七年级数学上册3.3一元一次方程的解法第2课时利用去括号解一元一次方程课件2(新版)湘教版

合集下载

3.3.1解一元一次方程(二)__ 去括号与去分母工程问题课件 课件 (新人教版七上)

3.3.1解一元一次方程(二)__ 去括号与去分母工程问题课件 课件 (新人教版七上)


See you later
问题2 :
• 问题2 :整理一批图书,由一 个人做要40小时完成.现在计 划由一部分人先做4小时,再增 加两人和他们一起做8小时,完 成这项工作.假设这些人的工 作效率相同,具体应安排多少 人工作?
分 析
• (1)人均效率(一个人做1小时完成 的工作量)为 。 • (2)有x人先做4小时,完成的工作量 为 。再增加2人和前一部分人一起 做8小时,完成的工作量为 。 • (3)这项工作分两段完成,两段完成 的工作量之和为 。 • (4) 列方程
1)移动的项一定要变号, 不移的项不变号 2)注意移项较多时不要漏项 1)把系数相加 2)字母和字母的指数不变 解的分子,分母位置不要颠 倒
合并同类项 把方程变为ax=b 合并 法则 (a≠0 ) 的最简形式 同类 项 系数 将方程两边都除以未知数系数a, 等式性 质2 化1 得解x=b/a
(一)复习引入
• 1工程问题常见相等关系: • 2 注意一件工作完成了,总的 工作量是“1”;只是完成部分, 工作量要由具体情况得出 • 3 全效学习第76页A组选择题、 填空题
这节课你学到了什么?有何收获?
1.进一步理解解较为复杂的一元一次方程的方法。
2.了解工程问题中的各量之间的关系。
3.重点理解并掌握列一元一次方程解决实际问题。 4.难点在于设未知数建立方程。
• 1解下列方程: • (1)
3y 1 7 y 3 6
2 x 1 10 x 1 1 2x 1 • (2) 4 6 3
回忆总结:列方程解应用题的步骤:
列方程 实际问题

数学问题 (一元一次方程)

数学问题的 答案
解 方 程

人教版七年级上册数学:解一元一次方程二--去括号与去分母第课时精品课件PPT

人教版七年级上册数学:解一元一次方程二--去括号与去分母第课时精品课件PPT
数转化为整数,然后再去分母.
等式性质二
先去小括号,再去中括号,最 去括号法则
后去大括号.
乘法分配律
把含有未知数的项移到方程 的一边,常数项移到方程的 等式性质一 另一边.
将未知数的系数相加,常数 合并同类项
项项加。
的法则
在方程的两边除以未知数的 等式性质二 系数.
1、不要漏乘不含分 母的项;2、分子是 多项式,去分母后应 加上括号. 1、不要漏乘括号里 的任何一项; 2、不要弄错符号. 1、移动的项要变号, 不移动的项不变号; 2、不要丢项. 字母及指数不变.
0.7 0.03
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时) 人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级数学上册 第三章一元一次方程
3.3解一元一次方程(二)---去括号与去分 母(第2课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时) 人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
问题 一个数,它的三分之二,它的一半,它的七分
之一,它的全部,加起来总共是33.试问这个 数是多少?
你能解决这个问题吗?
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)

湘教版七年级数学上册作业课件 第3章 一元一次方程 第2课时 去括号解一元一次方程

湘教版七年级数学上册作业课件 第3章 一元一次方程 第2课时 去括号解一元一次方程
湘教版
第3章 一元一次方程
3.3 一元一次方程的解法
第2课时 去括号解一元一次方程
1.(3 分)解方程 2(x-1)-(x-3)=1 时,去括号正确的是( D ) A.2x-1-x-3=1 B.2x-1-x+3=1 C.2x-2-x-3=1 D.2x-2-x+3=1
2.(3 分)(大连中考)方程 3x+2(1-x)=4 的解是( C )
解:由题意,得 2-13 (m-1)=2×1,解得 m=1, 所以 1×(x-3)-2=1×(2x-5),解得 x=0
16.(8分)已知关于x的方程2(x+1)-m=-2(m-2)的解比方程5(x+1)-1 =4(x-1)+1的解大2,求m的值.
解:由方程5(x+1)-1=4(x-1)+1,得x=-7.又因为关于x的方程2(x+ 1)-m=-2(m-2)的解比x=-7大2,则x=-5,所以2(-5+1)-m=- 2(m-2),解得m=12,故m的值为12
二、填空题(每小题4分,共12分) 11.在有理数范围内定义运算“&”:a&b=a+2b, 则满足x&(x-6)=0的有理数x是___4_. 12.若式子6-3(9-y)与4(y-4)的值相等,则y=_-__5_. 13.当m=__1_6_时, 方程5x+4=4x-3和方程2(x+1)-m=-2(m-2)的解相同.
8.下列方程去括号正确的是( C ) A.x-(4-2x)=7(x-2),得 x-4-2x=7x-14
B.-5(x+1)=12 (x+2),得-5x+5=12 x+2 C.2(1-x)=(1+2x)-3x,得 2-2x=1+2x-3x D.2-[x-5(x+4)]=2,得 2-x-5x+4=2
9.当x=4时,代数式10-5(x+m)与(m+4)x的值互为相反数,则m等于(D ) A.-2 B.2 C.4 D.6 10.若方程6(x-2)=5x的解是方程2(x-3)=3(1-a)的解的2倍,则a的值为(D) A.2 B.1 C.0 D.-1

2024年秋湘教版七年级数学上册 3.3.2 一元一次方程的解法(二)(课件)

2024年秋湘教版七年级数学上册 3.3.2 一元一次方程的解法(二)(课件)
湘教版·七年级上册
第2课时 一元一次方程的 解法(二)
做一做
解方 3x 1 x 2 x
程:
2
5.
去分母,得 5(3x-1)-2(-x+2)=10x ,
去括号,得
15x-5+2x-4=10x ,
移项,得
15x+2x-10x=5+4 ,
合并同类项,得
7x=9,
两边都除以7,得
x=
9 7
.
方程右边为什 么要乘10?
当x用什么数代入时,多项式的
x−10 3
的值与多项式
1 4
x−
2 3
的值相等?
分析:本题实际是求一个能使
x−10
3

1 4
x−
2 3
的值相
等的未知数x的值.
即要解方程
x−310=
1 4
x−
2 3
例4
当x用什么数代入时,多项式的
x−10 3
的值与多项式
1 4
x−
2 3
的值相等?
解:由题意可知,要解方程:x−310=
解一元一次方程的基本步骤:
一元一次方程
ax=b(a、b是常数,
①去分母 a≠0)
②去括号
③移项
④合并同类项
x=ba ⑤化系数为1
1.从课后习题中选取; 2.完成练习册本课时的习题.
2(2x+1) +7 (x-1)=28 4x+2+7x-7=28 4x+7x=28-2+7 11x=33 x=3
1. 解下列方程: 【课本P109 练习 第1题】
(1) 5 x 3x 1 ;1 (2) 2x 1 x 1 2;

七年级数学上册第3章一元一次方程3.3一元一次方程的解法第2课时用去分母解方程课件新版湘教版

七年级数学上册第3章一元一次方程3.3一元一次方程的解法第2课时用去分母解方程课件新版湘教版

知识点 解含分母的一元一次方程
1. 把方程 3x+2x-3 1=-x+2 1去分母,正确的是 (C)
A.3x+2(2x-1)=-3(x+1) B.18x+2(2x-1)=-3x+1 C.18x+2(2x-1)=-3(x+1) D.3x-2×2x-1=-3x+1
2. 下列方程去分母后,所得结果错误的有( B )
规律 .


10
个方程
【解析】根据题意得第 n 个方程为nx+n+x 1=2n+1,
解为 x=n(n+1),所以第 10 个方程为1x0+1x1=21,其解
为 x=10×11=110.
2. 某同学在解方程2x-3 1=x+3 a-2 去分母时,方程 右边的-2 没有乘 3,其他步骤正确,这时求得的方程的 解为 x=2,试求 a 的值,并求出原方程的正确的解.
解:设甲、乙两地的路程为 x km, 列方程为x5-x7=20, 解得 x=350. 答:略.
1. 有一系列方程:第 1 个方程是 x+2x=3,解为 x
=2;第 2 个方程是2x+3x=5,解为 x=6;第 3 个方程是3x
+ 是
4x1x=0+71,x1=解2为1 ,x其=解12为;
…根据 x=110
法.请用这种方法解方程: 5(2x+3)-34(x-2)=2(x-2)-12(2x+3).
解:移项、合并同类项得121(2x+3)=141(x-2), 约分、去分母得 2(2x+3)=x-2, 去括号,得 4x+6=x-2, 移项、合并同类项,得 3x=-8, 两边都除以 3,得 x=-83.
10. 从甲地到乙地,公共汽车原需行驶 7 h,开通高 速公路后,车速平均每小时增加了 20 km,只需 5 h 即可 到达,求甲、乙两地的路程.

人教版数学七年级上册解一元一次方程(二)--去分母课件

人教版数学七年级上册解一元一次方程(二)--去分母课件

去括号
15x – 3x + 4x = – 2 – 6 – 5+20
移项
16x = 7
x 7 16
合并同类项 系数化为1
续探去分母法解一元一次方程
3x x 1 3 2x 1;
2
3
解:去分母(两边乘以6),得
18x+3(x-1)=18-2(2x-1)
你漏乘
方程两边各项 都乘以6。
了吗? 去括号,得 18x+3x-3=18-4x+2
再探一元一次方程的应用!
童话数学100雁问题
例1:碧空万里,一群大雁在翱翔,迎面又飞来一
只小灰雁,它对群雁说:“你们好,百只雁!你们百雁 齐飞,好气派!可怜我孤雁独飞.”群雁中一只领头的 老雁说: “不对!小朋友,我们远远不足100只.将我们 这一群加倍,再加上半群,又加上四分之一群,最后还 得请你也凑上,那才一共是100只呢!”
“尊敬的毕达哥拉斯,请你告知我,有多少名学生在 你学校里听你讲课?”
毕达哥拉斯回答说“一共有这么多学生在听课:其中 二分之一在学数学,四分之一学习音乐,七分之一沉默 无言,此外还有三名女生:”
你能算出有多少名学生吗?
解:设有x名学生
由题意,得 去分母,得
1 x+ 1 x+ 1 x+3=x. 24 7 28x+14x+8x+168=56x.
知识回顾
❖上节课我们学习了一元一次方程 的解法,它有哪些基本步骤?
❖你觉得在解一元一次方程中,最 容易在哪里出错?
❖应用一元一次方程解应用题的一 般步骤是什么?
问题:英国伦敦博物馆保存着一部分极其珍贵的
文物——纸莎草文书.现存世界上最古老的方程就 出现在这部英国考古学家兰德1858年找到的纸草书 上.经破译,上面都是一些方程,共85个问题.其 中有如下一道著名的求未知数的问题:一个数,它 的三分之二,它的一半,它的七分之一,它的全部, 加起来总共是33,这个数为几何? 分析:设这个数为x.

初中数学七年级上册《3.3 解一元一次方程(二)——去括号与去分母》第2课时课件

初中数学七年级上册《3.3  解一元一次方程(二)——去括号与去分母》第2课时课件

5 的解是y= - 3 .很快补好了这个常数,这个常数应
是__3___.
4.丢番图的墓志铭: “坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经 历的道路.上帝给予的童年占六分之一.又过十二分之一, 两颊长胡.再过七分之一,点燃结婚的蜡烛.五年之后天赐 贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷 的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完 了人生的旅途.”
纸莎草文书
问题:一个数,它的三分之二,它的一半,它的七分之一, 它的全部,加起来总共是33,求这个数.
你能解决以上古代问题吗?
分析:你认为本题用算术方法解方便,还是用方程方法 解方便?请你列出本题的方程.
设这个数是x,根据题意列方程
2 3
x+
1 2
x+
1 7
x+x=33.
你能解出这道方程吗?把你的解法与其他同学交流
3.3 解一元一次方程(二) ——去括号与去分母
第2课时
1.使学生掌握去分母解方程的方法,总结解方程的步 骤. 2.经历去分母解方程的过程,体会把“复杂”转化为 “简单”,把“新”转化为“旧”的转化的思想方法. 3.培养学生自觉反思、检验方程的解是否正确的良好习 惯.
英国伦敦博物馆保存着一部极其珍贵 的文物——纸莎草文书.这是古代埃及 人用象形文字写在一种特殊的草上的 著作,它于公元前1700年左右写成, 至今已有三千七百多年.这部书中记载 了许多有关数学的问题,其中有如下 一道著名的求未知数的问题.
10x+1 6
=1时,去分母后,正确的结 +1=1
B.4x +2-10x -1=1
C.4x +2-10x -1=6
D.4x +2-10x +1=6

2024年秋北师大七年级数学上册 第2节 一元一次方程的解法第2课时 利用移项解一元一次方程(课件)

2024年秋北师大七年级数学上册 第2节 一元一次方程的解法第2课时 利用移项解一元一次方程(课件)
5
方程两边都除以-2得
x=-5
3
5
(4)1- =3x+
2
2
3
(3)x= x+16
2
(3)移项得
合并同类项得
3
x- =16
2
1
- x=16
2
1
方程两边都除以- 得
2
(4)移项得
合并同类项得
9
方程两边都除以- 得
2
x=-32
3
5
- -3x= -1
2
2
9 3
- x=
2 2
1
x=3
知识升华,巩固提升
x = 4.
例2 解方程
解:
1
1
x x3
4
2
1
1
移项,得 4 x 2 x 3.
3
x3
合并同类项,得
4
3
4
x=4
方程两边都除以 ( 或同乘 ),得
4
3
思考:在上面解方程的过程中,移项的依据是什么?
目的是什么?
移项的依据:等式的基本性质1
目的:使含有未知数的项与常数项分别在等号左、右两边,
所以单项式2a2b2k+3与3a2b11-6k是同类项,
所以2k+3=11-6k
移项,得2k+6k=11-3
合并同类项,得8k=8.
方程的两边都除以8,得k=1.
随堂训练,课堂总结
1.解方程
【选自教材P145 习题5.2 第1题】
(1)4y-2=3-y
解(1)移项得
4y+y=3+2
合并同类项得 5y=5
(2)对.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档