为半径画圆,两弧相交于点,M N ,连接MN 与AC 相较于点D ,则BDC ∆的周长为( )A .8B .10C .11D .139.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .12OM AC =B .MB MO =C .BD AC ⊥ D .AMB CND ∠=∠10.如图在正方形网格中,若A (1,1),B (2,0),则C 点的坐标为( )A .(-3,-2)B .(3,-2)C .(-2,-3)D .(2,-3)二、填空题(本大题共6小题,每小题3分,共18分)1.计算12763-的结果是__________.2.因式分解:(x+2)x ﹣x﹣2=_______.3.不等式组34012412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________.4.如图,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为__________.5.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C 处测得A,B两点的俯角分别为45和30.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为______米(结果保留根号).6.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程:21 133x xx x=+ ++2.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.3.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?4.如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.5.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数24 72 18 x(人)(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、B5、A6、A7、D8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1.2、(x+2)(x﹣1)3、04、135、) 120016、2.5×10-6三、解答题(本大题共6小题,共72分)1、32 x=-2、(1)k≤58;(2)k=﹣1.3、(1)y=3x﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.4、(2)略;(2)四边形EBFD是矩形.理由略.5、(1)6 (2)1440人6、(1)A,B两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A种书包有1个,B种书包有个,样品中A种书包有2个,B种书包有2个.。
人教版九年级数学下册期中试题及参考答案 (XY精编)

九年级数学下册期中试题及答案第I 卷(选择题共36分) 一、选择题(共12个小题,共36分)1.√16的算术平方根是( )A.4B.±4C.±2D.22.如图是某几何体的三视图,该几何体是( )3.航天员在天宫课堂演示了在微重力环境下毛细效应实验、水球变“懒”实验等,相应视频在某短视频平台的点赞量达到1500000次,数据1500000月科学记数法表示为( )A.1.5×105B.1.5×106C.0.15×105D.1.5×1074.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=55°,则∠2=( )A.25°B.35°C.45°D.55°5.民族图案是数学文化中的一块瑰宝,下列图案中既是轴对称图形也是中心对称图形的是( )6.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA 和折线BCD 分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是( )A.两车同时到达乙地B.轿车行驶1.3小时时进行了提速C.货车出发3小时后,轿车追上货车D.两车在前80千米的速度相等7.某家具厂利用如图所示直径为1米的圆形材料加工成一种扇形家具部件,已知扇形的圆心角∠BAC= 90°,则扇形部件的面积为多少平方米( )A.12B.14C.18D.116第7题 第9题 第10题 第11题8.已知m 、n 是一元二次方程x 2-x -2022=0的两个实数根,则代数式m 2-2m -n 的值等于( )A.2020B.2021C.2022D.20239.如图,在矩形ABCD 中,AB<BC,连接AC,分别以点A,C 为圆心,大于AC 的长为半径画弧,两弧交于点M,N,直线MN 分别交AD,BC 于点E,F.下列结论:①四边形AECF 是菱形;②∠AFB=2∠ACB;③AC ·EF=CF ·CD;④若AF 平分∠BAC,则CF=√3AB.其中正确结论的个数是( )A.4B.3C.2D.110.如图,已知△ABC 中,∠C=90°,AC=BC=√2,将△ABC 绕点A 顺时针方向旋转60°到△AB'C'的位置,连接C'B,则C'B 的长为( )A.2-√2B.C.√32C.√3-1D.111.如图,在平面直角坐标系中,平行四边形OABC 的边OA 在x 轴的正半轴上,A 、C 两点的坐标分别为(2,0)、(1,2),点B 在第一象限,将直线y=-2x 沿y 轴向上平移m(m>0)个单位.若平移后的直线与边BC 有交点,则m 的取值范围是( )A.0<m<8B.0<m<4C.2<m<8D.4≤m ≤812.如图,二次函数y=ax 2+bx+c(a ≠0)的图象过点(-2,0),对称轴为直线x=1.有以下结论 ①abc>0;②8a+c>0;③若A(x 1,m),B(x 2,m)是抛物线上的两点,当x=x 1+x 2时,y=c ;④点M,N 是抛物线与x 轴的两个交点,若在x 轴下方的抛物线上存在一点P ,使得PM ⊥PN,则a 的取值范围为a ≥13;⑤若方程a(x+2)(4-x)=-2的两根为x1,x2,且x 1<x 2,则-2≤x1<x2<4.其中正确结论的序号是( )A.①②④B.①③④C.①③⑤D.①②③⑤二、填空题(共4个小题,共16分)13.若ab=a+b+1,则(a -1)(b -1)=_______.14.观察下列各式:a 1=1,a 2=25,a 3=14…,它们按一定规律排列,第n 个数记为a n ,且满足1a n +1a n+2 =2a n+1,则a 2023=_______.15.如图,平行四边形是OABC 的顶点O 是坐标原点,A 在x 轴的正半轴上,B,C 在第一象限,反比例函数y=1x 的图象经过点C,y=kx (k ≠0)的图象经过点B.若OC=AC,则k 的值是______.16.如图,在边长为8的正方形ABCD 中,点O 为正方形的中心,点E为AD 边上的动点,连接OE,作OF ⊥OE 交CD 于点F,连接EF,P 为EF的中点,G 为边CD 上一点,且CD=4CG,连接PA,PG,则PA+PG 的最小值为_______.三、解答题(本大题共6小题,共68分)17.(1)化简求值:a−32a−4÷(5a−2 -a -2)的值,其中a=tan60°- 6sin30°(2)解不等式组: {x −3(x −2)≥4x−23<x +1,并写出该不等式组的非负整数解.18.课前预习是学习数学的重要环节,为了了解所教班级学生完成数学课前预习的具体情况,刘老师对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般:D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题.(1)刘老师一共调查了多少名同学?(2)C类女生有____名,D类男生有____名,将上面条形统计图补充完整;(3)为了共同进步,刘老师想从被调查人数的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.19.为响应垃圾分类的要求,营造干净整洁的学习生活环境,创建和谐文明的校园环境.某学校准备购买A、B两种分类垃圾桶,通过市场调研得知:A种垃圾桶每组的单价比B种垃圾桶每组的单价少150元,且用18000元购买A种垃圾桶的组数量是用1300元购买B种垃圾桶的组数量的2倍.(1)求A、B两种垃圾桶每组的单价分别是多少元;(2)该学校计划用不超过8000元的资金购买A、B两种垃圾桶共20组,则最多可以购买B种垃圾桶多少组?20.如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO 交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sinE的值.21.综合与实践问题情境:如图①,点E 为正方形ABCD 内一点,∠AEB=90°,将Rt △ABE 绕点B 按顺时针方向旋转90°,得到△CBE(点A 的对应点为点C),延长AE 交CE'于点F,连接DE.猜想证明:(1)试判断四边形BEFE'的形状,并说明理由.(2)如图②,若DA=DE,请猜想线段CF 与FE 的数量关系并加以证明;解决问题:(3)如图①,若AB=15,CF=3,请直接写出DE 的长.22.如图1,抛物线y=ax 2+2x+c,交x 轴于A 、B 两点,交y 轴于点C,当y ≥0时,-1≤x ≤3.(1)求抛物线的解析式;(2)若点D 是抛物线上第一象限的点①如图1,连接AD,交线段BC 于点G,若DG AG =12时,求D 点的坐标;②如图2,在①条件下,当点D 靠近抛物线对称轴时,过点D 作DP ⊥x 轴,点H 是DP 上一点,连接AH,求AH+√1010DH 的最小值;(3)如图3,F 为抛物线顶点,直线EF 垂直于x 轴于点E,直线AD,BD 分别与抛物线对称轴交于M 、N 两点.试问,EM+EN 是否为定值?如果是,请直接写出这个定值;如果不是,请说明理由.参考答案一、选择题ACBBD BCBCC DB二、填空题13. 214.1303415.316.2√29三、解答题17.(1)−√36 (2)−53<x ≤-1,非负整数解是0、1. 18.(1)(1+2)÷50%=20(人)(2)3,1(3)共有6种可能,符合条件的有3种,P (一男一女)=36=1219.解:(1)设B 单价为x 元,则A 单价为(x -15)元.18000x−150=13500x ×2 ,x=450检验知,x=450是方程的解.450-150=300(元)答:A 单价300元,B 单价450元.(2)设:买B 种y 组,A 种(20-y )组.300(20-y)+450y ≤8000y ≤403 ∵因为y 是正整数 ∴y=13答:最多买B 种13组.20.(1)略 (2)sinE=72521.(1)四边形BEFE'是正方形(2)CF=FE(3)DE=3√17 22.(1)y=-x 2+2x+3(2)D(1,4)或(2,3)(3)EM+EN=8。
2022--2023学年人教版初中数学九年级下册期中考试模拟卷

九年级数学中考模拟卷一.选择题(共10小题,每小题3分,共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.由5个大小相同的小正方体搭成的几何体如图所示,它的主视图是()A.B.C.D.3.我市某校开展“共创文明班,一起向未来”的古诗文朗诵比赛活动,有10位同学参加了初赛,按初赛成绩由高到低取前5位进入决赛.如果小王同学知道了自己的成绩后,要判断能否进入决赛,他需要知道这10位同学成绩的()A.平均数B.众数C.中位数D.方差4.已知直线m∥n,将一块含30°角的直角三角板ABC(∠ABC=30°,∠BAC=60°)按如图方式放置,点A,B分别落在直线m,n上.若∠1=70°.则∠2的度数为()A.30°B.40°C.60°D.70°5.如图,▱ABCD的对角线AC和BD相交于点O,下列说法正确的是()A.若OB=OD,则▱ABCD是菱形B.若AC=BD,则▱ABCD是菱形C.若OA=OD,则▱ABCD是菱形D.若AC⊥BD,则▱ABCD是菱形6.《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为x天,则可列出正确的方程为()A.=2×B.=2×C.=2×D.=2×7.如图是同一直角坐标系中函数y1=2x和y2=的图象.观察图象可得不等式2x>的解集为()A.﹣1<x<1B.x<﹣1或x>1C.x<﹣1或0<x<1D.﹣1<x<0或x>18.如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下时,在斜坡上的树影BC长为m,则大树AB的高为()A.m(cosα﹣sinα)B.m(sinα﹣cosα)C.m(cosα﹣tanα)D.﹣9.如图,正方形ABCD的顶点分别在反比例函数y=(k1>0)和y=(k2>0)的图象上.若BD∥y轴,点D的横坐标为3,则k1+k2=()A.36B.18C.12D.910.抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)和点(x0,y0),且c>0.有下列结论:①a<0;②对任意实数m都有:am2+bm≥4a﹣2b;③16a+c>4b;④若x0>﹣4,则y0>c.其中正确结论的个数为()A.1个B.2个C.3个D.4个二.填空题(共6小题,每小题3分,共18分)11.不等式组的解集为.12.如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为.13.如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是.14.如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H 分别是EC,FD的中点,连接GH,则GH的长度为.15.把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为.16.在△ABC中,∠ABC=90°,AB=2,BC=3.点D为平面上一个动点,∠ADB=45°,则线段CD长度的最小值为.三.解答题(共29小题)17.计算:(﹣2022)0+6×(﹣)+÷.18.先化简,再求值:÷(+),其中a=+1,b=﹣1.19.已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.20.第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图1),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图2是其示意图,已知:助滑坡道AF=50米,弧形跳台的跨度FG=7米,顶端E到BD的距离为40米,HG∥BC,∠AFH =40°,∠EFG=25°,∠ECB=36°.求此大跳台最高点A距地面BD的距离是多少米(结果保留整数).(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)21.如图,C是圆O被直径AB分成的半圆上一点,过点C的圆O的切线交AB的延长线于点P,连接CA,CO,CB.(1)求证:∠ACO=∠BCP;(2)若∠ABC=2∠BCP,求∠P的度数;(3)在(2)的条件下,若AB=4,求图中阴影部分的面积(结果保留π和根号).22.2022年3月22日至28日是第三十五届“中国水周”,在此期间,某校举行了主题为“推进地下水超采综合治理,复苏河湖生态环境”的水资源保护知识竞赛.为了了解本次知识竞赛成绩的分布情况,从参赛学生中随机抽取了150名学生的初赛成绩进行统计,得到如下两幅不完整的统计图表.成绩x/分频数频率150.160≤x<7070≤x<a0.28045b80≤x<9060c90≤x<100(1)表中a=,b=,c=;(2)请补全频数分布直方图;(3)若某班恰有3名女生和1名男生的初赛成绩均为99分,从这4名学生中随机选取2名学生参加复赛,请用列表法或画树状图法求选出的2名学生恰好为一名男生、一名女生的概率.22.如图,已知AB是⊙O的直径,BC⊥AB于B,E是OA上的一点,ED∥BC交⊙O于D,OC∥AD,连接AC交ED于F.(1)求证:CD是⊙O的切线;(2)若AB=8,AE=1,求ED,EF的长.24.去年“抗疫”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售,为此当地政府决定给予其销售的这种消毒液按a元/件进行补贴,设某月销售价为x元/件,a与x之间满足关系式:a=20%(10﹣x),下表是某4个月的销售记录,每月销售量y(万件)与该月销售价x(元/件)之间成一次函数关系(6≤x<9).月份…二月三月四月五月……677.68.5…销售价x(元/件)…3020145…该月销售量y(万件)(1)求y与x的函数关系式;(2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元?(3)当销售价x定为多少时,该月纯收入最大?(纯收入=销售总金额﹣成本+政府当月补贴)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新人教版数学精品教学资料期中检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列各点中,在函数y =-8x图象上的是( A )A .(-2,4)B .(2,4)C .(-2,-4)D .(8,1)2.已知△ABC ∽△A ′B ′C ′且AB A ′B ′=12,则S △ABC ∶S △A ′B ′C ′为( C )A .1∶2B .2∶1C .1∶4D .4∶13.点A(-1,y 1),B(-2,y 2)在反比例函数y =2x 的图象上,则y 1,y 2的大小关系是( C )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定4.如图,下列条件不能判定△ADB ∽△ABC 的是( D )A .∠ABD =∠ACB B .∠ADB =∠ABC C .AB 2=AD ·AC D.AD AB =AB BC,第4题图) ,第5题图),第6题图),第7题图)5.如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE ∥BC ,EF ∥AB.若AD=2BD ,则CFBF的值为( A )A.12B.13C.14D.236.如图,已知点A 是双曲线y =2x 在第一象限的分支上的一个动点,连接AO 并延长交另一分支于点B ,过点A 作y 轴的垂线,过点B 作x 轴的垂线,两垂线交于点C ,随着点A 的运动,点C 的位置也随之变化.设点C 的坐标为(m ,n),则m ,n 满足的关系式为( B )A .n =-2mB .n =-2mC .n =-4mD .n =-4m7.如图,△ABE 和△CDE 是以点E(1,0)为位似中心的位似图形,已知点A(3,4),C(2,2),D(3,1),则点D 的对应点B 的坐标是( C )A .(4,2)B .(4,1)C .(5,2)D .(5,1)8.如图,反比例函数y =-6x 在第二象限的图象上有两点A ,B ,它们的横坐标分别为-1,-3,直线AB 与x 轴交于点C ,则△AOC 的面积为( C )A .8B .10C .12D .24,第8题图) ,第9题图) ,第10题图) ,第12题图)9.如图,在正方形ABCD 中,点E 为AB 边的中点,点G ,F 分别为AD ,BC 边上的点,若AG =1,BF =2,∠GEF =90°,则GF 的长为( A )A .3B .4C .5D .610.如图,△AOB 是直角三角形,∠AOB =90°,OB =2OA ,点A 在反比例函数y =1x 的图象上.若点B 在反比例函数y =kx的图象上,则k 的值为( A )A .-4B .4C .-2D .2二、填空题(每小题3分,共24分)11.若函数y =m -1x 的图象在同一象限内,y 随x 增大而增大,则m 的值可以是__0(答案不唯一,只要满足m <1即可)__.(写出一个即可)12.如图,在平面直角坐标系中,正方形OABC 的顶点O 为坐标原点,点B(0,6),反比例函数y =kx的图象过点C ,则k 的值为__9__.13.(2016·乐山)如图,在△ABC 中,D ,E 分别是边AB ,AC 上的点,且DE ∥BC ,若△ADE 与△ABC 的周长之比为2∶3,AD =4,则DB =__2__.,第13题图) ,第14题图) ,第15题图) ,第17题图)14.如图,在Rt △ABC 中,AB =BC ,∠B =90°,AC =102,四边形BDEF 是△ABC 的内接正方形(点D ,E ,F 在三角形的边上),则此正方形的面积是__25__.15.甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触路灯乙的底部.已知小华的身高为1.5米,那么路灯甲的高为__9__米.16.正比例函数y 1=mx(m >0)的图象与反比例函数y 2=kx (k ≠0)的图象交于点A(n ,4)和点B ,AM ⊥y 轴,垂足为M.若△AMB 的面积为8,则满足y 1>y 2的实数x 的取值范围是__-2<x <0或x >2__.17.如图,反比例函数y =kx (x >0)的图象交Rt △OAB 的斜边OA 于点D ,交直角边AB于点C ,点B 在x 轴上.若△OAC 的面积为5,AD ∶OD =1∶2,则k 的值为__8__.18.如图,已知点A 1,A 2,…,A n 均在直线y =x -1上,点B 1,B 2,…,B n 均在双曲线y =-1x 上,并且满足A 1B 1⊥x 轴,B 1A 2⊥y 轴,A 2B 2⊥x 轴,B 2A 3⊥y 轴,…,A n B n ⊥x 轴,B n A n +1⊥y 轴,…,记点A n 的横坐标为a n (n 为正整数).若a 1=-1,则a 2018=__2__.三、解答题(共66分)19.(8分)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A(-1,2),B(-3,4),C(-2,6).(1)画出△ABC 绕点A 顺时针旋转90°后得到的△A 1B 1C 1;(2)以原点O 为位似中心,画出将△A 1B 1C 1三条边放大为原来的2倍后的△A 2B 2C 2.解:(1)图略 (2)图略20.(8分)如图,已知反比例函数y =kx的图象经过点A(-1,3).(1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线段OA 绕点O 逆时针旋转30°后得到线段OB ,求出点B 的坐标,并判断点B 是否在此反比例函数的图象上.解:(1)y =-3x(2)过点A 作x 轴的垂线交x 轴于点C ,过点B 作x 轴的垂线交x 轴于点D.在Rt △AOC 中,AC =3,OC =1,∴OA =OC 2+AC 2=2,可求∠AOC =60°,∵将线段OA 绕O 点逆时针旋转30°得到线段OB ,∴∠AOB =30°,OB =OA =2,∴∠BOD =30°.在Rt △BOD 中,BD =12OB =1,由勾股定理得OD =3,∴B 点坐标为(-3,1),将x =-3代入y =-3x 中,得y =1,∴点B (-3,1)在反比例函数y =-3x的图象上21.(8分)如图,AB 是⊙O 的直径,点C 为⊙O 上一点,OF ⊥BC 于点F ,交⊙O 于点E ,AE 与BC 交于点H ,点D 为OE 的延长线上一点,且∠ODB =∠AEC.求证:(1)BD 是⊙O 的切线;(2)CE 2=EH ·EA.解:(1)∵∠ODB =∠AEC ,∠AEC =∠ABC ,∴∠ODB =∠ABC ,∵OF ⊥BC ,∴∠BFD =90°,∴∠ODB +∠DBF =90°,∴∠ABC +∠DBF =90°,即∠OBD =90°,∴BD ⊥OB ,∴BD 是⊙O 的切线 (2)连接AC ,∵OF ⊥BC ,∴BE ︵=CE ︵,∴∠ECB =∠CAE ,又∵∠HEC =∠CEA ,∴△CEH ∽△AEC ,∴CE EA =EH CE,∴CE 2=EH ·EA22.(10 分)如图,已知点A ,P 在反比例函数y =kx (k <0)的图象上,点B ,Q 在直线y=x -3的图象上,点B 的纵坐标为-1,AB ⊥x 轴,且S △OAB =4,若P ,Q 两点关于y 轴对称,设点P 的坐标为(m ,n).(1)求点A 的坐标和k 的值; (2)求m n +nm的值.解:(1)∵点B 在直线y =x -3的图象上,点B 的纵坐标为-1,∴当y =-1时,x -3=-1,解得x =2,∴B (2,-1).设点A 的坐标为(2,t ),则t <-1,AB =-1-t.∵S △OAB =4,∴12(-1-t )×2=4,解得t =-5,∴点A 的坐标为(2,-5).∵点A 在反比例函数y =k x (k <0)的图象上,∴-5=k2,解得k =-10 (2)∵P ,Q 两点关于y 轴对称,点P 的坐标为(m ,n ),∴Q (-m ,n ),∵点P 在反比例函数y =-10x 的图象上,点Q 在直线y =x -3的图象上,∴n =-10m ,n =-m -3,∴mn =-10,m +n =-3,∴n m +m n =m 2+n 2mn =(m +n )2-2mnmn =(-3)2-2×(-10)-10=-291023.(10分)心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知, 学生的注意力指标数y 随时间x(分钟)的变化规律如图所示(其中AB ,BC 分别为线段,CD 为双曲线的一部分).(1)开始上课后第5分钟时与第30分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?解:(1)由题意得y 1=2x +20(0≤x ≤10),y 2=1 000x (x ≥25),当x 1=5时,y 1=30,当x 2=30时,y 2=1003,∴y 1<y 2,∴第30分钟注意力更集中(2)令y 1=36,∴36=2x +20,∴x =8,令y 2=36,∴36=1 000x ,∴x =1 00036≈27.8,∵27.8-8=19.8>19,∴老师能在学生注意力达到所需的状态下讲解完成这道题目24.(10分)(2016·梧州)如图,在矩形ABCD 中,E 为CD 的中点,H 为BE 上的一点,EHBH =3,连接CH 并延长交AB 于点G ,连接GE 并延长交AD 的延长线于点F.(1)求证:EC BG =EHBH;(2)若∠CGF =90°,求ABBC的值.解:(1)∵四边形ABCD 是矩形,∴CD ∥AB ,AD =BC ,AB =CD ,可证得△CEH ∽△GBH ,∴EC BG =EHBH(2)作EM ⊥AB 于点M ,则EM =BC =AD ,AM =DE ,∵E 为CD 的中点,∴DE =CE ,设DE =CE =3a ,则AB =CD =6a.由(1)得EC BG =EH BH =3,∴BG =13CE =a ,∴AG =5a ,∵∠EDF =90°=∠CGF ,∠DEF =∠GEC ,∴△DEF ∽△GEC ,∴DE EG =EFEC ,∴EG ·EF =DE ·EC ,∵CD ∥AB ,∴△FED ∽△FGA ,∴EF FG =DE AG =35,∴EF EG =32,∴EF =32EG ,∴EG ·32EG =3a ·3a ,解得EG =6a ,在Rt △EMG 中,GM =2a ,∴EM =EG 2-GM 2=2a ,∴BC =2a ,∴AB BC =6a2a=32 25.(12分)如图,在平面直角坐标系xOy 中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C.抛物线y =ax 2+bx +c 的对称轴是直线x =-32,且经过A ,C 两点,与x 轴的另一交点为点B.(1)①直接写出点B 的坐标;②求抛物线的解析式.(2)抛物线上是否存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A ,M ,N 为顶点的三角形与△ABC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.解:(1)①对于直线y =12x +2,当x =0时,y =2;当y =0时,x =-4,∴C (0,2),A (-4,0),由抛物线的对称性可知:点A 与点B 关于直线x =-32对称,∴点B 的坐标为(1,0) ②∵抛物线y =ax 2+bx +c 过A (-4,0),B (1,0),∴可设抛物线解析式为y =a (x +4)(x -1),又∵抛物线过点C (0,2),∴2=-4a ,∴a =-12,∴y =-12x 2-32x +2(2)在Rt △AOC 中,易知△ABC ∽△ACO ∽△CBO ,如图,①当M 点与C 点重合,即M (0,2)时,△MAN ∽△BAC ;②根据抛物线的对称性,当M (-3,2)时,△MAN ∽△ABC ;③当点M 在第四象限时,设M (n ,-12n 2-32n +2),则N (n ,0),∴MN =12n 2+32n -2,AN =n +4,当MNAN =12时,MN =12AN ,即12n 2+32n -2=12(n +4),整理得n 2+2n -8=0,解得n 1=-4(舍),n 2=2,∴M (2,-3);当MN AN =21时,MN =2AN ,即12n 2+32n -2=2(n +4),整理得n 2-n -20=0解得n 1=-4(舍),n 2=5,∴M (5,-18).综上所述,存在点M 1(0,2),M 2(-3,2),M 3(2,-3),M 4(5,-18),使得以点A ,M ,N 为顶点的三角形与△ABC 相似。