(教案 课件 检测):第二十九章 投影与视图(10份打包)
人教版数学九年级下册第29章《投影与视图》课堂教案

人教版数学九年级下册第29章《投影与视图》课堂教案一. 教材分析《投影与视图》这一章主要让学生了解和掌握投影的性质和特点,以及如何通过不同的投影方式来得到物体的视图。
内容主要包括平行投影、中心投影的概念,三视图的绘制方法等。
通过这一章的学习,学生可以更好地理解和应用几何知识,提高空间想象能力和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对空间图形有一定的认识。
但一部分学生可能对空间图形的理解和想象能力较弱,因此在教学过程中需要注重引导学生通过实际操作来加深对知识的理解。
三. 教学目标1.了解投影的性质和特点,掌握平行投影和中心投影的概念。
2.学会通过不同的投影方式来得到物体的视图,提高空间想象能力。
3.能够运用所学知识解决实际问题。
四. 教学重难点1.投影的性质和特点2.平行投影和中心投影的概念3.三视图的绘制方法五. 教学方法1.采用问题驱动的教学方法,引导学生通过实际操作来解决问题。
2.利用多媒体辅助教学,展示实物投影和视图,帮助学生直观理解。
3.采用小组合作学习,让学生在讨论和交流中提高对知识的理解。
六. 教学准备1.多媒体教学设备2.实物模型3.绘图工具七. 教学过程1.导入(5分钟)利用多媒体展示不同的实物投影和视图,让学生感受投影和视图的魅力,激发学生的学习兴趣。
2.呈现(10分钟)通过具体的实物模型,向学生展示不同的投影方式,引导学生总结投影的性质和特点。
3.操练(10分钟)学生分组讨论,每组选择一个实物,通过实际操作来绘制该实物的三视图。
教师在此过程中进行指导,帮助学生解决问题。
4.巩固(10分钟)学生独立完成教材中的相关练习题,教师进行讲解和答疑。
5.拓展(10分钟)教师提出一些实际问题,引导学生运用所学知识进行解决,提高学生的实际应用能力。
6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识。
7.家庭作业(5分钟)布置一些有关投影与视图的练习题,让学生在课后进行巩固和提高。
人教版九年级数学下册第29章教学课件

ABCD )放在三个不同位置:
D
C
D
D
A
B
A
C
A
B C
D'
A'
Q
C'
D'
C'
B' A'
B'
B D(' C')
A(' B' )
(1)纸板平 (2)纸板倾斜 (3)纸板垂直 行于投影面; 于投影面; 于投影面.
三种情形下纸板的正投影的形状、大小如何?
通过观察,我们可以发现:
(1)当P 平行于投影面 Q 时,P的正投影与 P的 _形__状__、__大__小__一__样__;
知识点2 平行投影
由平行光线形成的投影叫做平行投影.
探照灯发出的光线形成的投影是平行投影.
太阳光照射形成的投影也是平行投影.
因为太阳距离我们很远,射到地面的太阳 光可以看成一组互相平行的射线.
知识点3 中心投影
由同一点(点光源)发出的光线形成的投 影叫做中心投影.
物体在灯泡发出的光线照射下形成的影子 就是中心投影.
例2 确定图中路灯灯泡的位置,并画出小赵 在灯光下的影子.
解:因为灯泡为点光源,所以光线相交的位置即 为灯泡所在的位置;小赵在灯下的影子即如图所示.
随堂演练
基础巩固
1. 把下列物体与它们的投影用线连接起来.
2. 下面两幅图表示两根标杆在同一时刻 的投影.请在图中画出形成投影的光线.它们 是平行投影还是中心投影?并说明理由.
解:第(1)幅图为平行投影,因为其 投影线互相平行;第(2)幅图为中心投影, 因为其投影线集中于一点.
3. 小华拿一个矩形木框在阳光下玩,矩 形木框在地面上形成的投影不可能是( A ).
第29章 投影与视图全章教案

第二十九章投影与视图29.1投影(1)学习目标1、经历实践探索,了解投影、投影面、平行投影和中心投影的概念;2、了角平行投影和中心投影的区别。
3、使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。
学习重点理解平行投影和中心投影的特征;学习难点在投影面上画出平面图形的平行投影或中心投影。
教学互动设计备注(一)创设情境你看过皮影戏吗?皮影戏又名“灯影子”,是我国民间一种古老而奇特的戏曲艺术,在关中地区很为流行。
皮影戏演出简便,表演领域广阔,演技细腻,活跃于广大农村,深受农民的欢迎。
(二)你知道吗北京故宫中的日晷闻名世界,是我国光辉出灿烂文化的瑰宝.它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针的影的长度发生变化,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.问题:那什么是投影呢?出示投影让学生感受在日常生活中的一些投影现象。
一般地.用光线照射物体.在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.有时光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线(如图).由平行光线形成的投影是平行投影.例如.物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影.(三)问题探究(在课前布置,以数学学习小组为单位)探究平行投影和中心投影和性质和区别1、以数学习小组为单位,观察在太阳光线下,木杆和三角形纸板在地面的投影。
2、不断改变木杆和三角形纸板的位置,什么时候木杆的影子成为一点,三角形纸板的影子是一条线段?当木杆的影子与木杆长度相等时,你发现木杆在什么位置?三角形纸板在什么位置时,它的影子恰好与三角形纸板成为全等图形?还有其他情况吗?(四)应用新知:(1)地面上直立一根标杆AB如图,杆长为2cm。
人教版九年级数学下册教案第二十九章《投影与视图》

第二十九章投影与视图29.1投影01教学目标1.通过观察、实验、探索、想象,了解投影、投影线、投影面、平行投影、中心投影的概念.2.能够确定物体在平行光线和点光源发出的光线在某一平面上的投影.3.掌握正投影的概念,了解中心投影、平行投影和正投影的关系.4.掌握线段、正方形、正方体的正投影的特征.02预习反馈阅读教材P87~91,完成下列问题.1.用光线照射物体,在某个平面(地面或墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.2.由平行光线形成的投影叫做平行投影,由同一点(点光源)发出的光线形成的投影叫做中心投影.3.投影线垂直于投影面产生的投影叫做正投影.4.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.5.皮影戏是利用中心投影(填“平行投影”或“中心投影”)的一种表演艺术.6.一根笔直的小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是(D)A.AB=CDB.AB≤CDC.AB>CDD.AB≥CD03名校讲坛例1(教材补充例题)如图1,2分别是两根木杆及其影子的图形.(1)哪个图形反映了太阳光下的情形?哪个图形反映了路灯下的情形?(2)请你画出图中表示小树影长的线段.【解答】(1)图2为太阳光下的情形,图1为路灯下的情形.(2)略.【点拨】识别平行投影和中心投影的方法:作直线:分别过两物体及其影子的顶端作两条直线,若这两条直线相交于一点,则为中心投影;若这两条直线平行,则为平行投影.【跟踪训练1】(《名校课堂》29.1习题)如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.(1)请你在图中画出路灯灯泡所在的位置;(用点P表示)(2)画出小华此时在路灯下的影子.(用线段EF表示)解:如图所示.例2(教材P90例变式)如图,工件的底面与投影面平行,画出工件在投影面上的正投影.【解答】如图所示.【点拨】在判断一个投影是不是正投影或进行正投影作图时,应把握以下几点:(1)投影线与投影面一定要垂直(太阳光与地面不一定垂直,所以以太阳光为投影线、以地面为投影面的投影不一定是正投影).(2)当物体的某个平面平行于投影面时,这个面的正投影与这个面是全等形.(3)画图时,应先判断投影线与物体的相对位置,然后依据正投影的性质画出物体的正投影.【跟踪训练2】(《名校课堂》29.1习题)如图是一个三棱柱,它的正投影是下图中的②.(填序号)04巩固训练1.下列各种现象属于中心投影现象的是(B)A.上午10点时,走在路上的人的影子B.晚上八点时,走在路灯下的人的影子C.中午用来乘凉的树影D.升国旗时,地上旗杆的影子2.底面与投影面垂直的圆锥体的正投影是(B)A.圆B.三角形C.矩形D.正方形3.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的面积的变化情况是(A)A.越来越小B.越来越大C.大小不变D.不能确定4.画出下列立体图形投影线从上方射向下方的正投影.解:如图所示:05课堂小结1.投影线垂直于投影面的投影叫做正投影.注意,正投影是特殊的平行投影,中心投影不可能是正投影.2.几种基本图形(线段、正方形、圆、正方体)的正投影分几种情况.3.当物体的某个面平行于投影面时,这个面的正投影与这个面全等;物体正投影的形状、大小与它相对于投影面的位置有关.29.2三视图第1课时几何体的三视图01教学目标1.了解视图的概念,明确视图与投影的关系.2.理解三视图中主视图、左视图、俯视图的概念.明确三视图与我们从三个方向看物体所得到的图象的联系与区别,会画立体图形的三视图.3.画三视图时,要使主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.02预习反馈阅读教材P94~97,完成下列问题.1.当我们从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图,也可以看作物体在某一方向光线下的正投影.2.主视图是在正面内得到的由前向后观察物体的视图;俯视图是在水平面内得到的由上向下观察物体的视图;左视图是在侧面内得到的由左向右观察物体的视图.3.主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.4.三视图一般规定主视图要在左上边,俯视图在正下方,左视图在右边,其中主视图反映物体的长和高,左视图反映物体的高和宽,俯视图反映物体的长和宽.5.如图是一个由五个小正方体组成的立体图形,请你画出从三个不同的方向看这个立体图形所得到的平面图形.解:如图所示.6.在下列几何体中,主视图是圆的是(D)A B C D03名校讲坛例1画出图中基本几何体的三视图.圆柱正三棱柱球(1)(2)(3)【分析】画这些基本几何体的三视图时,要注意从三个方面观察它们.具体方法为:(1)确定主视图的位置,画出主视图;(2)在主视图正下方画出俯视图,注意与主视图“长对正”;(3)在主视图正右方画出左视图,注意与主视图“高平齐”,与俯视图“宽相等”;(4)为表示圆柱、圆锥等的对称轴,规定在视图中加画点划线(———)表示对称轴.【解答】如图所示.圆柱正三棱柱球(1)(2)(3)【跟踪训练1】(《名校课堂》29.2第1课时习题)下列四个立体图形中,左视图为矩形的是(B)①长方体②球③圆锥④圆柱A.①③B.①④C.②③D.③④例2画出如图所示的支架(一种小零件)的三视图,其中支架的两个台阶的高度和宽度相等.【分析】支架的形状是由两个大小不等的长方体构成的组合体,画三视图时要注意这两个长方体的上下、前后位置关系.【解答】如是支架的三视图.【点拨】对于由几种基本几何体组合而成的组合体,其各种视图可以分解为基本几何体的视图再组合,画三视图时要注意各几何体的上、下、前、后、左、右位置关系.【跟踪训练2】(《名校课堂》29.2第1课时习题)一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你画出这个几何体的三视图.解:如图.04巩固训练1.小明从正面观察如图所示的两个物体,看到的是(C)A B C D2.左下图表示一个用于防震的L 形包装泡沫塑料,当俯视这一物体时,看到的图形形状是(B)A B C D3.如图,从不同方向看下面左图中的物体,下图中三个平面图形分别是从哪个方向看到的?正面 从上面看 从前面看 从左面看4.如图是由5个大小相同的小正方体组合成的简单几何体.请在下面方格纸中画出它的三个视图.解:如图所示.05 课堂小结1.画物体的三视图时,先确定主视图的位置,在主视图的右边画左视图,在主视图的正下方画俯视图.2.画物体的三视图时,看得见部分的轮廓线画成实线,看不见部分的轮廓线画成虚线.3.画简单组合体的三视图时,要把组合体分割成规则的几何图形.第2课时由三视图确定几何体01教学目标进一步明确三视图的意义,由三视图想象出实物原型.02预习反馈阅读教材P98~99,完成下列问题.1.由三视图想象立体图形时,要分别根据主视图、俯视图、左视图想象立体图形前面、上面、左侧面,然后再结合起来考虑整体图形.2.一个立体图形的俯视图是圆,则这个图形可能是圆柱.3.下列几何体中,其主视图、左视图与俯视图均相同的是(A)A.正方体B.三棱柱C.圆柱D.圆锥03名校讲坛例1如图,分别根据三视图(1)(2)说出立体图形的名称.【分析】由三视图想象立体图形时,首先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后综合起来考虑整体图形.【解答】(1)从三个方向看立体图形,视图都是矩形,可以想象这个立体图形是长方体,如图(1)所示.(2)从正面、侧面看立体图形,视图都是等腰三角形;从上面看,视图是圆;可以想象这个立体图形是圆锥,如图(2)所示.【点拨】由三视图想象出几何体后,再回过头来考虑一下该几何体的三视图是否与题目给出的相符.【跟踪训练1】(《名校课堂》29.2第2课时习题)如图是某个几何体的三视图,则该几何体的形状是(D)A.长方体B.圆锥C.圆柱D.三棱柱例2(教材P98例4变式)如图是一个几何体的三视图,则该几何体是(C)A B C D【点拨】(1)观察三视图,看其可分解为哪些简单几何体的三视图;(2)想象出各简单几何体;(3)根据三视图反映的位置关系组合简单几何体便得物体原形;(4)可对想象出的物体作三视图检验正误.注意虚线与实线的区别.【跟踪训练2】(《名校课堂》29.2第2课时习题)一个几何体的三视图如图所示,那么这个几何体是(D)A B C D04巩固训练1.一个几何体的三视图如图所示,则这个几何体是(B)A.三棱锥B.三棱柱C.圆柱D.长方体2.如图是某个几何体的三视图,则该几何体是(A)A.长方体B.三棱柱C.圆柱D.圆台3.如图是一个几何体的三视图,则此三视图所对应的直观图是(B)A B C D4.已知一个几何体的三视图如图所示,想象出这个几何体.解:根据三视图想象出的几何体是一个长方体上面正中部竖立一个小圆柱体,如图.05课堂小结学生试述:这节课你学到了些什么?第3课时 由三视图确定几何体的表面积或体积01 教学目标能根据几何体的三视图求几何体的侧面积、表面积、体积等,进而解决实际生活中的面积、体积方面的用料问题.02 预习反馈阅读教材P99~100,完成下列问题.1.圆锥沿它的一条母线剪开的侧面展开图是扇形.2.圆柱沿它的一条母线剪开的侧面展开图是矩形.3.正方体、长方体的六个面展开的平面图的面积等于它的表面积.(填“大于”“小于”或“等于”)4.如图是一个几何体的三视图,则这个几何体是(B)A.正方体B.长方体C.三棱柱D.三棱锥 5.如下左图是一个长方体包装盒,则它的平面展开图是(A)A B C D03 名校讲坛例 (教材P99例5变式)根据如图所示的三视图求几何体的表面积,并画出物体的展开图.【解答】 由三视图可知,该几何体由上部分是底面直径为10,高为5的圆锥和下部分是底面直径为10,高为20的圆柱组成.则圆锥,圆柱底面半径为r =5. 由勾股定理,得圆锥母线长R =5 2. S 圆锥侧面积=12lR =12×10π×52=252π.∴S 表面积=π×52+10π×20+252π=25π+200π+252π =225π+252π =(225+252)π.该物体的展开图如图所示.【点拨】 由物体三视图求它的表面积: (1)由三视图想象出物体的形状;(2)画出物体的展开图;(3)根据几何体的表面积计算公式求表面积. 由展开图确定三视图:(1)由表面展开图确定物体的形状; (2)画出物体的三视图;(3)图或题中所给数据的合理转化.【跟踪训练】 (《名校课堂》29.2第3课时习题)一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.解:该几何体的形状是直四棱柱.由三视图知,棱柱底面菱形的对角线长分别为4 cm ,3 cm. ∴菱形的边长为(32)2+(42)2=52(cm), 棱柱的侧面积为52×8×4=80(cm 2).04 巩固训练1.一个几何体的三视图如下:其中主视图都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为(C)A.2πB.12π C.4π D.8π2.长方体的主视图与俯视图如图所示,则这个长方体的体积是(C)A.52B.32C.24D.93.如图是一个几何体的三视图(含有数据),则这个几何体的展开图侧面积等于(A)A.2πB.12π C.4 D.24.如图是一个立体图形的三视图,请写出这个立体图形的名称,并计算这个立体图形的体积.(结果保留π)解:这个立体图形为圆柱,其中高是10,底面圆的半径为5,所以体积为π×52×10=250π.05课堂小结1.由三视图求几何体的表面积和体积,可首先根据三视图想象出几何体,然后进行几何体的相关计算.2.利用几何体的表面展开图可以计算几何体的表面积以确定实际生产中的用料问题,还可以解决一些最优化问题,可以起到化曲折为平直的作用;用到“空间问题平面化”的数学思想.。
人教版九年级数学下册《第二十九章投影与视图》教案

人教版九年级数学下册《第二十九章投影与视图》教案一. 教材分析《人教版九年级数学下册》第二十九章《投影与视图》是学生在学习了平面几何、立体几何的基础上,进一步研究三视图、投影等知识。
这一章节的内容既巩固了学生以前所学的几何知识,又为后续的立体几何学习打下基础。
本章主要包括以下几个知识点:1.投影的概念和分类2.正投影和斜投影3.视图的概念和分类4.一视图、二视图、三视图的画法5.几何体的三视图二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本知识,对几何图形的认知有一定的基础。
但投影与视图的概念对于他们来说比较抽象,需要通过具体的实例和实践活动来理解和掌握。
另外,学生对于空间想象能力的培养还不够,需要在教学过程中加强训练。
三. 教学目标1.让学生理解投影的概念,掌握正投影和斜投影的性质。
2.让学生掌握视图的分类,学会画一视图、二视图、三视图。
3.培养学生空间想象能力,提高他们解决实际问题的能力。
四. 教学重难点1.投影的概念和分类2.正投影和斜投影的性质3.视图的画法4.空间想象能力的培养五. 教学方法1.采用直观演示法,通过实物和模型展示投影与视图的概念和性质。
2.采用实践操作法,让学生动手画一视图、二视图、三视图,培养空间想象能力。
3.采用问题驱动法,引导学生思考和探讨,提高他们解决问题的能力。
六. 教学准备1.准备投影仪、实物、模型等教学道具。
2.准备相关的练习题和测试题。
3.准备黑板和粉笔。
七. 教学过程1. 导入(5分钟)教师通过展示实物和模型,引导学生观察和思考,让学生初步认识投影和视图的概念。
2. 呈现(10分钟)教师通过投影仪展示PPT,详细讲解投影的分类、正投影和斜投影的性质,以及视图的分类和画法。
3. 操练(10分钟)学生分组进行实践活动,每组选择一个几何体,分别画出它的三视图。
教师巡回指导,解答学生疑问。
4. 巩固(10分钟)教师出示一些练习题,让学生独立完成,检查他们对于投影与视图知识的掌握程度。
人教版九年级数学下册第29章 视图与投影 投影 教学设计

第29章视图与投影 29、1 投影教学设计【学情分析】在学习本节课之前,学生差不多具有一定的关于平面图形与立体图形的知识,同时差不多数次接触过“从不同方向看物体”的内容,对投影和视图的知识已有初步的朦胧的了解,只是还没有明确的接触过一些基本的名词术语(投影,正投影),对有关规律还缺乏归纳总结。
教学中,要让学生能够结合具体例子说明有关概念,不需要给出这些概念的严格的抽象的定义、【教学内容】本节内容是人教版初中新教材第九册(下)第29章的第一节。
【教材分析】本节课的内容是依据《全日制义务教数学课程标准(实验稿)》第三学段(7~9年级)空间与图形领域中关于“视图与投影”的教学目标而具体设计的。
“投影原理”是绘制视图的基础,通过投影建立了立体图形和平面图形间的联系,为立体图形与平面图形的相互转化问题奠定了理论基础。
在本套教科书中,从七年级上册第三章“图形认识初步”开始,就不断的出现了有关视图的一些内容,只是在本节之前一直没有正式出现投影和视图的概念。
本节在学生已有有关投影的初步感性认识的基础之上,通过一些简单的物体的投影说明有关概念,归纳基本规律,使学生的认识水平再次提升,并结合具体问题进一步培养运用几何知识分析和解决实际问题的能力。
本节是为进一步研究视图作准备的,后面将要学习的三视图是同一物体在有特定位置关系的三个投影面上的投影,同时投影线与投影面的位置必须是垂直的。
本节的重点是让学生在已有知识的基础之上,对投影有一个最基本的认识。
1、本节的教学重点是:了解正投影的含义,能依照正投影的性质画出简单平面图形的正投影。
2、本节的教学难点是:归纳正投影的性质,正确画出简单平面图形的正投影、【教学目标】1、知识与技能⑴了解投影的有关概念,能依照光线的方向辨认物体的投影;⑵了解平行投影和中心投影的区别;⑶了解物体正投影的含义,能依照正投影的性质画出简单平面图形的正投影。
2、过程与方法⑴在探究物体与其投影关系的活动中,体会立体图形与平面图形相互转化的关系,发展学生空间观念。
《投影与视图》课件优秀(完整版)1

3 2.
第二十九章 投影与视图
第二十九章 投影与视图
第二十九章 投影与视图
第二十九章 投影与视图
第二十九章 投影与视图
第二十九章 投影与视图
第二十九章 投影与视图
第二十九章 投影与视图
第二十九章 投影与视图
第二十九章 投影与视图
第二十九章 投影与视图
第二十九章 投影与视图
第二十九章 投影与视图
第二十九章 投影与视图
第二十九章 投影与视图
第二十九章 三投影种与视情图 况下铁丝的正投影各是什么形状?
第二十九章 投影与视图 第二十九章 投影与视图 第二十九章 投影与视图 第二十九章 投影与视图 第二十九章 投影与视图 第二十九章 投影与视图 第二十九章 投影与视图 第二十九章 投影与视图 第二十九章 投影与视图 第二十九章 投影与视图 第二十九章 投影与视图 第二十九章 投影与视图
拓展升华
11.如图,在 Rt△ABC 中,∠C=90°,投影线方向如图所示,点 C 在斜边 AB 上 的正投影为点 D,
(1)试写出边 AC、BC 在 AB 上的投影; (2)试探究线段 AC、AB 和 AD 之间的关系; (3)线段 BC、AB 和 BD 之间也有类似的关系吗?请直接写出结论.
解:(1)边 AC、BC 在 AB 上的投影分别为 AD、BD;
第二十九章 投影与视图
第85课时 正投影
栏目导航
学习目标 宝典例题 变式训练 四基训练 拓展升华
学习目标
正投影.
宝典例题
第二十九章 投影与视图
第二十九章 第二十九章
知投影识与视点图
投影与视图
1:垂直于投影面产生的投影叫做正投影.
第二十九章 投影与视图
初中数学人教九年级下册第二十九章 投影与视图2 平行投影与中心投影(教案)

第二十九章投影与视图投影第1课时平行投影与中心投影教学目标【知识与技能】1.经历实践探索,了解投影、平行投影和中心投影的概念;2.了解平行投影和中心投影的区别.【过程与方法】经历观察、思考的过程,感受生活中的投影广泛存在着,从中体会平行投影与中心投影的联系和区别.【情感态度】使学生学会关注生活中有关投影的数学问题,提高数学应用意识.【教学重点】掌握投影的含义,体会中心投影与平行投影的联系和区别.【教学难点】中心投影与平行投影的联系与区别.教学过程一、情境导入,初步认识物体在日光或灯光的照射下,会在地面、墙壁等处形成影子.请观察下面三幅图片,感受日常生活中的一些投影现象,并引入教材练习以加深理解.二、思考探究,获取新知一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.有时光线是一组互相平行的射线,如太阳光或探照灯光的一束光中的光线.由平行光线形成的投影是平行投影,例如物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影,如物体在灯泡发出的光照射下形成影子就是中心投影.如图所示的是三角尺在灯光(点光源)下的投影.由此可以看出点光源下物体的投影是物体的放大图形,这两个图形是位似图形.【思考】如何判断一个物体的投影是平行投影还是中心投影呢?【教学说明】学生间相互交流,进一步体验平行投影和中心投影的关系.【归纳结论】如果投影与物体的对应点连线互相平行,则此时的投影是平行投影,如果对应点的连线交于一点,则此时的投影为中心投影.三、典例精析,掌握新知(2) 当乙木杆移动到什么位置时,其影子刚好不落在墙上?(3)在(2)的情况下,如果测得甲、乙木杆的影子长分别为和1m,那么你能求出甲木杆的高度吗?例2 请举出生活中的投影现象,说说它们是平行投影还是中心投影?【教学说明】本环节的两个问题都可让学生自主探究或相互交流.教师巡视指导,听取学生的观点,加深对知识的理解.四、师生互动,课堂小结通过这节课的学习你有哪些收获?你还有什么疑问?【教学说明】师生共同回顾本节知识,在相互交流中巩固新知.当堂测评2. 下面属于中心投影的是 ( )A. 太阳光下的树影B. 皮影戏C. 月光下房屋的影子D. 海上日出3. 晚上,人在马路上走过一盏路灯的过程中,其影子长度的变化情况是( )A. 先变短后变长B. 先变长后变短C. 逐渐变短D. 逐渐变长4. 小玲和小芳两人身高相同,两人站在灯光下的不同位置,已知小玲的影子比小芳的影子长,则可以判定小芳离灯光较______.(填“远”或“近”) .5.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察广场的旗杆随太阳转动的情况,无意之中,他发现这四个时刻广场的旗杆在地面上的影子的长度各不相同,那么影子最长的时刻为-----综合应用:如图,路灯(P点)距地面8米,身高米的小明从距路灯的底部(O点)20米的A点沿OA所在的直线行走14米到B点时,影子的长度是变长了还是变短了?变长或变短了多少米?教学反思本课时通过引入具体情境,让学生感受平行投影与中心投影的特征,进而探讨中心投影与平行投影的区别与联系,这进一步发展了学生的抽象概括能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.(8分)画出下图中各木杆在灯光下的影子.
解:如图
9.如图,如果在阳光下你的身影的方向是北偏东60°方向,那 么太阳相对于你的方向是( A )
A.南偏西60° B.南偏西30°
C.北偏东60° D.北偏东30°
10.在一间黑屋子里用一只白炽灯照一个球,当球沿垂直方向下 落,那么它的影子( B ) A.始终是一个不变的圆 B.是一个由大变小的圆 C.是一个由小变大的圆 D.由圆变成一个点
AB DE 5 DE DEF,∴BC = EF ,∴3= 6 ,∴DE=10m
15.(10分)如图,小华、小军、小丽同时站在路灯下,其中小军和小 丽的影子分别是AB,CD.
(1)请你在图中画出路灯灯泡所在的位置(用点P表示);
(2)画出小华此时在路灯下的影子(用线段EF表示).
解:图略
【综合运用】 16.(12 分)如图,教室窗户的高度 AF 为 2.5 米,遮阳篷外端一点 D 到窗户上椽的距离为 AD,某一时刻太阳光从教室窗户射入室内,与 地面的夹角∠BPC 为 30°,PE 为窗户的一部分在教室地面所形成的 影子且长为 3米,试求 AD 的长度.(结果保留根号)
14.(8分)已知,如图,AB和DE是直立在地面上的两根立柱,AB= 5 m,某一时刻AB在阳光下的投影BC=3 m.
(1)请你在图中画出此时DE在阳光下的投影;
(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6 m,请 你计算DE的长.
解: (1) 如图所示
;
(2)∵AC∥DF , ∴△ ABC∽△
九年级数学下册(人教版)
第二十九章 投影与视图
29.1 投影
第1课时 平行投影与中心投影
光线 照射物体,在某个平面(地面、墙壁等)上得到的影子 1.用________ 照射 光线叫做投影线,_______ 投影 所在的平面叫 叫做物体的投影._______ 做投影面. 平行光线 形成的投影是平行投影,由________( 同一点 点光源)发出 2.由__________ 的光线形成的投影叫做中心投影.
解: 过点 E 作 EG∥AC 交于 PD 于 G 点, ∵EG=EP· tan30 3 °= 3× 3 =1(米),∴BF=EG=1(米),即 AB=AF AB -BF=2.5-1=1.5(米), 在 Rt△ABD 中, AD= tan30° 1.5 3 3 = =2 3(米).∴AD 的长为2 3米 3 3
A.逐渐变短 B.逐渐变长 C.先变短后变长 D.先变长后变短
7.(4 分)如图所示,杆 AO,BO′在地面上的投影分别是 A′O,B ′O′,则下列判断正确的是( B ) AO OA′ A.BO′=O′B′ AO OA′ C.BO′<O′B′ AO OA′ B.BO′>O′B′ D.以上三种都有可能
11.太阳光线与地面成 60°的角,照射在地面上的一只皮球上,皮 球在地面上的投影长是 10 3 cm,则皮球的直径是( B ) A.5 3 B.15 C.10 D.8 3
12.如图,一根直立于水平地面上的木杆AB在灯光下形成影子, 当木杆绕A按逆时针方向旋转直至到达地面时,影子的长度发生变
化.设AB垂直于地面时的影长为AC(假定AC>AB),影长的最大
A.两根都垂直于地面
B.两根平行斜插在地上 C.两根竿子不平行
D.一根倒在地上
4.(4分)小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,
发现这块长方形硬纸板在平整的地面上不可能出现的投影( A A.上直立一根标杆AB,如图,杆长为2 m. (1)当阳光垂直照射地面时,标杆在地面上的投影是什么图形?
知识点1 平行投影 1.(4分)以下四幅图的情形中,表示两棵小树在同一时刻阳光下 的影子的是( D )
2.(4分)下面四幅图是两个物体不同时刻在太阳光下的影子,按 照时间的先后顺序正确的是( C )
A.①→②→③→④ C.③→④→①→②
B.④→②→③→① D.①→③→②→④
3.(4分)在同一时刻,两根长度不等的竿子置于阳光之下,但它们 的影长相等,那么这两根竿子的相对位置是( C )
值为m,最小值为n,那么下列结论:①m>AC,②m=AC,③n =AB,④影子的长度先增大后减小.其中正确的结论的序号是 ①③④ ____________ .
13.三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得 OA=20 cm,OA′=50 cm,这个三角尺的周长与它在墙上形成的影
子的周长的比是_________. 2∶5
(2)当阳光与地面的倾斜角为60°时,标杆在地面上的投影是什么图形
?并画出投影示意图.
解:(1)点 (2)当阳光与地面的倾斜角为60°时,标杆在地 面上的投影是一条线段,图略
知识点2 中心投影 6.(4分)如图,晚上小亮在路灯下散步,他从A处向着路灯柱方向
径直走到B处,这一过程中他在该路灯灯光下的影子( A )