数学题型复习题型八二次函数综合题类型二与面积有关的问题练习

合集下载

专题04 一元二次方程的应用(八大类型)(题型专练)(原卷版)

专题04  一元二次方程的应用(八大类型)(题型专练)(原卷版)

专题04 一元二次方程的应用(八大类型)【题型1 一元二次方程应用-变化率】【题型2 一元二次方程应用-传染问题】【题型3 一元二次方程应用-分支问题】【题型4 一元二次方程应用-比赛问题及迁移运用】【题型5 一元二次方程应用-销售问题】【题型6 一元二次方程应用-每每问题】【题型7 一元二次方程应用-几何面积问题】【题型8 一元二次方程应用-几何动态问题】【题型1 一元二次方程应用-变化率】1.(2023春•鄞州区期中)某商品经过连续两次降价,价格由100元降为64元.已知两次降价的百分率都是x,则x满足的方程是()A.64(1﹣2x)=100B.100(1﹣x)2=64C.64(1﹣x)2=100D.100(1﹣2x)=64 2.(2023•东莞市校级一模)某旅游景点8月份共接待游客25万人次,10月份共接待游客64万人次,设游客每月的平均增长率为x,则下列方程正确的是()A.25(1+x)2=64B.25(1+x2)=64C.64(1﹣x)2=25D.64(1﹣x2)=253.(2021·松北期末)某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x2)=196 D.50+50(1+x)+50(1+2x)=196 4.(2023•沭阳县模拟)某商品原价每件75元,两次降价后每件48元,则平均每次的降价百分率是.5.(2022秋•确山县期中)2022年是中国共产党建党101周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育学习活动,某市“红二方面军长征出发地纪念馆”成为重要的活动基地.据了解,今年8月份该基地接待参观人数10万人,10月份接待参观人数增加到12.1万人.(1)求这两个月参观人数的月平均增长率;(2)按照这个增长率,预计11月份的参观人数能否突破13.5万人?6.(2022春•沂源县校级月考)受益于国家支持新能源汽车发展等多重利好因素,我市某汽车零部件生产企业的利润逐年提高.据统计,2016年利润为2亿元,2018年利润为2.88亿元.(1)求该企业从2016年到2018年利润的年平均增长率.(2)若2019年保持前两年利润的年平均增长率不变,该企业2019年的利润能否超过3.4亿元?【题型2 一元二次方程应用-分支问题】7.(2022秋•青川县期末)某数学活动小组在开展野外项目实践时,发现一种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分枝,主干、枝干和小分枝的总数是31,则这种植物每个枝干长出的小分支个数是()A.4B.5C.6D.7 8.(2022秋•澄海区期末)某校“生物研学”活动小组在一次野外研学实践时,发现某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支.若主干、支干和小分支的总数是91,求这种植物每个支干长出的小分支个数是多少?【题型3 一元二次方程应用-传染问题】9.(2022春•南谯区校级期中)新冠肺炎病毒是一种传染性极强的急性呼吸道传染病,感染者的临床以发热、乏力、干咳为主要表现.在“新冠肺炎”疫情初期,有1人感染了“新冠肺炎病毒”,如若得不到有效控制,经过两轮传染后共有196人感染了“新冠肺炎病毒”,则每轮传染中平均一个人传染了()A.12人B.13人C.14人D.15人10.(2023•兴庆区校级一模)有一个人患流感,经过两轮传染后共有81个人患流感,每轮传染中平均一个人传染几个人?设每轮传染中平均一个人传染x 个人,可到方程为()A.1+2x=81B.1+x2=81C.1+x+x2=81D.(1+x)2=81 11.(2022秋•沈丘县月考)若有2个人患了流感,经过两轮传染后共有50人患了流感(这2个人在第二轮传染中仍有传染性),则每轮传染中平均一个人传染人.12.(2023•城关区一模)有一人患了流感,经过两轮传染后共有169人患了流感,每轮传染中平均一个人传染了人.13.(2022秋•天河区校级期末)截止到2022年1月,新冠肺炎疫情在中国已经得到有效控制,但在全球却持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有196人患新冠肺炎,求每轮传染中平均每个人传染了几个人?14.(2022秋•甘井子区校级期末)有一个人患了流感,经过两轮传染后共有144个人患了流感.(1)每轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少个人患流感?【题型4 一元二次方程应用-比赛问题及迁移运用】15.(2023•东莞市二模)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?()A.7B.8C.9D.1016.(2021秋•虎林市校级期末)2021年虎林市教育局组织开展了全市中学生篮球联赛,比赛采用单循环赛制(每两队之间进行一场比赛),共进行了66场比赛,则参加比赛的队伍数量是()A.10B.11C.12D.1317.(2022•黑龙江模拟)某校八年级组织篮球赛,若每两班之间赛一场,共进行了28场,则该校八年级有()个班级.A.8B.9C.10D.11 18.(2023•惠东县一模)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,则本次比赛共有参赛队伍()A.8支B.9支C.10支D.11支19.(2022秋•于洪区期末)一次会议上,每两个参加会议的人都相互握了一次手.有人统计一共握了66次手,这次会议到会的人数有多少人()A.8B.10C.12D.14 20.(2022秋•南平期中)生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,那么全组有()名同学.A.12B.13C.14D.1521.(2022秋•和平区期末)一次会议上,每两个参加会议的人都相互握了一次手,经统计所有人一共握了10次手,则这次会议到会的人数是人.22.(2022秋•荔湾区校级期末)卡塔尔足球世界杯小组赛,每两队之间进行一场比赛,小组赛共进行了6场比赛,则该小组有支球队.23.(2023春•安徽月考)网课期间小夏写了封保护眼睛的倡议书,用微博转发的方式传播,设计了如下转发规则:将倡议书发表在自己的微博上,然后邀请x个好友转发,每个好友转发之后,又邀请x个互不相同的好友转发,已知经过两轮转发后,共157人参与了此次活动,则x为人.24.(2022秋•蔚县校级期末)一个小组有若干人,新年互送贺卡一张,共送贺卡72张,共有人.25.(2022秋•白云区期末)一次足球联赛,赛制为双循环形式(每两队之间都赛两场),共要比赛90场,共有多少个队参加比赛?【题型5 一元二次方程应用-销售问题】26.(2023春•盐都区月考)某商店分别花20000元和30000元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多500千克.(1)该商品的进价是多少?(2)已知该商品每天的销售量y(千克)与销售单价x(元/千克)之间的函数关系式为:y=﹣10x+500,若想销售该商品每天获利2000元,该商店需将商品的售价定为多少?27.(2023•中山市一模)某超市以每千克40元的价格购进菠萝蜜,计划以每千克60元的价格销售,为了让顾客得到实惠.现决定降价销售,已知这种菠萝蜜销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数关系式.(2)若超市要想获利2400元,且让顾客获得更大实惠,这种菠萝蜜每千克应降价多少元?28.(2022秋•九龙坡区期末)某图书店在2022年国庆节期间举行促销活动,某课外阅读书进货价为每本8元,标价为每本15元.(1)该图书店举行了国庆大回馈活动,连续两次降价,每次降价的百分率相同,最后以每本9.6元的价格售出,求图书店每次降价的百分率;(2)在九月底该书店老板去进货该书500本,按照(1)两次降价后的价格在国庆节全部售出;国庆节后老板去进货发现进货价上涨了a%,进货量比九月底增加3a%,以标价的八折全部售出后,比国庆节的总利润多1200元,求a%的值.29.(2022秋•平遥县期末)某商店通过网络在一源头厂家进一种季节性小家电,由于疫情影响以及市场竞争,该厂家不得不逐年下调出厂价;(1)2019年这个小家电出厂价是每台62.5元,到2021年同期该品牌小家电出厂价下调为40元,若每年下调幅度相同,请你计算该小家电出厂价平均每年下调的百分率;(2)若明年商场计划按每台40元购一批该品牌小家电,经市场预测,销售定价为50元时,每月可售出500台,销售定价每增加1元,销售量将减少10台.因受库存的影响,每月进货台数不得超过300台;商家若希望月获利8750元,则应进货多少台?销售定价多少元?30.(2023•桂林一模)小王计划经营某种时尚产品的专卖店,已知该产品的进货价为70元/件,售价不能低于80元/件,专卖店每月有800元的固定成本开支,根据市场调研,产品的销售量y(件)随着产品的售价x(元/件)的变化而变化,销售量y与售价x之间的部分对应关系如表:80828486…售价x(元/件)500490480470…销售量y(件)(1)求销售量y(件)与售价x(元/件)的函数关系式;(2)小王预计每月盈利8200元,为尽可能让利于顾客,则该产品的售价每件应定为多少元?31.(2022秋•通川区期末)为了满足社区居民强身健体的需要,政府准备采购若干套健身器材免费提供给社区,经过考察了解,飞跃公司有A,B两种型号的健身器材可供选择,已知飞跃公司2020年每套A型健身器材的售价为2.5万元,2020年每套B型健身器材的售价为2万元,2022年每套A型健身器材售价为1.6万元,每套A型,B型健身器材的年平均下降率相同.(1)求2020年到2022年每套A型健身器材年平均下降率;(2)2022年政府经过招标,决定年内采购并安装飞跃公司A,B两种型号的健身器材共80套,政府采购专项经费总计不超过115.2万元,并且采购A型器材费用不能少于B型器材的费用,请求出所需经费最少的采购方案.32.(2023•抚州一模)某超市经销一种商品,每千克成本为30元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如表所示:40455560销售单价x(元/千克)80705040销售量y(千克)(1)求y(千克)与x(元/千克)之间的函数表达式;(2)若商店按销售单价不低于成本价,且不高于60元的价格销售,要使销售该商品每天获得的利润为800元,求每天的销售量应为多少千克?33.(2022春•莱芜区期末)某农户生产经营一种农产品,已知这种农产品的成本价为每千克20元,经市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数关系式;(2)该农户想要每天获得150元的利润,又要让利消费者,销售价应定为每千克多少元?【题型6 一元二次方程应用-每每问题】34.(2023春•沙坪坝区校级月考)将进货价格为38元的商品按单价45元售出时,能卖出300个.已知该商品单价每上涨1元,其销售量就减少5个.设这种商品的售价上涨x元时,获得的利润为2300元,则下列关系式正确的是()A.(x﹣38)(300﹣5x)=2300B.(x+7)(300+5x)=2300C.(x﹣7)(300﹣5x)=2300D.(x+7)(300﹣5x)=230035.(2021秋•纳溪区期末)某商场经营某种品牌的玩具,购进时的价格是30元/件,根据市场调查:在一段时间内,当销售价格是40元/件时,销售量是600件,当销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售价格为x元/件(x>40),请你分别用含x 的代数式来表示销售量y件和销售该品牌玩具获得的利润w元.(2)在第(1)间的条件下,若商场获得了10000元的销售利润,求该玩具的销售价格应定为多少元/件.36.(2022秋•东明县期末)2022年北京冬季奥运会于2月4日至2月20日在北京市和河北省张家口市联合举行,冬奥会吉祥物为“冰墩墩”.(1)据市场调研发现,某工厂今年二月份共生产500个“冰墩墩”,为增大生产量,该工厂平均每月生产量增加20%,则该工厂在四月份能生产多少个“冰墩墩”?(2)已知某商店“冰墩墩”平均每天可销售20个,每个盈利40元,在每个降价幅度不超过10元的情况下,每下降2元,则每天可多售10件.如果每天要盈利1440元,则每个“冰墩墩”应降价多少元?37.(2022秋•龙岗区期末)“双十一”期间,某网店直接从工厂购进A,B两款保温杯,进货价和销售价如表:(注:利润=销售价﹣进货价)A款保温杯B款保温杯进货价(元/个)3528销售价(元/个)5040(1)若该网店用1540元购进A,B两款保温杯共50个,求两款保温杯分别购进的个数.(2)“双十一”后,该网店打算把B款保温杯降价销售,如果按照原价销售,平均每天可售出4个,经调查发现,每降价1元,平均每天可多售出2个,则将B款保温杯的销售价定为每个多少元时,才能使B款保温杯平均每天的销售利润为96元?38.(2023春•长沙期中)春节是中国的传统节日,每年元旦节后是购物的高峰期,2023年元月某水果商从农户手中购进A、B两种红富士苹果,其中A种红富士苹果进货价为28元/件,销售价为42元/件,其中B种红富士苹果进货价为22元/件,销售价为34元/件.(注:利润=销售价﹣进货价)(1)水果店第一次用720元购进A、B两种红富士苹果共30件,求两种红富士苹果分别购进的件数;(2)第一次购进的红富士苹果售完后,该水果店计划再次购进A、B两种红富士苹果共80件(进货价和销售价都不变),且进货总费用不高于2000元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?(3)春节临近结束时,水果店发现B种红富士苹果还有大量剩余,决定对B 种红富士苹果调价销售.如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,为了尽快减少库存,将销售价定为每件多少元时,才能使B种红富士苹果平均每天销售利润为90元?39.(2023春•北仑区期中)某超市于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月的月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?【题型7 一元二次方程应用-几何面积问题】40.(2023春•温州期中)如图,在长为32米,宽为20米的长方形地面上修筑同样宽的小路(图中阴影部分),余下部分种植草坪,要使小路的面积为100平方米,设小路的宽为x米,则下面所列方程正确的是()A.32×20﹣32x﹣20x=100B.32x+20x﹣x2=100C.(32﹣x)(20﹣x)+x2=100D.(32﹣x)(20﹣x)=100 41.(2022春•凭祥市期中)如图,在长为30m,宽为15m的长方形地面上修筑同样宽的道路(图中阴影部分),其余部分铺设草坪,要使草坪的面积为406m2,则小路的宽度应为多少()A.1B.1.5C.2D.442.(2023•两江新区一模)如图,某小区居民休闲娱乐中心是一块长方形(长60米,宽40米)场地,被3条宽度相等的绿化带分为总面积为1750平方米的活动场所,如果设绿化带的宽度为x米,由题意可列方程为()A.(60﹣x)(40﹣x)=1750B.(60﹣2x)(40﹣x)=1750C.(60﹣2x)(40﹣x)=2400D.(60﹣x)(40﹣2x)=1750 43.(2023春•涡阳县期中)如图,长方形铁皮的长为10cm,宽为8cm,现在它的四个角上剪去边长为xcm的正方形,做成底面积为24cm2的无盖的长方体盒子,则x的值为()A.2B.7C.2或7D.3或6 44.(2023春•永嘉县校级期中)如图,在高3m,宽4m的长方形墙面上有一块长方形装饰板(图中阴影部分),装饰板的上面和左右两边都留有宽度为x (m)的空白墙面.若长方形装饰板的面积为4m2,则以下方程正确的是()A.(3﹣x)(4﹣x)=4B.(3﹣x)(4﹣2x)=4C.(3﹣2x)(4﹣x)=4D.(3﹣2x)(4﹣2x)=4 45.(2023•碑林区校级模拟)如图,把一块长AB为40cm的长方形硬纸板的四角剪去四个边长为5cm的小正方形,然后把纸板沿虚线折起,做成一个无盖长方体纸盒.若纸盒的体积是1500cm3,则长方形硬纸板的宽为多少?46.(2022秋•城固县期末)如图,现有一块长11cm,宽7cm的长方形硬纸板,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分(图中阴影部分)做成一个底面积为21cm2的无盖长方体盒子,请求出剪去的小正方形的边长.47.(2023•政和县模拟)为培养学生正确的劳动价值观和良好的劳动品质.某校为此规划出矩形苗圃ABCD.苗圃的一面靠墙(墙最大可用长度为15米)另三边用木栏围成,中间也用垂直于墙的木栏隔开分成面积相等的两个区域,并在如图所示的两处各留1米宽的门(门不用木栏),修建所用木栏总长28米,设矩形ABCD的一边CD长为x米.(1)矩形ABCD的另一边BC长为米(用含x的代数式表示);(2)矩形ABCD的面积能否为80m2,若能,请求出AB的长;若不能,请说明理由.48.(2022秋•从化区期末)某农场要建一个矩形动物场,场地的一边靠墙(墙AB长度不限),另外三边用木栏围成,木栏总长20米,设动物场CD边的长为xm,矩形面积为ym2.(1)矩形面积y=(用含x的代数式表示);(2)当矩形动物场面积为48m2时,求CD边的长.(3)能否围成面积为60m2矩形动物场?说明理由.【题型8 一元二次方程应用-几何动态问题】49.(2022秋•舞钢市期中)如图,矩形ABCD中,AB=21cm,BC=8cm,动点E从A出发,以3cm/s的速度沿AB向B运动,动点F从C出发,以2cm/s 的速度沿着CD向D运动,当点E到达点B时,两个点同时停止.则EF的长为10cm时点E的运动时间是()A.3s B.s C.3s或s D.2.5s50.(2022•晋中期中)如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为1cm/s,点Q的速度为2cm/s,点Q移动到C点后停止,点P也随之停止运动,当四边形APQC的面积为9cm2时,则点P运动的时间是()A.3s B.3s或5s C.4s D.5s51.(2022•方城县期末)如图,已知等边三角形ABC的边长为6cm,点P从点A出发,沿A→C→B的方向以2cm/s的速度向终点B运动,同时点Q从点B出发,沿B→A的方向以1cm/s的速度向终点A运动.当点P运动到点B时,两点均停止运动.运动时间记为ts,请解决下列问题:若点P在边AC上,当t为何值时,△APQ为直角三角形?52.(2022秋•江门期末)如图,在△ABC中,∠B=90°,AB=5cm,BC=8cm.点P从点A开始沿AB边向点B以1cm/s的速度移动、同时点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点时,另外一点也随之停止运动.(1)△PQB的面积能否等于9cm2?请说明理由.(2)几秒后,四边形APQC的面积等于16cm2?请写出过程.53.(2021秋•城关区月考)如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.若P,Q两点同时出发,当点Q运动到点C 时,P,Q两点同时停止运动.求:(1)几秒后,PQ的长度等于2cm?(2)△PBQ的面积能否等于7cm2?说明理由.54.(2023春•蚌埠月考)△ABC中,∠B=90°,AB=5cm,BC=6cm,点P 从点A开始沿边AB向终点B以1cm/s的速度移动,与此同时,点Q从点B 开始沿边BC向终点C以2cm/s的速度移动,如果点P、Q分别从点A、B同时出发,当点Q运动到点C时,两点停止运动.设运动时间为t秒.(1)填空:BQ=,PB=(用含t的代数式表示);(2)是否存在t的值,使得△PBQ的面积等于4cm2?若存在,请求出此时t 的值;若不存在,请说明理由.。

中考数学总复习《二次函数与面积问题综合》专题训练(附带答案)

中考数学总复习《二次函数与面积问题综合》专题训练(附带答案)

中考数学总复习《二次函数与面积问题综合》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________ 1.如图,二次函数2=+43y x x --的图像与x 轴交于A B 两点(点A 在点B 左侧) 与y 轴交于C 点.(1)直接写出A B 两点的坐标:A B ;(2)当03x <<时 y 的取值范围是 ;(3)点P 在二次函数2=+43y x x --的图像上 ABP 的面积是ABC 面积的两倍 求点P 的坐标.2.如图,二次函数23y ax bx =++的图象与x 轴交于点A B (点B 在点A 右侧)A 点坐标为()3,0- 对称轴为直线=1x - 顶点为C 连接AC BC ,.(1)求点B C 的坐标;(2)求ABC 的面积.3.已知抛物线2y ax bx c =++(a b c 为常数 0a ≠) 与x 轴交于点()3,0A - 点B 两点 与y 轴交于点()0,3C 对称轴为=1x -.(1)求抛物线的表达式;(2)M 是抛物线上的点且在第二象限 连接AM MC AC 求MAC △面积的最大值.4.如图,抛物线2y ax bx c =++的图像与x 轴交于点A 点C 与y 轴交于点B 且2,4OA OC OB ===.(1)求这个二次函数的解析式 并求出顶点D 的坐标;(2)若点M 为第一象限内抛物线上一点 求M 点坐标为多少时 BCM 的面积最大 并求出这个最大面积.5.如图,在Rt ABC △ 90ABC ∠=︒ 该三角形的三个顶点均在坐标轴上.二次函数2y ax bx c =++过(1,0)A - (0,2)B (4,0)C .(1)求二次函数的解析式;(2)点P 为该二次函数第一象限上一点 当BCP 的面积最大时 求P 点的坐标.6.二次函数23y ax bx =++的图象与x 轴交于(2,0)A (6,0)B 两点 与y 轴交于点C 顶点为E .(1)求点E 的坐标;(2)如图① D 是该二次函数图象的对称轴上一个动点 当BD 的垂直平分线恰好经过点C 时 求点D 的坐标;(3)如图① P 是该二次函数图象上的一个动点 连接OP 取OP 中点Q 连接QC QE CE 当CEQ 的面积为12时 求点P 的坐标.7.如图,二次函数 ²y ax bx c =++的图像与x 轴的交于点(10)A -, (30)B , 与y 轴的交于点C 且顶点P 在直线22y x =+上.(1)求该二次函数的表达式;(2)求APC △的面积.8.将拋物线()212y x =-+平移到图中2l 的位置 且与直线1l 交于()0,1A - ()2,1B 两点.(1)抛物线2l 是由抛物线()212y x =-+向左平移______个单位 再向下平移______个单位得到的;(2)求抛物线2l 的顶点坐标;(3)动点P 在直线1l 下方的抛物线2l 上 求以点O A P B ,,,为顶点的四边形的最大面积.9.已知抛物线2y ax bx c =++与x 轴交 A B 两点 对称轴是y 轴 顶点C 在y 轴ABM与MDE的面积的和是否为定值11.如图① 四边形ABCD 中,AD BC ∥ DC BC ⊥ 6cm AD = 8cm DC = 12cm BC =.动点M 在CB 上运动 从C 点出发到B 点 速度为每秒2cm ;动点N 在BA 上运动 从B 点出发到A 点 速度为每秒1cm .两个动点同时出发 当其中一个点到达终点时 另一个点也随即停止 设两个点的运动时间为t (秒).(1)当t 为何值时 BMN 是直角三角形?(2)设DMN 的面积为S 求S 与t 之间的函数关系式;(3)如图① 连接BD 是否存在某一时刻t 使MN 与BD 互相垂直?若存在 求出这时的t 值;若不存在 请说明理由.12.综合与探究如图,在平面直角坐标系中,抛物线2y ax x c =-+与y 轴交于点()0,4A - 与x 轴交于点()4,0B 连接AB .把PAB的面积分成请说明理由.22:EM y k x b =+交抛物线于点G E 且121k k =- 点P 和点Q 分别为线段GE 和线段DF 的中点 求证:直线PQ 过定点 并求出这个定点的坐标.14.综合与探究如图1 抛物线212y x bx c =-++经过点(4,0)B 和(0,2)C 与x 轴的另一个交点为A 连接AC BC .(1)求该抛物线的解析式及点A 的坐标;(2)如图1 点D 是线段AC 的中点 连接BD .点E 是抛物线上一点 若ABE BCD S S =△△ 设点E 的横坐标为x 请求出x 的值;(3)试探究在抛物线上是否存在一点P 使得45PBO OBC ∠+∠=︒?若存在 请直接写出点P 的坐标;若不存在 请说明理由.ACO从点的三角形记为DEFPB.BCP的面积是当BCP面积最大时参考答案: 1.(1)(1,0);(3,0)(2)31y -<≤(3)点P 坐标为(27,6)+-或(27,6)--2.(1)()10B , ()1,4C -; (2)83.(1)223y x x =--+(2)2784.(1)()219122y x =--+ 顶点D 的坐标为91,2⎛⎫ ⎪⎝⎭ (2)点M 的坐标为()2,4 BCM 面积的最大值为45.(1)抛物线的解析式为213222y x x =-++; (2)当BCP 的面积最大时 ()23P ,.6.(1)(4,)1-(2)(4,329)+ 或(4,329)-(3)(10,8)或()6,24-7.(1)223y x x =-++(2)18.(1)12 134(2)顶点坐标为15,24⎛⎫- ⎪⎝⎭(3)四边形OAPB 的最大面积是215.(1)215466y x x =-++ (2)221633y x x =-+ (3)72。

中考数学 考点系统复习 第三章 函数 第八节 二次函数与几何综合题

中考数学 考点系统复习 第三章 函数 第八节 二次函数与几何综合题

如解图 1,连接 OP,
则 S△PBC=S△OPC+S△OPB-S△OBC,
1
1
1
=2·OC·xp+2·OB·yp-2·OB·OC
=12×3×32+12×4×7156-12×4×3
=485,
45 ∴△PBC 的面积为 8 .
(3)①∵在△OBC 中,BC<OC+OB, ∴当动点 E 运动到终点 C 时,另一个动点 D 也停止运动,
(1)求 A,B,C 三点的坐标(用数字或含 m 的式子表示); (2)已知点 Q 在抛物线的对称轴上,当△AFQ 的周长的最小值等于152时,
求 m 的值. 解:(1)由 x2-(m+1)x+m=0 得 x=m 或 1, ∴A(m,0),B(1,0),
∴对称轴为直线 x=m+2 1,∴Cm+2 1,0.
(3)将点 D 向左平移 3 个单位,向上平移 1 个单位得到点 D′(-2,-a), 如解图,
作点 F 关于 x 轴的对称点 F′,则点 F′的坐标为(0,a-1),当满足条 件的点 M 落在 F′D′上时,由图象的平移知 DN=D′M,故此时 FM+ND 最小,理由:
∵FM+ND=F′M+D′M=F′D′=2 10为最小,
∴当点 F,Q,B 三点共线时,FQ+AQ 最小,此时△AFQ 的周长最小,如 解图.
∵△AFQ 的周长的最小值为152, ∴FQ+AQ 的最小值为75,即 BF=75. ∵OF2+OB2=BF2, ∴1-m2+1=4295,∴m=±15. ∵-1<m<0,∴m=-15.
类型二:二次函数与面积 问题
OT OE TE ∴△ETO∽△OEB,∴EB=OB=OE, ∴OE2=OB·TE,∴3TE=2455=95, 解得 TE=35, ∴OT= BE5=65,∴E53,-65,

二次函数与线段最值定值问题(八大类型)-2023年中考数学压轴题专项训练(学生版)

二次函数与线段最值定值问题(八大类型)-2023年中考数学压轴题专项训练(学生版)

二次函数与线段最值定值问题(八大类型)考向分析题型一二次函数与单线段最值问题1.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c与x轴交于A(5,0),B(-1,0)两点,与.y轴交于点C0,52(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得△ACP是以点A为直角顶点的直角三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;(3)点G为抛物线上的一动点,过点G作GE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为点F,连接EF,当线段EF的长度最短时,求出点G的坐标.题型二二次函数与将军饮马型问题2.如图1,抛物线y=ax2+2x+c与x轴交于A(-4,0),B(1,0)两点,过点B的直线y=kx+23分别与y轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t 秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.题型三二次函数与胡不归型线段最值问题3.已知抛物线y=-1x2+bx+c(b,c为常数)的图象与x轴交于A(1,0),B两点(点A在点B左2侧).与y轴相交于点C,顶点为D.(Ⅰ)当b=2时,求抛物线的顶点坐标;(Ⅱ)若点P是y轴上一点,连接BP,当PB=PC,OP=2时,求b的值;(Ⅲ)若抛物线与x轴另一个交点B的坐标为(4,0),对称轴交x轴于点E,点Q是线段DE上一点,点NQ的最小值.N为线段AB上一点,且AN=2BN,连接NQ,求DQ+54二次函数与三线段和最值问题4.如图1,已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c 过A、B两点,且与x轴交于另一点C.(1)求b、c的值;(2)如图1,点D为AC的中点,点E在线段BD上,且BE=2ED,连接CE并延长交抛物线于点M,求点M的坐标;(3)将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,如图2,P为△ACG内一点,连接PA、PC、PG,分别以AP、AG为边,在他们的左侧作等边△APR,等边△AGQ,连接QR①求证:PG=RQ;②求PA+PC+PG的最小值,并求出当PA+PC+PG取得最小值时点P的坐标.二次函数与线段倍分关系最值问题5.抛物线y=-x2+4ax+b(a>0)与x轴相交于O、A两点(其中O为坐标原点),过点P(2,2a)作直线PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(其中B、C不重合),连接AP交y轴于点N,连接BC和PC.(1)a=32时,求抛物线的解析式和BC的长;(2)如图a>1时,若AP⊥PC,求a的值;(3)是否存在实数a,使APPN =12若存在,求出a的值,如不存在,请说明理由.题型六二次函数与线段乘积问题6.已知直线y=12x+2分别交x轴、y轴于A、B两点,抛物线y=12x2+mx-2经过点A,和x轴的另一个交点为C.(1)求抛物线的解析式;(2)如图1,点D是抛物线上的动点,且在第三象限,求△ABD面积的最大值;(3)如图2,经过点M(-4,1)的直线交抛物线于点P、Q,连接CP、CQ分别交y轴于点E、F,求OE•OF的值.备注:抛物线顶点坐标公式-b2a,4ac-b24a7.抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上一点,且位于x轴下方.(1)如图1,若P(1,-3),B(4,0).①求该抛物线的解析式;②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;(2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时,OE+OFOC是否为定值?若是,试求出该定值;若不是,请说明理由.8.如图,已知抛物线y=ax2+bx+c与x轴分别交于A(-1,0)、B(3,0)两点,与y轴交于点C,且OB=OC.(1)求抛物线的函数表达式;(2)如图1,点D是抛物线顶点,点P(m,n)是在第二象限抛物线上的一点,分别连接BD、BC、BP,若∠CBD=∠ABP,求m的值;(3)如图1,过B、C、O三点的圆上有一点Q,并且点Q在第四象限,连接QO、QB、QC,试猜想线段QO、QB、QC之间的数量关系,并证明你的猜想;(4)如图2,若∠BAC的角平分线交y轴于点G,过点G的直线分别交射线AB、AC于点E、F(不与点A重合),则1AE+1AF的值是否变化?若变化,请说明理由;若不变,请求出它的值.压轴题速练一、解答题1.如图,已知二次函数的图象与x轴交于A、B两点,D为顶点,其中点B的坐标为(5,0),点D的坐标为(1,3).(1)求该二次函数的表达式;(2)试问在该二次函数图象上是否存在点G,使得△ADG的面积是△BDG的面积的35若存在,求出点G的坐标;若不存在,请说明理由.2.在平面直角坐标系中,抛物线y=-x2-4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为(-5,0).(1)求点C的坐标;(2)如图1,若点P是第二象限内抛物线上一动点,求点P到直线AC距离的最大值;(3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.3.如图,已知抛物线y=ax2-32x+c与x轴交于点点A(-4,0),B(1,0),与y轴交于点C.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点Q使QB+QC最小?若存在,请求出Q点坐标;若不存在,请说明理由;(3)点P为AC上方抛物线上的动点,过点P作PD⊥AC,垂足为点D,连接PC,当△PCD与△ACO相似时,求点P的坐标.4.如图,抛物线y=-12x2+bx+c过点A3,2,且与直线y=-x+72交于B、C两点,点B的坐标为4,m.(1)求抛物线的解析式;(2)点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为对称轴上一动点,当线段DE的长度最大时,求PD+PA的最小值.5.抛物线y=ax2+bx-3(a,b为常数,a≠0)交x轴于A-3,0两点.,B4,0(1)求该抛物线的解析式;(2)点C0,4,D是线段AC上的动点(点D不与点A,C重合).①点D关于x轴的对称点为D ,当点D 在该抛物线上时,求点D的坐标;②E是线段AB上的动点(点E不与点A,B重合),且CD=AE,连接CE,BD,当CE+BD取得最小值时,求点D的坐标.6.如图,在平面直角坐标系中,已知抛物线y =ax 2+bx +2a ≠0 与x 轴交于A -1,0 ,B 3,0 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式;(2)点P 为直线BC 上方的抛物线上一点,过点P 作y 轴的垂线交线段BC 于M ,过点P 作x 轴的垂线交线段BC 于N ,求△PMN 的周长的最大值.(3)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以B ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请求出所有满足条件的点M 的坐标;若不存在,请说明理由.7.如图,二次函数y=-14x2+12m-1x+m(m是常数,且m>0)的图象与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,动点P在对称轴l上,连接AC、BC、PA、PC.(1)求点A、B、C的坐标(用数字或含m的式子表示);(2)当PA+PC的最小值等于45时,求m的值及此时点P的坐标;(3)当m取(2)中的值时,若∠APC=2∠ABC,请直接写出点P的坐标.8.已知抛物线y=x+1(m为常数,m>1)的顶点为P.x-m(1)当m=5时,求该抛物线顶点P的坐标;(2)若该抛物线与x轴交于点A,C(点A在点C左侧),与y轴交于点B.①点Q是该抛物线对称轴上一个动点,当AQ+BQ的最小值为22时,求该抛物线的解析式和点Q 的坐标.②连接BC,与抛物线的对称轴交于点H,过点P作PD⊥BC,垂足为D,若BC=8PD,求该抛物线的解析式.9.已知抛物线y=ax2+bx+c(a、b、c是常数,a>0)的顶点为P,与x轴相交于点A-1,0和点B.(1)若b=-2,c=-3,①求点P的坐标;②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;(2)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y轴的负半轴上的动点,当PF+FE+EN的最小值为5时,直接写出顶点P的坐标.10.如图,抛物线y=-x2+bx+c交x轴于A、B两点(点A在点B的左侧)坐标分别为-2,0,4,0,交y轴于点C.(1)求出抛物线解析式:5时,请求(2)如图1,过y轴上点D做BC的垂线,交线段BC于点E,交抛物线于点F,当EF=35出点F的坐标;(3)如图2,点H的坐标是0,2在抛物线上,把△PHQ沿HQ翻折,,点Q为x轴上一动点,点P2,8使点P刚好落在x轴上,请直接写出点Q的坐标.11.抛物线y =ax 2+bx +c 与坐标轴交于A -1,0 、B 4,0 、C 0,2 三点.点P 为抛物线上位于BC 上方的一动点.(1)求抛物线的解析式;(2)如图,过点P 作PF ⊥x 轴于点F ,交BC 于点E ,连结CP 、CF .当S ΔPCE =2S ΔCEF 时,求点P 的坐标;(3)过点P 作PG ⊥BC 于点G ,是否存在点P ,使线段PG 、CG 的长度是2倍关系?若存在,求出点P 的坐标;若不存在,请说明理由.12.已知抛物线y=ax2+bx+c经过点A-4,0.、B1,0、C0,4(1)求抛物线解析式和直线AC的解析式;(2)如图(1),若点P是第四象限抛物线上的一点,若S△PAC=20,求点P的坐标;(3)如图(2),点M是直线AC上方抛物线上的一个动点(不与A、C重合),过点M作MH垂直AC于点H,求MH的最大值.13.如图,已知抛物线y=-x2+bx+c与一直线相交于A-1,0两点,与y轴交于点N,其顶,C2,3点为D.(1)求抛物线及直线AC的解析式.(2)设点M3,m,求使MN+MD的值最小时m的值.(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求出点E,F的坐标;若不能,请说明理由.14.已知抛物线y=ax2+bx+c(a≠0)与x轴有且只有一个交点A2,0,且与y轴于交于点B.(1)求a与c的关系式;(2)若a=1时,点P2,1c在抛物线的对称轴上;①若过B点的直线l:y=kx+m(k≠0)与抛物线只有一个交点;证明:直线l平分∠OBP;②设过P点的直线与抛物线交于M,N点,则1PM+1PN是否为定值,若为定值请求出定值,若不是定值请说明理由.15.如图1,抛物线y=ax2+2x+c,交x轴于A、B两点,交y轴于点C,F为抛物线顶点,直线EF垂直于x轴于点E,当y≥0时,-1≤x≤3.(1)求抛物线的表达式;(2)点P是线段BE上的动点(除B、E外),过点P作x轴的垂线交抛物线于点D.①当点P的横坐标为2时,求四边形ACFD的面积;②如图2,直线AD,BD分别与抛物线对称轴交于M、N两点.试问,EM+EN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.16.已知抛物线y=-x2+2kx-k2+4的顶点为H,与y轴交点为A,点P a,b是抛物线上异于点H的一个动点.(1)若抛物线的对称轴为直线x=1,请用含a的式子表示b;(2)若a=1,作直线HP交y轴于点B,当点A在x轴上方且在线段OB上时,直接写出k的取值范围;(3)在(1)的条件下,记抛物线与x轴的右交点为C,OA的中点为D,作直线CD,过点P作PF⊥CD 于点E并交x轴于点F,若a<3,PE=3EF,求a的值.17.已知抛物线y=ax2+bx+c(a≠0)与x轴只有一个公共点A2,0.且经过点3,1(1)求抛物线的函数解析式;(2)直线l:y=-x+m与抛物线y=ax2+bx+c相交于B、C两点(C点在B点的左侧),与对称轴相交于点P,且B、C分布在对称轴的两侧.若B点到抛物线对称轴的距离为n,且CP=t·BP(2≤t≤3).①试探求n与t的数量关系;②求线段BC的最大值,以及当BC取得最大值时对应m的值.18.如图1,二次函数y =ax 2+bx +3的图像与x 轴交于点A -1,0 ,B 3,0 ,与y 轴交于点C .(1)求二次函数的解析式;(2)点P 为抛物线上一动点.①如图2,过点C 作x 轴的平行线与抛物线交于另一点D ,连接BC ,BD .当S △PBC =2S △DBC 时,求点P 的坐标;②如图3,若点P 在直线BC 上方的抛物线上,连接OP 与BC 交于点E ,求PE OE的最大值.19.抛物线y=ax2-4经过A、B两点,且OA=OB,直线EC过点E4,-1,点D是线段,C0,-3OA(不含端点)上的动点,过D作PD⊥x轴交抛物线于点P,连接PC、PE.(1)求抛物线与直线CE的解析式;(2)求证:PC+PD为定值;(3)在第四象限内是否存在一点Q,使得以C、P、E、Q为顶点的平行四边形面积最大,若存在,求出Q点坐标;若不存在,请说明理由.20.如图1.在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A-2,0,,点B4,0与y轴交于点C0,2.(1)求抛物线的解析式;(2)点P是第一象限内的抛物线上一点.过点P作PH⊥x轴于点H,交直线BC于点Q,求PQ+5CQ的最大值,并求出此时点P的坐标;5(3)如图2.将地物线沿射线BC的方向平移5个单位长度.得到新抛物线y1=a1x2+b1x+c1a1≠0,新抛物线与原抛物线交于点G,点M是x轴上一点,点N是新抛物线上一点,若以点C、G、M、N为顶点的四边形是平行四边形时,请直接写出点N的坐标.。

中考数学题型复习 题型八 二次函数综合题 类型二 与面积有关的问题数学课件

中考数学题型复习 题型八 二次函数综合题 类型二 与面积有关的问题数学课件
于是便可求得平移 计算出AC的长度及AC边的高h, 后的直线解析式及 将AC向上或向下平移得到与AC相 与l的交点坐标 距h个单位的直线,此直线与l的交
点即为点P
12/11/2021
第五页,共二十三页。
背景
问题
作图
求法
如图,平面直角坐标系中,抛物线l 交x轴于点A、B,与y轴交于点D, 点C在x轴下方的图象上,AC交y轴 于点M
2
24
综上所述,点H的坐标为H1(-2,3)或H2(- 1 , 1 5).
24
12/11/2021
第十九页,共二十三页。
(7)若点R是抛物线上的一点,且位于对称轴的左侧,是否存在点R,使
S△RBC= ?若存9 在,求出点R的坐标(zuòbiāo);若不存在,请说明理由. 2
【BC思于维点教K,练可】得先假B设1 C存·R在K=点R,.此9 使时得点SR△,RBKC=坐标92 不.过容点易R计作算BC.的可垂考线虑交
24
12/11/2021
第十五页,共二十三页。
(5)点H是抛物线第二象限内一点,作HG⊥x轴交x轴于点G,试确定H点的 位置(wèi zhi),使△HGA的面积被直线AC分为相等的两部分;
【思维教练】△HGA要被分成(fēn chénɡ)面积相等的两部分,由于高 AG一样,只需HI与IG相等即可,可设H点坐标,分别表示出线段HI 与IG,利用其相等列方程求解即可.
12/11/2021
9 2
,点R的坐标为(
1 37,3 3715).
2
2
第二十二页,共二十三页。
内容(nèiróng)总结
题型八 二次函数(hánshù)综合题。在抛物线上求一点P,使得S△ACP=kS△ABC(k为定值且k>0)。解:(1)已知抛物线解析式y =-x2-2x+3,令y=0,即-x2-2x+3=0,。∴A(-3,0),B(1,0),令x=0,得y=3,。∴S四边形AOCD=S△AOD+S△COD。

中考压轴题-二次函数综合(八大题型+解题方法)——冲刺2024年中考数学考点押题(全国通用)(解析)

中考压轴题-二次函数综合(八大题型+解题方法)——冲刺2024年中考数学考点押题(全国通用)(解析)

中考压轴题-二次函数综合 (八大题型+解题方法)1、求证“两线段相等”的问题:借助于函数解析式,先把动点坐标用一个字母表示出来;然后看两线段的长度是什么距离即是“点点”距离,还是“点轴距离”,还是“点线距离”,再运用两点之间的距离公式或点到x 轴y 轴的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,分别把它们进行化简,即可证得两线段相等;2、“平行于y 轴的动线段长度的最大值”的问题:由于平行于y 轴的线段上各个点的横坐标相等常设为t,借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t 的代数式表示出来,再由两个端点的高低情况,运用平行于y 轴的线段长度计算公式-y y 下上,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标;3、求一个已知点关于一条已知直线的对称点的坐标问题:先用点斜式或称K ,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可;4、“抛物线上是否存在一点,使之到定直线的距离最大”的问题:方法1先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式注意该直线与定直线的斜率相等,因为平行直线斜率k 相等,再由该直线与抛物线的解析式组成方程组,用代入法把字母y 消掉,得到一个关于x 的的一元二次方程,由题有△=2b -4ac=0因为该直线与抛物线相切,只有一个交点,所以2b -4ac=0从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x 、y 的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离; 方法2该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离;方法3先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出;5、常数问题:1点到直线的距离中的常数问题:“抛物线上是否存在一点,使之到定直线的距离等于一个 固定常数”的问题:先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了;2三角形面积中的常数问题:“抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数”的问题:先求出定线段的长度,再表示出动点其坐标需用一个字母表示到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了;3几条线段的齐次幂的商为常数的问题:用K 点法设出直线方程,求出与抛物线或其它直线的交点坐标,再运用两点间的距离公式和根与系数的关系,把问题中的所有线段表示出来,并化解即可;6、“在定直线常为抛物线的对称轴,或x 轴或y 轴或其它的定直线上是否存在一点,使之到两定点的距离之和最小”的问题:先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出利用求交点坐标的方法;7、三角形周长的“最值最大值或最小值”问题:① “在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题简称“一边固定两边动的问题:由于有两个定点,所以该三角形有一定边其长度可利用两点间距离公式计算,只需另两边的和最小即可;② “在抛物线上是否存在一点,使之到定直线的垂线,与y 轴的平行线和定直线,这三线构成的动直角三角形的周长最大”的问题简称“三边均动的问题:在图中寻找一个和动直角三角形相似的定直角三角形,在动点坐标一母示后,运用=C C 动动定定斜边斜边,把动三角形的周长转化为一个开口向下的抛物线来破解;8、三角形面积的最大值问题:① “抛物线上是否存在一点,使之和一条定线段构成的三角形面积最大”的问题简称“一边固定两边动的问题”:方法1:先利用两点间的距离公式求出定线段的长度;然后再利用上面3的方法,求出抛物线上的动点到该定直线的最大距离;最后利用三角形的面积公式= 12底×高;即可求出该三角形面积的最大值,同时在求解过程中,切点即为符合题意要求的点;方法2:过动点向y 轴作平行线找到与定线段或所在直线的交点,从而把动三角形分割成两个基本模型的三角形,动点坐标一母示后,进一步可得到)()(左(定)右(定)下(动)上(动)动三角形x x y y 21−⋅−=S ,转化为一个开口向下的二次函数问题来求出最大值;②“三边均动的动三角形面积最大”的问题简称“三边均动”的问题:先把动三角形分割成两个基本模型的三角形有一边在x 轴或y 轴上的三角形,或者有一边平行于x 轴或y 轴的三角形,称为基本模型的三角形面积之差,设出动点在x 轴或y 轴上的点的坐标,而此类题型,题中一定含有一组平行线,从而可以得出分割后的一个三角形与图中另一个三角形相似常为图中最大的那一个三角形;利用相似三角形的性质对应边的比等于对应高的比可表示出分割后的一个三角形的高;从而可以表示出动三角形的面积的一个开口向下的二次函数关系式,相应问题也就轻松解决了;9、“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:由于该四边形有三个定点,,即可得到一个定三角形的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法与7相同;10、“定四边形面积的求解”问题: 有两种常见解决的方案:方案一:连接一条对角线,分成两个三角形面积之和;方案二:过不在x 轴或y 轴上的四边形的一个顶点,向x 轴或y 轴作垂线,或者把该点与原点连结起来,分割成一个梯形常为直角梯形和一些三角形的面积之和或差,或几个基本模型的三角形面积的和差11、“两个三角形相似”的问题: 两个定三角形是否相似:(1)已知有一个角相等的情形:运用两点间的距离公式求出已知角的两条夹边,看看是否成比例 若成比例,则相似;否则不相似;(2)不知道是否有一个角相等的情形:运用两点间的距离公式求出两个三角形各边的长,看看是否成比例若成比例,则相似;否则不相似;一个定三角形和动三角形相似:(1)已知有一个角相等的情形:先借助于相应的函数关系式,把动点坐标表示出来一母示,然后把两个目标三角形题中要相似的那两个三角形中相等的那个已知角作为夹角,分别计算或表示出夹角的两边,让形成相等的夹角的那两边对应成比例要注意是否有两种情况,列出方程,解此方程即可求出动点的横坐标,进而求出纵坐标,注意去掉不合题意的点;2不知道是否有一个角相等的情形:这种情形在相似性中属于高端问题,破解方法是,在定三角形中,由各个顶点坐标求出定三角形三边的长度,用观察法得出某一个角可能是特殊角,再为该角寻找一个直角三角形,用三角函数的方法得出特殊角的度数,在动点坐标“一母示”后,分析在动三角形中哪个角可以和定三角形中的那个特殊角相等,借助于特殊角,为动点寻找一个直角三角形,求出动点坐标,从而转化为已知有一个角相等的两个定三角形是否相似的问题了,只需再验证已知角的两边是否成比例若成比例,则所求动点坐标符合题意,否则这样的点不存在;简称“找特角,求动点标,再验证”;或称为“一找角,二求标,三验证”;12、“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题:首先弄清题中是否规定了哪个点为等腰三角形的顶点;若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形则有三种情况;先借助于动点所在图象的解析式,表示出动点的坐标一母示,按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程;解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点就是不能构成三角形这个题意;13、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标,任选一个已知点作为对角线的起点,列出所有可能的对角线显然最多有3条,此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可;进一步有:①若是否存在这样的动点构成矩形呢先让动点构成平行四边形,再验证两条对角线相等否若相等,则所求动点能构成矩形,否则这样的动点不存在;②若是否存在这样的动点构成棱形呢先让动点构成平行四边形,再验证任意一组邻边相等否若相等,则所求动点能构成棱形,否则这样的动点不存在;③若是否存在这样的动点构成正方形呢先让动点构成平行四边形,再验证任意一组邻边是否相等和两条对角线是否相等若都相等,则所求动点能构成正方形,否则这样的动点不存在;14、“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,后面的19实为本类型的特殊情形;先用动点坐标“一母示”的方法设出直接动点坐标,分别表示如果图形是动图形就只能表示出其面积或计算如果图形是定图形就计算出它的具体面积,然后由题意建立两个图形面积关系的一个方程,解之即可;注意去掉不合题意的点,如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可;15、“某图形〈直线或抛物线〉上是否存在一点,使之与另两定点构成直角三角形”的问题:若夹直角的两边与y轴都不平行:先设出动点坐标一母示,视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线没有与y轴平行的直线垂直的斜率结论两直线的斜率相乘等于-1,得到一个方程,解之即可;若夹直角的两边中有一边与y 轴平行,此时不能使用斜率公式;补救措施是:过余下的那一个点没在平行于y轴的那条直线上的点直接向平行于y的直线作垂线或过直角点作平行于y轴的直线的垂线与另一相关图象相交,则相关点的坐标可轻松搞定;16、“某图象上是否存在一点,使之与另两定点构成等腰直角三角形”的问题;①若定点为直角顶点,先用k点法求出另一直角边所在直线的解析式如斜率不存在,根据定直角点,可以直接写出另一直角边所在直线的方程,利用该解析式与所求点所在的图象的解析式组成方程组,求出交点坐标,再用两点间的距离公式计算出两条直角边等否若等,该交点合题,反之不合题,舍去;②若动点为直角顶点:先利用k点法求出定线段的中垂线的解析式,再把该解析式与所求点所在图象的解析式组成方程组,求出交点坐标,再分别计算出该点与两定点所在的两条直线的斜率,把这两个斜率相乘,看其结果是否为-1 若为-1,则就说明所求交点合题;反之,舍去;17、“题中含有两角相等,求相关点的坐标或线段长度”等的问题:题中含有两角相等,则意味着应该运用三角形相似来解决,此时寻找三角形相似中的基本模型“A”或“X”是关键和突破口;18、“在相关函数的解析式已知或易求出的情况下,题中又含有某动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或线段长”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,本类型实际上是前面14的特殊情形;先把动图形化为一些直角梯形或基本模型的三角形有一边在x 轴或y轴上,或者有一边平行于x 轴或y 轴面积的和或差,设出相关点的坐标一母示,按化分后的图形建立一个面积关系的方程,解之即可;一句话,该问题简称“单动问题”,解题方法是“设点动点标,图形转化分割,列出面积方程”;19、“在相关函数解析式不确定系数中还含有某一个参数字母的情况下,题中又含有动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或参数的值”的问题:此为“双动问题”即动解析式和动图形相结合的问题;如果动图形不是基本模型,就先把动图形的面积进行转化或分割转化或分割后的图形须为基本模型,设出动点坐标一母示,利用转化或分割后的图形建立面积关系的方程或方程组;解此方程,求出相应点的横坐标,再利用该点所在函数图象的解析式,表示出该点的纵坐标注意,此时,一定不能把该点坐标再代入对应函数图象的解析式,这样会把所有字母消掉;再注意图中另一个点与该点的位置关系或其它关系,方法是常由已知或利用2问的结论,从几何知识的角度进行判断,表示出另一个点的坐标,最后把刚表示出来的这个点的坐标再代入相应解析式,得到仅含一个字母的方程,解之即可;如果动图形是基本模型,就无须分割或转化了,直接先设出动点坐标一母式,然后列出面积方程,往下操作方式就与不是基本模型的情况完全相同;一句话,该问题简称“双动问题”,解题方法是“转化分割,设点标,建方程,再代入,得结论”;常用公式或结论:1横线段的长 = 横标之差的绝对值 =-x x 大小=-x x 右左纵线段的长=纵标之差的绝对值=-y y 大小=-y y 下上 2点轴距离:点P 0x ,0y 到X 轴的距离为0y ,到Y 轴的距离为o x ; 3两点间的距离公式:若A 11,x y ,B 2,2x y , 则AB=目录:题型1:存在性问题 题型2:最值问题 题型3:定值问题 题型4:定点问题题型5:动点问题综合 题型6:对称问题 题型7:新定义题 题型8:二次函数与圆题型1:存在性问题1.(2024·四川广安·二模)如图,抛物线2y x bx c =−++交x 轴于()4,0A −,B 两点,交y 轴于点()0,4C .(1)求抛物线的函数解析式.(2)点D 在线段OA 上运动,过点D 作x 轴的垂线,与AC 交于点Q ,与抛物线交于点P ,连接AP 、CP ,求四边形AOCP 的面积的最大值.(3)在抛物线的对称轴上是否存在点M ,使得以点A 、C 、M 为顶点的三角形是直角三角形?若存在,请求出点M【答案】(1)234y x x =−−+;(2)四边形AOCP 的面积最大为16;(3)点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.【分析】本题主要考查了二次函数综合,熟练掌握用待定系数法求解函数解析式的方法和步骤,以及二次函数的图象和性质,是解题的关键. (1)把()4,0A −,()0,4C 代入2y x bx c =−++,求出b 和c 的值,即可得出函数解析式; (2)易得182AOCSOA OC =⋅=,设()2,34P t t t −−+,则(),4Q t t +,求出24PQ t t =−−,则()()212282ACP C A S PQ x x t =⋅−=−++,根据四边形AOCP 的面积()22216ACP AOCS St =+=−++,结合二次函数的增减性,即可解答;(3)设3,2M m ⎛⎫− ⎪⎝⎭,根据两点之间距离公式得出232AC =,22254AM m =+,229(4)4CM m =+−,然后分情况根据勾股定理列出方程求解即可.【解析】(1)解:把()4,0A −,()0,4C 代入2y x bx c =−++得:01644b c c =−−+⎧⎨=⎩,解得:34b c =−⎧⎨=⎩,∴该二次函数的解析式234y x x =−−+;(2)解:∵()4,0A −,()0,4C ,∴4,4OA OC ==,∴1144822AOC S OA OC =⋅=⨯⨯=△,设直线AC 的解析式为4y kx =+, 代入()4,0A −得,044k =−+,解得1k =,∴直线AC 的解析式为4y x =+, 设()2,34P t t t −−+,则(),4Q t t +,∴()223444PQ t t t t t=−−+−+=−−∴()()()22114422822ACPC A SPQ x x t t t =⋅−=−−⨯=−++,∴四边形AOCP 的面积()22216ACP AOCSSt =+=−++,∵20−<,∴当2t =−时,四边形AOCP 的面积最大为16; (3)解:设3,2M m ⎛⎫− ⎪⎝⎭,∵()4,0A −,()0,4C ,∴2224432AC =+=,2222325424AM m m ⎛⎫=−++=+ ⎪⎝⎭,()()2222394424CM m m ⎛⎫=−+−=+− ⎪⎝⎭,当斜边为AC 时,AM CM AC 222+=,即()2225943244m m +++−=,整理得:24150m m ++=,无解;当斜边为AM 时,222AC CM AM +=,即2292532(4)44m m ++−=+,解得:112m =;∴311,22M ⎛⎫− ⎪⎝⎭当斜边为CM 时,222AC AM CM +=,即2225932(4)44m m ++=+−, 解得:52m =−;∴35,22M ⎛⎫−− ⎪⎝⎭综上:点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.2.(2024·内蒙古乌海·模拟预测)如图(1),在平面直角坐标系中,抛物线()240y ax bx a =+−≠与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为()1,0−,且OC OB =,点D 和点C 关于抛物线的对称轴对称.(1)分别求出a ,b 的值和直线AD 的解析式;(2)直线AD 下方的抛物线上有一点P ,过点P 作PH AD ⊥于点H ,作PM 平行于y 轴交直线AD 于点M ,交x 轴于点E ,求PHM 的周长的最大值;(3)在(2)的条件下,如图2,在直线EP 的右侧、x 轴下方的抛物线上是否存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似?如果存在,请直接写出点G 的坐标;如果不存在,请说明理由.【答案】(1)1a =,3b =−,=1y x −−(2)4+(3)存在,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭【分析】本题主要考查的是二次函数的综合应用,掌握二次函数的交点式、配方法求二次函数的最值、相似三角形的判定、等腰直角三角形的判定、一元二次方程的求根公式,列出PM 的长与a 的函数关系式是解题的关键.(1)先求得C 的坐标,从而得到点B 的坐标,设抛物线的解析式为()()14y a x x =+−,将点C 的坐标代入求解即可;先求得抛物线的对称轴,从而得到点()3,4D −,然后可求得直线AD 的解析式=1y x −−;(2)求得45BAD ∠=︒,接下来证明PMD △为等腰直角三角形,所当PM 有最大值时三角形的周长最大,设()2,34P a a a −−,()1M a −−,则223PM aa =−++,然后利用配方可求得PM 的最大值,最后根据MPH△的周长(1PM=求解即可;(3)当90EGN ∠=︒时,如果OA EG OC GN = 或OA GNOC EN =时,则AOC ∽EGN △,设点G 的坐标为(),0a ,则()2,34N a a a −−,则1EG a =−,234NG aa =−++,然后根据题意列方程求解即可.【解析】(1)点A 的坐标为()1,0−,1OA ∴=.令0x =,则4y =−,()0,4C ∴−,4OC =,OC OB =Q , 4OB ∴=,()4,0B ∴,设抛物线的解析式为()()14y a x x =+−,将0x =,4y =−代入得:44a −=−,解得1a =,∴抛物线的解析式为234y x x =−−;1a ∴=,3b =−; 抛物线的对称轴为33212x −=−=⨯,()0,4C −,点D 和点C 关于抛物线的对称轴对称,()3,4D ∴−;设直线AD 的解析式为y kx b =+.将()1,0A −、()3,4D −代入得:034k b k b −+=⎧⎨+=−⎩,解得1k =−,1b =-,∴直线AD 的解析式=1y x −−;(2)直线AD 的解析式=1y x −−,∴直线AD 的一次项系数1k =−,45BAD ∴∠=︒. PM 平行于y 轴,90AEP ∴∠=︒,45PMH AME ∴∠=∠=︒.MPH ∴的周长(122PM MH PH PM MP PM PM =++=++=. 设()2,34P a a a −−,则(),1M a a −−, 则()22213423(1)4PM a a a a a a =−−−−−=−++=−−+.∴当1a =时,PM 有最大值,最大值为4.MPH ∴的周长的最大值(414=⨯=+(3)在直线EP 的右侧、x 轴下方的抛物线上存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似;理由如下:设点G 的坐标为(),0a ,则()2,34N a a a −−①如图2.1,若OA EG OC GN = 时,AOC ∽EGN △. 则 211344a a a −=−++,整理得:280a a +−=.得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭; ②如图2.2,若OA GN OC EN =时,AOC ∽NGE ,则21434a a a −=−++,整理得:2411170a a −−=,得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭, 综上所述,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭. 3.(2024·重庆·一模)如图,在平面直角坐标系中,抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B ,与y 轴交于点C ,连接BC ,AC .(1)求抛物线的表达式;(2)P 为直线BC 上方抛物线上一点,过点P 作PD BC ⊥于点D ,过点P 作PE x 轴交抛物线于点E,求4+PD PE 的最大值及此时点P 的坐标; (3)点C 关于抛物线对称轴对称的点为Q ,将抛物线沿射线CAy ',新抛物线y '与y 轴交于点M ,新抛物线y '的对称轴与x 轴交于点N ,连接AM ,MN ,点R 在直线BC 上,连接QR .当QR 与AMN 一边平行时,直接写出点R 的坐标,并写出其中一种符合条件的解答过程.【答案】(1)2y x x =++(2)当154t =时,PE的最大值,15,416P ⎛ ⎝⎭, (3)R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(.【分析】(1)利用待定系数法求抛物线解析式即可;(2)先求得2y x =2x =,过点P 作PG x ⊥轴交BC 于点F ,利用勾股定理求得BC ==DPF OBC ∽,得PF DP BC OB =即PF PD=,从而得PF =,求出设直线BC的解析式后,设2,P t ⎛+ ⎝,则,F t ⎛+ ⎝,从而2PF =+,当点P在E 点右侧时()424PE t t t =−−=−,从而得2154t ⎫=−⎪⎝⎭,利用二次函数的性质即可求解;当点P 在E 点左侧时:442PE t t t =−−=−时,同理可求.然后比较4+PE 的最大值即可得出答案. (3)先求得1OA=,OC AC =设抛物线2y =H ⎛ ⎝⎭平移后为P ,过点P 作PW ⊥直线2x =,则AOC PWH ∽,得1OA OC AC WP HW PH ====,进而得平移后的抛物线2y x +'=,从而求得()1,0N,M ⎛ ⎝⎭,然后分QR AM ∥,QR MN ∥,QR AN ∥三种情况,利用二次函数的性质及一次函数的与二元一次方程的关系求解即可得解.【解析】(1)解:∵抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B 两点,代入坐标得:02550a b a b ⎧−=⎪⎨+=⎪⎩,解得:a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为255y x x =−++(2)解:∵)2225555y x x x =−+=−−+,∴2y x =2x=,顶点为⎛ ⎝⎭ 过点P 作PG x ⊥轴交BC 于点F ,当0x =时,200y =∴(C ∵()5,0B ∴BC ==∵PG x ⊥轴,PD BC ⊥,x 轴y ⊥轴,∴909090CBO BFG DPF PFD PDF BOC ∠∠∠∠∠∠+=︒+=︒==︒,,∵PFD BFG ∠∠=∴DPF CBO ∠∠=∴DPF OBC ∽,∴PF DP BC OB =即PF PD =,∴PF PD =∴44+PD PE =PF +PE ,设直线BC :y kx b =+,把(C ,()5,0B 代入得:05k b b =+⎧⎪=,解得5k b ⎧=−⎪⎨⎪=⎩, ∴直线BC:y =设2,P t ⎛ ⎝,则,F t ⎛+ ⎝,∴22PF ⎛⎛=−+=+ ⎝⎝,∵2y x =2x =,PE x 轴,∴24,E t ⎛−+ ⎝当点P 在E 点右侧时:()424PE t t t =−−=−,当24PE t =−时:∴+PD PE =PF +()221524545416t t ⎛⎫=−+−=−−+ ⎪⎝⎭ ∴当154t =时,的最大值∴2151544⎛⎫= ⎪⎝⎭,∴154P ⎛ ⎝⎭; 当点P 在E 点左侧时:442PE t t t =−−=−时,∴+PD PE =PF +()225424t t ⎫=−=−⎪⎝⎭, ∴当54t =时,的最大值.2,55P t ⎛−+ ⎝∴25544⎛⎫ ⎪⎝⎭∴5,416P ⎛ ⎝⎭,∵> 综上所诉,当点P 在E 点右侧时:即154t =时,的最大值,154P ⎛ ⎝⎭, (3)解:设直线AC :y mx n =+,把()1,0A −,(C , ∴1OA =,OC =∴AC ==设抛物线2y x =H ⎛ ⎝⎭平移后为P , 过点P 作PW ⊥直线2x =,则AOC PWH ∽,∴1OA OC AC WP HW PH ====∴1PW =,HW=∴21,5P ⎛−⎝即1,5P ⎛ ⎝⎭,∴平移后的抛物线)22155555y x x x =−−+=−++', ∴()1,0N令0x =,y '=,∴M ⎛ ⎝⎭ 如图,当QR AM ∥时,设直线AM 的解析式为:y px q =+,把M ⎛ ⎝⎭,()1,0A −代入得:0p q q =−+⎧=解得p q ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AM的解析式为:y =, ∴设直线QR的解析式为:y x n =∵(C ,Q 和C 关于2x =对称,∴(Q把(Q代入5y x n =+45n +,解得n =,∴直线QR的解析式为:y = 联立直线QR的解析式y =与直线BC:y x =+55y x y x ⎧=−⎪⎪⎨⎪=⎪⎩,解得3x y =⎧⎪⎨=⎪⎩,∴R ⎛ ⎝⎭ 同理可得:当QR MN ∥时,6,5R ⎛− ⎝⎭ 当QR AN ∥时,(R所有符合条件的R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(. 【点睛】本题考查待定系数法求抛物线解析式,勾股定理,抛物线的性质,抛物线平移,一次函数的平移,相似三角形的判定及性质,图形与坐标,掌握待定系数法求抛物线解析式,抛物线的性质,抛物线平移,相似三角形的判定及性质,图形与坐标,利用辅助线画出准确图形是解题关键.题型2:最值问题4.(2024·安徽合肥·二模)在平面直角坐标系中,O 为坐标原点,抛物线23y ax bx =+−与x 轴交于()1,0A −,()3,0B 两点,与y 轴交于点C ,连接BC .(1)求a ,b 的值;(2)点M 为线段BC 上一动点(不与B ,C 重合),过点M 作MP x ⊥轴于点P ,交抛物线于点N . (ⅰ)如图1,当3PA PB=时,求线段MN 的长; (ⅱ)如图2,在抛物线上找一点Q ,连接AM ,QN ,QP ,使得PQN V 与APM △的面积相等,当线段NQ 的长度最小时,求点M 的横坐标m 的值.【答案】(1)1a =,2b =−(2)(ⅰ)2MN =;(ⅱ)m 的值为32或12【分析】本题考查诶粗函数的图象和性质,掌握待定系数法和利用函数性质求面积是解题的关键.(1)运用待定系数法求函数解析式即可;(2)(ⅰ)先计算BC 的解析式,然后设(),3M m m −,则3PM PB m ==−,1PA m =+,根据题意得到方程133m m +=−求出m 值,即可求出MN 的长;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,然后分为点Q 在PN 的左侧和点Q 在PN 的右侧两种情况,根据勾股定理解题即可.【解析】(1)由题意得309330a b a b −−=⎧⎨+−=⎩,解得12a b =⎧⎨=−⎩;(2)(ⅰ)当0x =时,3y =−,∴()0,3C −,设直线BC 为3y kx =−,∵点()3,0B ,∴330k −=,解得1k =,∴直线BC 为3y x =−,设(),3M m m −,则3PM PB m ==−,1PA m =+, ∵3PA PB =, ∴133m m +=−,解得2m =,经检验2m =符合题意,当2m =时,222233y =−⨯−=−, ∴3PN =,31PM PB m ==−=,∴2MN =;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,PQN V 的面积为()21232m m QR −++⋅,APM △的面积为()()1312m m −+,∴()()()211233122m m QR m m −++⋅=−+,解得1QR =;当点Q 在PN 的左侧时,如图1,Q 点的横坐标为1m QR m −=−,纵坐标为()()2212134m m m m −−⨯−−=−,∴R 点的坐标为()2,4m mm−,∵N 点坐标为()2,23m mm −−,∴32RN m =−,∴()22231NQ m =−+,∴当32m =时,NQ 取最小值;当点Q 在PN 的右侧时,如图2,Q 点的横坐标为1m QR m +=+,纵坐标为()()2212134m m m +−⨯+−=−,∴R 点的坐标为()2,4m m−,∵N 点的坐标为()2,23m mm −−,∴21RN m =−, ∴()222211NQ m =−+,∴当12m =时,NQ 取最小值.综上,m 的值为32或12.。

中考数学总复习《二次函数中的面积问题存在性问题》专题训练-附答案

中考数学总复习《二次函数中的面积问题存在性问题》专题训练-附答案

中考数学总复习《二次函数中的面积问题存在性问题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,在平面直角坐标系中,二次函数()230y ax bx a =++≠的图象与x 轴交于()3,0A ,()1,0B -两点,与y 轴交于点C .(1)求抛物线的函数解析式;(2)P 是直线AC 上方的抛物线上一动点,当ACP △的面积最大时,求点P 的坐标.2.综合与探究:如图,在平面直角坐标系中,二次函数228y x x =--的图像与x 轴交于A ,B 两点,点A 在点B 的左侧,与y 轴交于点C ,点P 是直线BC 下方抛物线上的一个动点.(1)求点A ,B ,C 的坐标;(2)连接PO 和PC ,并将POC △沿y 轴对折,得到四边形POP C '.是否存在点P ,使四边形POP C '为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时点P 的坐标和四边形ABPC 的最大面积. 3.如图,抛物线2y x bx c =-++过点(1,0)A -和(3,0)B ,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 为抛物线对称轴上一动点,当PCB 是以BC 为底边的等腰三角形时,求P 的坐标;(3)在(2)条件下,是否存在点M 为抛物线上的点,使得2BCM BCP S S =△△?若存在,求出点M 的横坐标;若不存在,请说明理由.4.综合与实践如图,在平面直角坐标系中,直线4y x =-+与两坐标轴分别交于B 、C 两点,抛物线2(1)y x m x m =-+-+经过B 、C 两点与x 轴的另一个交点为A .(1)求m 的值(2)直接写出点A 的坐标(3)已知点D 在第一象限的抛物线上,过点D 作DE OC ∥交直线BC 于点E ,点E 的坐标为()2,2,点F 在第二象限的抛物线上,且5FDE S =△,求点F 到直线DE 的距离(4)在(3)的条件下,在坐标平面内是否存在点P ,使以A 、D 、E 、P 为顶点的四边形是平行四边形? 若存在,请直接写出点P 的坐标,若不存在,请说明理由5.如图,二次函数2y x bx c =-++的图象经过坐标原点,与x 轴交于点()2,0A -.(1)求此二次函数的解析式及点顶点B 的坐标;(2)在抛物线上否存在点P ,使1AOP S =?若存在,请求出点P 的坐标;如果不存在,请说明理由. 6.在平面直角坐标系xOy 中,抛物线22y ax ax c =-+(0a >,a 、c 为常实数)交x 轴于A 、B 两点,与y 轴交于C 点.(1)如图1,若(1,0),(2,3)A D --在此抛物线上,求出这个抛物线解析式;(2)如图2,在(1)的条件下,M 为(1)中抛物线第四象限一动点,连CM 、BM ,求能使四边形ABMC 面积最大时的M 点坐标;并求出四边形ABMC 的最大面积.(3)将抛物线平移到以坐标原点O 为顶点的位置,P 为坐标系y 轴正半轴上一点,E 、F 为平移后的抛物线上两点,E 始终在F 点左边,连AE 、AF 、EF ,若E 、F 点横坐标分别为m 、,则当PEF 为等腰直角三角形,且90EPF ∠=︒时,求m 、n 间的数量关系.7.如图,抛物线2y x bx c =++与x 轴交于()1,0A -,()3,0B 两点.(1)求该抛物线的解析式;(2)连接BC ,点P 是直线BC 下方抛物线上的动点,当点P 在该抛物线上什么位置时,PBC 面积最大,最大值为多少,并求出此时P 点的坐标;(3)设点D 是该抛物线的对称轴上的一点,在抛物线上是否存在点Q ,使得以B 、C 、D 、Q 为顶点的四边形是平行四边形,若存在,求出Q 点的坐标;若不存在,请说明理由.8.如图,有长为30m 的篱笆,一面利用墙(墙的最大可用长度为10m ),围成中间隔有一道篱笆(平行于AB )的矩形花圃.设花圃的一边AB 为m x ,面积为2m y .(1)求y 与x 的函数关系式;(2)如果要围成面积为263m 的花圃,AB 的长是多少?(3)当x 取何值时,y 有最大值?并求出最大值.9.如图,抛物线2y ax =与直线y bx c =+的两个交点分别为()2,4A -和()1,1B .(1)求a ,b ,c 的值;(2)连接,AO BO ,求ABO 的面积;(3)点P 在y 轴上,且ABP 的面积是ABO 面积的2倍,求点P 的坐标.10.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点.(1)求A 、B 两点坐标.(2)当PAB 的周长达最小时,求P 点坐标和PAB 的面积.11.如图,抛物线23y x bx c =-++交x 轴于点()1,0A -和B ,交y 轴于点()0,33C ,顶点为D .(1)求抛物线的表达式;(2)若点E 在第一象限内对称右侧的抛物线上,四边形ODEB 的面积为73,求点E 的坐标;12.如图,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴交于点()30A -,和点()10B ,,顶点为D .直线l 与抛物线交于B ,C 两点,其中点C 的坐标为()2,3--.(1)求抛物线和直线l 的解析式;(2)直线l 与抛物线的对称轴交于点E ,P 为线段BC 上一动点(点P 不与点B ,C 重合),过点P 作PF ∥DE 交抛物线于点F ,设点P 的横坐标为t .①当t 为何值时,四边形PEDF 是平行四边形;①设BCF 的面积为S ,当t 为何值时,S 最大?最大值是多少?13.如图,直线l :33y x =--与x 轴、y 轴分别相交于A ,B 两点,与抛物线224y ax ax a =++-交于点B .(1)求该抛物线的解析式;(2)已知点M 是抛物线上的一个动点,并且点M 在第三象限内,连接AM 、BM ,设点M 的横坐标为m ,四边形OAMB 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值;(3)若点C 在直线AB 上,抛物线上是否存在点D 使得以O ,B ,C ,D 为顶点的四边形是平行四边形.若存在,请直接写出点D 的坐标.14.如图,抛物线2y ax 2x c =++经过点()3,0A -和点()1,0B ,与y 轴交于点C ,点P 在直线AC 下方的抛物线上,过点P 作PQ y ∥轴交AC 于点Q ,连接PA ,PC ,BC ,设点P 的横坐标为m .(1)求抛物线的解析式及点C 的坐标;(2)求线段PQ 长度的最大值;(3)当APC 的面积大于BOC 的面积时,求m 的取值范围.15.如图,已知二次函数232y ax x c =++的图象与y 轴交于点()0,4A ,与x 轴交于点B 、C ,点C 坐标为(8,0).连接AB 、AC .(1)请直接写出二次函数的232y ax x c =++表达式; (2)若点N 在线段BC 上运动(不与点B 、C 重合),连接AN .①当以点A 、N 、C 为顶点的三角形是等腰三角形时,请求出此时点N 的坐标; ①过点N 作NM AC ∥,交AB 于点M ,求AMN 面积的取值范围.参考答案:1.(1)223y x x =-++(2)31524P ⎛⎫ ⎪⎝⎭,2.(1)(2,0)-,(4,0)和(0,8)-(2)存在 (15,4)+-(3)(2,8)-,323.(1)223y x x =-++(2)()1,1P(3)M 点横坐标为3172+或3172-或1或24.(1)4(2)()1,0A -(3)52 (4)存在,()11,4P -或()21,4P --或()35,8P5.(1)22y x x =-- ()1,1B -(2)()()()1,1211,21,1,------,6.(1)2=23y x x --(2)315,24M ⎛⎫- ⎪⎝⎭,四边形ABMC 面积行最大值,为758 (3)0m n +=或1n m a-=7.(1)抛物线的解析式为2=23y x x --(2)当t =32时,PBC 的面积最大,最大值为278,此时点P 的坐标为315,24⎛⎫- ⎪⎝⎭ (3)存在,满足条件的点()4,5Q 或()2,5- ()2,3-.8.(1)2330y x x =-+(2)7m(3)当20m 3x =时面积最大,最大面积为2200m 39.(1)1a = 1,2b c =-=(2)3(3)()0,2-或()0,610.(1)点A 的坐标为()1,2,点B 的坐标为()4,5; (2)点P 的坐标为130,5⎛⎫ ⎪⎝⎭,PAB 的面积为125.11.(1)232333y x x =-++(2)()2,33E12.(1)223y x x =+- 1y x =-;(2)①0=t ;①12t =-,最大值是278.13.(1)该抛物线的解析式为223y x x =+-(2)S 有最大值,当52m =-时,S 的最大值是378(3)53715337,22⎛⎫-+- ⎪ ⎪⎝⎭ 53715337,22⎛⎫--+ ⎪ ⎪⎝⎭ 5133313,22⎛⎫-+- ⎪ ⎪⎝⎭ 5133313,22⎛⎫--+ ⎪ ⎪⎝⎭14.(1)抛物线的解析式为223y x x =+- ()0,3C -(2)PQ 长度的最大值是94(3)352--<m <352-+15.(1)213442y x x =-++(2)①()3,0或()845,0-;①05AMN S <≤△。

17专题八 二次函数压轴题类型二 面积问题(word版习题)

17专题八 二次函数压轴题类型二  面积问题(word版习题)

专题八二次函数压轴题类型二面积问题[2019.23(2)②;2019.23(2)]试题演练1.如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;(3)点Q是线段AB上的动点,过点Q作QD∥AC,交BC于点D,连接CQ.当△CQD的面积最大时,求点Q的坐标.2.(2019深圳9分)如图,抛物线y=ax2+bx+2经过点A(-1,0),B(4,0),交y轴于点C.(1)求抛物线的解析式(用一般式表示);2(2)点D为y轴右侧抛物线上一点,是否存在点D,使S△ABC=S△ABD?若存在3请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.第2题图3.(2019泸州12分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(-1,0),B(4,0),C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于第一象限上的一动点,连接P A分别交BC,y轴于点E ,F ,若△PEB ,△CEF 的面积分别为S 1,S 2,求S 1-S 2的最大值.第3题图4.(2019濮阳模拟)如图,直线y =-x -4与抛物线y =ax 2+bx +c 相交于A ,B 两点,其中A ,B 两点的横坐标分别为-1和-4,且抛物线过原点.(1)求抛物线的解析式;(2)在坐标轴上是否存在点C ,使得AC =BC ?若存在,求出点C 的坐标,若不存在,请说明理由;(3)如图②,若点P 是线段AB 上不与A ,B 重合的动点,过点P 作PE ∥OA ,与抛物线第三象限的部分交于一点E ,过点E 作EG ⊥x 轴于点G ,交AB 于点F ,EF若S △BGF =3S △EFP ,求的值.GF第4题图答案试题演练1.解:(1)∵抛物线经过点C (0,4),A (4,0),1⎧⎪a =-解得⎨2,⎪⎩c =412x +x +4;29(2)由(1)可求得抛物线顶点为N (1,),2∴抛物线解析式为y =-如解图①,作点C 关于x 轴的对称点C ′(0,-4),连接C ′N 交x 轴于点K ,则K 点即为所求,9⎧⎪k +b =设直线C ′N 的解析式为y =kx +b ,把C ′、N 点坐标代入可得⎨2,解⎪⎩b =-417⎧k =⎪得⎨2,⎪⎩b =-4∴直线C′N的解析式为y=17x-4,28,178∴点K的坐标为(,0);17令y=0,解得x=第1题解图①(3)设点Q(m,0),过点D作DG⊥x轴于点G,如解图②,1由-x2+x+4=0,得x1=-2,x2=4,2∴点B的坐标为(-2,0),AB=6,BQ=m+2,又∵QD∥AC,∴△BQD∽△BAC,DG BQ DG m+22m+4∴,即,解得DG=;==CO BA463112m+41∴S△CQD=S△CBQ-S△DBQ=(CO-DG)·BQ=(4-)(m+2)=-m2+2233281m+=-(m-1)2+3. 333又∵-2≤m≤4,∴当m=1时,S△CQD有最大值3,此时Q(1,0).第1题解图②2.解:(1)将点A(-1,0),B(4,0)代入y=ax2+bx+2中,得1⎧a=-⎪⎧a-b+2=0⎪2,解得,⎨⎨316a+4b+2=0⎩⎪b=⎪⎩2∴抛物线的解析式为y=-123x+x+2;22(2)存在,点D的坐标为(1,3)或(2,3)或(5,-3).【解法提示】如解图①,过点D作DE⊥AB于点E.第2题解图①1313设D(m,-m2+m+2)(m>0),则DE=|-m2+m+2|.2222∵A(-1,0),B(4,0),∴AB=5.∵抛物线交y轴于点C,令x=0,有y=2,∴C(0,2),∴OC=2.∵OC⊥AB,1∴S△ABC=AB·OC=5,22又∵S△ABC=S△ABD,3115∴S△ABD=AB·DE=,2213∴DE=|-m2+m+2|=3,2213当-m2+m+2=3时,解得m1=1,m2=2;2213当-m2+m+2=-3时,解得m3=-2(舍去),m4=5.22综上所述,点D的坐标为(1,3)或(2,3)或(5,-3);(3)如解图②,过点C作CF⊥BC交BE于点F,过点F作FH⊥y轴于点H,过点E作EG⊥x轴于点G.第2题解图②∵CF⊥BC,∠CBF=45°,∴△BCF是等腰直角三角形,且BC=CF,∠OCB +∠FCH =90°,又∵FH ⊥y 轴,∴∠CFH +∠FCH =90°,∠CHF =∠BOC =90°,∴∠OCB =∠CFH ,∴△BOC ≌△CHF (AAS ),又∵B (4,0),C (0,2),∴CH =OB =4,FH =OC =2,∴OH =6,∴F (2,6).设BE 的解析式为y =kx +c ,将B (4,0),F (2,6)代入y =kx +c ,得⎧4k +c =0⎧k =-3,解得,⎨⎨2k +c =6c =12⎩⎩∴BE 的解析式为y =-3x +12.联立抛物线和直线BE 的解析式,得⎧x 1=4⎧x 2=5解得⎨(舍去),⎨,⎩y 1=0⎩y 2=-3∴E (5,-3),∵EG ⊥x 轴,∴BG =1,EG =3,∴在Rt △BEG 中,BE =BG 2+EG 2=10.3.解:(1)由题意,设抛物线的解析式为y =a (x +1)(x -4),∵抛物线图象过点C (0,2),1∴-4a =2,解得a =-,21∴抛物线的解析式为y =- (x +1)(x -4),2即y =-123x +x +2;22(2)设直线BD 与y 轴的交点为M (0,m ).∵∠DBA =∠CAO ,∴∠MBA =∠CAO ,∴tan ∠MBA =tan ∠CAO =2,∴m=2,即m =±8.4当m =8时,直线BD 解析式为y =-2x +8.⎧y =-2x +8⎪联立⎨,123y =-x +x +2⎪⎩22⎧x 1=4⎧x 2=3解得⎨(舍去),⎨,⎩y 1=0⎩y 2=2∴D 1(3,2).当m =-8时,直线BD 解析式为y =2x -8.⎧y =2x -8⎪联立⎨123y =-x +x +2⎪⎩22⎧x 1=4⎧x 2=-5解得:⎨(舍去),⎨,y =0y =-18⎩1⎩2∴D 2(-5,-18);综上,满足条件的点D 的坐标为D 1(3,2),D 2(-5,-18).13(3)如解图,过点P 作PH ∥y 轴交直线BC 于点H ,设P (t ,-t 2+t +2),22第3题解图∵直线BC 的解析式为y =-∴H (t ,-1x +2,21t +2),21∴PH =y P -y H =-t 2+2t ;2设直线AP 的解析式为y =k (x +1),131-t 2+t +2-(t +1)(t -4)y 12=2=-t +2,∴k =P =2x P+1t +1t +121∴直线AP 的解析式为y =(-t +2)(x +1),21令x =0得y =2-t .2111故F (0,2-t ),CF =2-(2-t )=t .222t ⎧y =(2-)(x +1)⎪⎪2联立⎨,⎪y =-1x +2⎪⎩2解得x E =t ;5-t 111t∴S 1=(y P -y H )(x B -x E )=(-t 2+2t )(4-);2225-t 1t t S 2=··.225-t11t 1t t∴S 1-S 2=(-t 2+2t )(4-)-··,225-t 225-t 55816即S 1-S 2=-t 2+4t =- (t -)2+.4455816∴当t =时,S 1-S 2有最大值,最大值为.554.解:(1)∵A ,B 两点在直线y =-x -4上,且横坐标分别为-1、-4,∴A (-1,-3),B (-4,0),∵抛物线过原点,∴c =0,⎧a =1⎧-3=a -b 把A 、B 两点坐标代入抛物线解析式可得⎨,解得⎨,b =40=16a -4b ⎩⎩∴抛物线解析式为y =x 2+4x ;(2)当AC =BC 时,如解图①,则点C 在线段AB 的垂直平分线与坐标轴的交点处,第4题解图①∵A (-1,-3),B(-4,0),53∴线段AB的中点坐标H为(-,-),22∵A(-1,-3),B(-4,0),∴∠ABO=45°,∴∠BC1H=45°,∴∠C2C1O=45°,设线段AB的垂直平分线的解析式为y=x+d,35∴-=-+d,解得d=1,22∴线段AB的垂直平分线的解析式为y=x+1,令x=0可得y=1,令y=0可求得x=-1,∴C (-1,0)或(0,1);综上可知,存在满足条件的点C,其坐标为(-1,0)或(0,1);(3)如解图②,过点P作PQ⊥EF,交EF于点Q,过点A作AD⊥x轴于点D,第4题解图②∵PE∥OA,GE∥AD,∴∠OAD=∠PEG,∠PQE=∠ODA=90°,∴△PQE∽△ODA,∴EQ AD,即EQ=3PQ,PQ OD∵直线AB的解析式为y=-x-4,∴∠ABO=45°=∠PFQ=∠FPQ,∴PQ=FQ,∴EF=4PQ,∵S△BGF=3S△EFP,11∴GF2=3××4PQ2,22∴GF=23PQ,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

类型二与面积有关的问题1. 如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.第1题图2. (2018原创)如图①,在平面直角坐标系中,抛物线y =12x 2-2x -6与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点T ,抛物线顶点为C . (1)求四边形OTCB 的面积;(2)如图②,抛物线的对称轴与x 轴交于点D ,线段EF 与PQ 长度均为2,线段EF 在线段DB 上运动,线段PQ 在y 轴上运动,EE ′,FF ′分别垂直于x 轴,交抛物线于点E ′,F ′,交BC 于点M ,N .请求出ME ′+NF ′的最大值,并求当ME ′+NF ′值最大时,四边形PNMQ 周长的最小值;(3)如图③,连接AT ,将△OAT 沿x 轴向右平移得到△O ′A ′T ′,当T ′与直线BC 的距离为55时,求△O ′A ′T ′与△BCD 的重叠部分面积.第2题图3. (2018原创)如图①,二次函数y =12x 2-12x +m 的图象交x 轴于B 、C 两点,一次函数y=ax +b 的图象过点B ,与抛物线相交于另一点A (4,3). (1)求m 的值及一次函数的解析式;(2)若点P 为抛物线上的一个动点,且在直线AB 下方,过P 作PQ ∥x 轴,且PQ =4(点Q 在点P 右侧),以PQ 为一边作矩形PQEF ,且点E 在直线AB 上;点M 是抛物线上另一个动点,且4S △BCM =5S 矩形PQEF .当矩形PQEF 的周长最大时,求点P 和点M 的坐标;(3)如图②,在(2)的结论下,连接AP 、BP ,设QE 交x 轴于点D ,现将矩形PQEF 沿射线DB 以每秒1个单位长度的速度平移,当点D 到达点B 时停止.记平移时间为t ,平移后的矩形PQEF 为P ′Q ′E ′F ′,且Q ′E ′分别交直线AB 、x 轴于点N 、D ′,设矩形P ′Q ′E ′F ′与△ABP 的重叠部分面积为S .当NA =58ND ′时,求S 的值.第3题图4. (2017重庆八中二模)如图,抛物线y =-x 2+2x +3与x 轴交于A ,B 两点,与y 轴交于点C ,点D ,C 关于抛物线的对称轴对称,直线AD 与y 轴相交于点E .(1)求直线AD 的解析式;(2)如图①,直线AD 上方的抛物线上有一点F ,过点F 作FG ⊥AD 于点G ,作FH 平行于x 轴交直线AD 于点H ,求△FGH 周长的最大值;(3)如图②,点M 是抛物线的顶点,点P 是y 轴上一动点,点Q 是坐标平面内一点,四边形APQM 是以PM 为对角线的平行四边形.点Q ′与点Q 关于直线AM 对称,连接MQ ,PQ .当△PMQ ′与▱APQM 重合部分的面积是▱APQM 面积的14时,求▱APQM 的面积.第4题图答案1. 解:(1)设直线BC 的解析式为y =kx +b ,把点B (5,0)和点C (0,5)代入y =kx +b ,得⎩⎪⎨⎪⎧5k +b =0b =5,解得⎩⎪⎨⎪⎧k =-1b =5,∴直线BC 的解析式是y =-x +5,把点B (5,0)和点C (0,5)代入y =x 2+bx +c ,得⎩⎪⎨⎪⎧25+5b +c =0c =5,解得⎩⎪⎨⎪⎧b =-6c =5,∴抛物线的解析式是:y =x 2-6x +5. (2)设M (x , x 2-6x +5),N (x ,-x +5),MN =(-x +5)-(x 2-6x +5)=-x 2+5x=-(x -52)2+254(1<x <5),∵-1<0,∴抛物线开口向下,MN 有最大值, 当x =52时,MN 最大值=254.(3)如解图,设NM 交x 轴于点E ,在直线y =-x +5中,当x =52时,y =-x +5=52,第1题解图∴当MN 最大时,N (52,52),即NE =52,在抛物线y =x 2-6x +5中,当y =0时,x 2-6x +5=0,解得x 1=1,x 2=5,∴A (1,0),B (5,0), ∴AB =5-1=4,根据题意,S 2=12AB ·EN =12×4×52=5,∴S 1=6S 2=30,BC =52+52=52,∴▱CBPQ 的边BC 上的高h =S 1BC =3052=32, 点P 在x 轴下方,则过点C 作CK ⊥PQ 所在直线l ,垂足为K ,如解图,则CK 的长为32, 直线l 交y 轴于点H ,根据题意,由于OC =OB ,则△CKH 是等腰直角三角形, ∴CH =2CK =6,∴OH =CH -OC =6-5=1,即H (0,-1), ∵l ∥BC ,且与y 轴交点纵坐标为-1, ∴直线l 的解析式是y =-x -1.列方程组,得⎩⎪⎨⎪⎧y =x 2-6x +5y =-x -1,解得⎩⎪⎨⎪⎧x 1=2y 1=-3,⎩⎪⎨⎪⎧x 2=3y 2=-4,∴点P 的坐标为:(2,-3)或(3,-4). 2. 解:(1)如解图①,连接OC , ∵y =12x 2-2x -6=12(x -2)2-8,∴抛物线的顶点坐标为C (2,-8),对称轴为x =2, 令y =0,即12x 2-2x -6=0,解得x 1=-2,x 2=6, ∴A (-2,0),B (6,0),∴OT =6,OB =6,∴S 四边形OTCB =S △OTC +S △OBC =12×6×2+12×6×8=30.第2题解图①(2)如解图②,设E (m ,0), ∴F (m +2,0), ∵B (6,0),C (2,-8), ∴直线BC 解析式为y =2x -12, ∵EE ′⊥x 轴,FF ′⊥x 轴,∴M (m ,2m -12),E ′(m ,12m 2-2m -6),N (m +2,2m -8),F ′(m +2,12m 2-8),∴ME ′=-12m 2+4m -6,NF ′=-12m 2+2m ,∴ME ′+NF ′=-12m 2+4m -6-12m 2+2m =-(m -3)2+3,∴当m =3时,ME ′+NF ′有最大值,最大值为3, ∴E (3,0),F (5,0), ∴M (3,-6),N (5,-2), ∴MN =25,C 四边形PNMQ =PN +MN +PQ +QM , MN 与PQ 的长度不变,∴当PN +QM 的值最小时,四边形PNMQ 周长最小, 如解图②,将点M 向上平移2个单位,对应点为G , ∴G (3,-4),第2题解图②作点G 关于y 轴的对称点G ′,连接NG ′,NG ′与y 轴的交点为P ,则G ′(-3,-4), 此时PG +PN 的值最小,即PN +QM =G ′N 的值最小, ∴G ′N =217,∴C 四边形PNMQ 最小值=217+25+2. (3)∵C (2,-8),B (6,0), ∴BC =45,BD =4,CD =8.如解图③,连接TT ′,并延长交BC 于点R ,过T ′作T ′S ⊥BC 于点S ,第2题解图③∵T ′到BC 的距离为55,∴T ′S =55, 易证△T ′RS ∽△CBD ,∴T ′R CB =T ′SCD,∴T ′R =T′S·CB CD =12.∵TT ′∥x 轴, ∴R (3,-6),∴T ′1(52,-6),T ′2(72,-6),①如解图④,当T ′在BC 的左侧时,即T ′(52,-6)在△BCD 内部,第2题解图④设A ′T ′与CD 的交点为G ,∴△A ′O ′T ′与△BCD 重叠部分为四边形GDO ′T ′, 则△A ′GD ∽△A ′T ′O ′, ∴O ′(52,0),∴A ′D =32,∴GD T ′O ′=A ′DA ′O ′, ∴GD =92,∴DO ′=12,∴S 重叠=(GD +T ′O ′)×12×12=218;②如解图⑤,当T ′在BC 的右侧时,即T ′(72,-6)在△BCD 外部,设A ′T ′与CD ,BC分别交于J ,K 两点,T ′O ′与直线BC 交于点H . ∴O ′(72,0),A ′(32,0),H (72,-5),第2题解图⑤∴直线A ′T ′的解析式为y =-3x +92,当x =2时,y =-6+92=-32.∴点J (2,-32),⎩⎪⎨⎪⎧y =2x -12y =-3x +92, 解得⎩⎪⎨⎪⎧x =3310y =-275, ∴点K (3310,-275),∴S 重叠=S △BCD -S △CJK -S △BHO ′=12BD ·CD -12JC ·(3310-2)-12BO ′·O ′H=12×4×8-12×(8-32)×(3310-2)-12×(6-72)×5 =16-16940-254=22140,∴重叠面积为218或22140.3. 解:(1)∵点A (4,3)在二次函数y =12x 2-12x +m 的图象上,∴12×16-12×4+m =3,解得m =-3, 则二次函数的解析式为y =12x 2-12x -3,令y =0,得12x 2-12x -3=0,解得x 1=-2,x 2=3,则点B 的坐标为(-2,0),点C 的坐标为(3,0), ∵A (4,3),B (-2,0)在一次函数y =ax +b 的图象上,∴⎩⎪⎨⎪⎧4a +b =3-2a +b =0,∴⎩⎪⎨⎪⎧a =12b =1, ∴一次函数的解析式为y =12x +1.(2)∵矩形PQEF 的周长=2(PQ +EQ )=8+2EQ ,要使周长最大,EQ 边长最大即可. 设P (p ,12p 2-12p -3),-2<p <4,∴Q (p +4,12p 2-12p -3),E (p +4,12p +3),∴EQ =12p +3-(12p 2-12p -3)=-12(p -1)2+132,∴当p =1时,EQ 取最大值132,则点P 的坐标为(1,-3), 此时S ▱PQEF =4×132=26,设△BCM 中BC 边上对应的高为h ,由4S △BCM =5S 矩形PQEF , 得4×12·BC ·h =5×26,∵BC =5,∴h =13.设M 点的横坐标为x ,依题意有⎪⎪⎪⎪⎪⎪12x 2-12x -3=13,解得x =1±1292,则点M 的坐标为(1+1292,13)或(1-1292,13).∴综上,点P 坐标为(1,-3)点M 坐标为(1+1292,13)或(1-1292,13).(3)①当点N 在线段AE 上时,如解图①,有DD ′=t ,OD ′=5-t ,D ′(5-t ,0),N (5-t ,-12t +72),过点A 作AH ⊥ND ′,第3题解图①∴AH ∥x 轴,∴NH =-12t +72-3=-12t +12,设直线y =12x +1与y 轴交于点R ,则R (0,1),∴OR =1,BR =5,∴sin ∠RBO =15.∵AH ∥x 轴,∴∠NAH =∠RBO ,∴sin ∠NAH =15,∴NH NA =15, ∴NA =5(-12t +12).由NA =58ND ′, ∴5(-12t +12)=58(-12t +72),解得t =17.设直线BP 的解析式为y =kx +b ′,过点B (-2,0),P (1,-3),则⎩⎪⎨⎪⎧-2k +b′=0k +b′=-3,解得⎩⎪⎨⎪⎧k =-1b′=-2,∴直线BP 的解析式为y =-x -2,若直线BP 与P ′F ′相交于点I , 则点I 的坐标为(67,-207);若直线AB 与P ′F ′相交于点J ,与PF 相交于点K ,则点J 的坐标为(67,107),点K 的坐标为(1,32),∴IJ =307,KP =92,∴重叠部分的面积S =S 四边形KPIJ +S △AKP =12×(307+92)×17+12×92×(4-1)=72398;②如解图②,当点N 在AB 线段上时,有DD ′=t ,OD ′=5-t .第3题解图②D ′(5-t ,0),N (5-t ,-12t +72),过点A 作AH ⊥ND ′, ∴AH ∥x 轴,∴NH =3-(-12t +72)=12t -12.∵AH ∥x 轴,∴∠NAH =∠RBO ,∴sin ∠NAH =sin ∠RBO =15,∴NH NA =15, ∴NA =5(12t -12),∵NA =58ND ′, ∴5(12t -12)=58(-12t +72),解得t =53,∴则直线BP :y =-x -2与P ′F ′的交点I 的坐标为(-23,-43),直线AB :y =12x +1与P ′F ′的交点J 的坐标为(-23,23),∴IJ =2,且PK =92,N 点的坐标为(103,83),设直线AP 的解析式为y =k ′x +d , ∵过点A (4,3),P (1,-3),∴⎩⎪⎨⎪⎧4k ′+d =3k′+d =-3,解得⎩⎪⎨⎪⎧k ′=2d =-5, 则直线AP 解析式为y =2x -5,设它与Q ′E ′相交于点M ,则M 的坐标为(103,53),∴NM =83-53=1,∴重叠部分的面积S =S 四边形JKPI +S 四边形NMPK =12×(2+92)×53+12×(92+1)×(103-1)=716∴综上所述,重叠的部分面积大小为72398或716.4. 解:(1)令-x 2+2x +3=0, 解得x 1=-1,x 2=3, ∴A (-1,0),B (3,0), 令x =0,则y =3,∴C (0,3),∵点D ,C 关于抛物线的对称轴x =1对称,∴D (2,3), 设直线AD 的解析式为y =kx +b .将点A (-1,0),D (2,3)代入,得⎩⎪⎨⎪⎧-k +b =02k +b =3,解得⎩⎪⎨⎪⎧k =1b =1,∴直线AD 的解析式为y =x +1. (2)设点F (x ,-x 2+2x +3), ∵FH ∥x 轴,∴H (-x 2+2x +2,-x 2+2x +3), ∴FH =-x 2+2x +2-x =-(x -12)2+94,∵-1<x <2,∴当x =12时,FH 取最大值94,由直线AD 的解析式为:y =x +1,易知∠DAB =45°. 又∵FH ∥x 轴,∴∠FHG =∠DAB =45°,∴FG =GH =22×94=928, ∵△FHG 为等腰直角三角形,∴△FGH 周长的最大值为928×2+94=9+924.(3)①当P 点在AM 下方时,如解图①,设P (0,p ),易知M (1,4),从而Q (2,4+p ), ∵△PMQ ′与▱APQM 重合部分的面积是▱APQM 面积的14,∴PQ ′必过AM 的中点N (0,2),∴可知Q ′在y 轴上,易知QQ ′的中点T 的横坐标为1,又∵点T 必在直线AM 上,故T (1,4),从而T 、M 重合,故▱APQM 是矩形,∵易求得直线AM 的解析式为:y =2x +2,而MQ ⊥AM , ∴可求得直线QQ ′的解析式为:y =-12x +92,∴4+p =-12×2+92,∴解得p =-12,∴PN =52,∴S ▱APQM =2S △AMP =4S △ANP =4×12·PN ·AO =4×12×52×1=5;第4题解图①②当P 点在AM 上方时,如解图②,第4题解图②设P (0,p ),易知M (1,4),从而Q (2,4+p ), ∵△PMQ ′与▱APQM 重合部分的面积是▱APQM 面积的14,∴PQ ′必过QM 的中点R (32,4+p2),易求得直线QQ ′的解析式为y =-12x +p +5,⎩⎪⎨⎪⎧y =2x +2y =-12x +p +5, 解得:x =6+2p 5,y =22+4p 5,∴H (6+2p 5,22+4p 5),∵H 为QQ ′的中点,故易得Q ′(2+4p 5,24+3p 5),由点P (0,p ),R (32,4+p 2)易得直线PR 的解析式为y =(83-p3)x +p ,将Q ′(2+4p 5,24+3p 5)代入到y =(83-p 3)x +p 得:24+3p 5=(83-p 3)×2+4p5+p ,整理得:p 2-9p +14=0,解得:p 1=7,p 2=2(与AM 中点N 重合,舍去), ∴P (0,7),∴PN =5,∴S ▱APQM =2S △AMP =2×12×PN ×|x M -x A |=2×12×5×2=10.综上所述,▱APQM 面积为5或10.。

相关文档
最新文档