代数发展史_7

合集下载

线性代数发展史

线性代数发展史

线性代数的发展史线性代数发展史由于研究关联着多个因素的量所引起的问题,则需要考察多元函数。

如果所研究的关联性是线性的,那么称这个问题为线性问题。

历史上线性代数的第一个问题是关于解线性方程组的问题,而线性方程组理论的发展又促成了作为工具的矩阵论和行列式理论的创立与发展,这些内容已成为我们线性代数教材的主要部分。

最初的线性方程组问题大都是来源于生活实践,正是实际问题刺激了线性代数这一学科的诞生与发展。

另外,近现代数学分析与几何学等数学分支的要求也促使了线性代数的进一步发展。

矩阵和行列式行列式出现于线性方程组的求解,它最早是一种速记的表达式,现在已经是数学中一种非常有用的工具。

行列式是由莱布尼茨和日本数学家关孝和发明的。

1693年4月,莱布尼茨在写给洛比达的一封信中使用并给出了行列式,并给出方程组的系数行列式为零的条件。

同时代的日本数学家关孝和在其着作《解伏题元法》中也提出了行列式的概念与算法。

1750年,瑞士数学家克莱姆(G.Cramer,1704-1752)在其着作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克莱姆法则。

稍后,数学家贝祖(E.Bezout,1730-1783)将确定行列式每一项符号的方法进行了系统化,利用系数行列式概念指出了如何判断一个齐次线性方程组有非零解。

总之,在很长一段时间内,行列式只是作为解线性方程组的一种工具使用,并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以研究。

在行列式的发展史上,第一个对行列式理论做出连贯的逻辑的阐述,即把行列式理论与线性方程组求解相分离的人,是法国数学家范德蒙(A-T.Vandermonde,1735-1796)。

范德蒙自幼在父亲的知道下学习音乐,但对数学有浓厚的兴趣,后来终于成为法兰西科学院院士。

特别地,他给出了用二阶子式和它们的余子式来展开行列式的法则。

就对行列式本身这一点来说,他是这门理论的奠基人。

近世代数发展简史

近世代数发展简史

近世代数发展简史近世代数是数学中的一个重要分支,它研究的是数和运算的性质。

近世代数的发展经历了数百年的演变和进步,从最初的代数方程解法到现代的抽象代数理论,为数学的发展做出了巨大的贡献。

本文将详细介绍近世代数的发展历程和关键里程碑。

1. 代数的起源代数的起源可以追溯到古希腊和古埃及时期。

古希腊数学家毕达哥拉斯和欧几里得等人对代数方程的解法进行了研究,提出了一些基本的代数原理和方法。

古埃及人也在解决实际问题中使用了代数的概念和方法。

2. 文艺复兴时期的代数在文艺复兴时期,代数开始脱离实际应用,成为一门独立的学科。

意大利数学家斯卡拉潘尼和法国数学家维尼奥等人对代数进行了深入研究,并提出了一些重要的代数理论。

斯卡拉潘尼的《代数学》被认为是近世代数的奠基之作。

3. 高斯的贡献19世纪初,德国数学家高斯对代数的发展做出了重要贡献。

他提出了复数的概念,并将代数方程的解法推广到复数域上。

高斯的《代数学基础》成为了近世代数的经典著作,对后来的代数研究产生了深远影响。

4. 抽象代数的浮现20世纪初,抽象代数作为一门独立的数学学科开始崭露头角。

法国数学家加罗华和德国数学家诺特等人对代数的结构和性质进行了深入研究,提出了一些重要的概念和定理。

抽象代数的浮现使代数的研究更加系统化和抽象化。

5. 现代代数理论的发展近现代,代数理论得到了极大的发展和完善。

代数的研究范围涉及了群论、环论、域论等多个方面。

代数理论的应用也广泛渗透到其他数学领域,如数论、几何学等。

代数的发展对数学的发展起到了重要的推动作用。

总结:近世代数的发展经历了数百年的演变和进步,从最初的代数方程解法到现代的抽象代数理论,为数学的发展做出了巨大的贡献。

从古希腊和古埃及的代数起源,到文艺复兴时期的代数研究,再到高斯的贡献和抽象代数的浮现,近世代数的发展历程丰富多样。

现代代数理论的发展使代数的研究更加系统化和抽象化,并对其他数学领域产生了深远影响。

近世代数的发展不仅推动了数学的进步,也为人类认识世界和解决实际问题提供了重要的工具和方法。

代数的演变过程

代数的演变过程

代数的演变过程代数是数学的一个分支,它从古希腊时期以来就广泛研究和应用,演变过程丰富多彩。

本文将从古希腊时期开始介绍代数的演变过程,一直到现代代数的发展。

古希腊时期:代数开始萌芽古希腊人最早使用的是几何方法,并且不理解负数和零的数域。

但是,他们认为数量应该独立于度量,不依赖任何对象。

这个想法给代数的发展奠定了基础。

古希腊人以文字、符号等画出较小的数量,利用整数来解决方程,例如:n + 5 = 7。

他们一开始并没有发明字母来代表数量,但在1600年左右,人们开始使用字母解决方程。

伊斯兰黄金时期:代数初步发展在伊斯兰文化黄金时期,伊斯兰贡献了代数和算法等方面的重大进展。

伊斯兰数学家使用了大量的代数方法,发明了代数式,使用字母代表数字并将它们用于解决多项式方程。

光荣时期:代数的重要进展16世纪欧洲成为代数的中心,一位名叫里昂的数学家所创造的代数商法被广泛使用。

也是在这个时期,拉丁字母被作为符号被广泛引入,at表示乘法,ad表示加法,as表示已知量。

拉格朗日时期:群论的核心思想18世纪,拉格朗日开创了新的思想,他认为我们应该将具有相同性质的对称操作放在一起进行研究。

此时,群论的核心思想被建立,其中最为著名和广泛使用的是阿贝尔群和非阿贝尔群。

伽罗瓦时期:解析几何的代数方法伽罗瓦使用代数方法为解析几何提供了一个全新的框架,规定了解析几何的一些基本原理。

他的理论主要有涵盖多项式中的根、简化高阶方程和构建代数方程,为现代代数学奠定了基础。

现代代数:通用代数的产生在19世纪末,矩阵理论取得了长足的进展。

20世纪初,万能代数的概念被提出,使代数理论更为广泛和通用。

通用代数解决了许多方程无法处理的问题,是现代代数学的重要分支。

总结通过上述的演变过程,我们不难发现代数的重要性和发展简史。

从古希腊时期到现代代数,我们可以看到代数的历史和发展中不断涌现的众多数学家,他们的贡献让代数不断发展、演化,成为数学研究的一个重要分支。

中学代数发展脉络

中学代数发展脉络

中学代数发展脉络
中学代数的发展脉络可以追溯到古代中国的数学著作《九章算术》,其中已经有了方程组的解法,可以看作是代数的萌芽。

随着时间的推移,代数逐渐发展成为一门独立的数学分支,在欧洲文艺复兴时期达到了巅峰。

在16、17世纪,欧洲的数学家开始系统地研究代数,出现了许多重要的代数著作,如韦达的《分析艺术》和笛卡尔的《几何》等。

这些著作中,韦达提出了“根与系数的关系”,笛卡尔引入了变量的概念,为代数学的发展奠定了基础。

18、19世纪,代数学得到了进一步的发展和完善。

在这个时期,代数学逐渐分为多个分支,如线性代数、多项式代数和群论等。

同时,代数学的应用也逐渐扩展到其他领域,如物理学、工程学和经济学等。

进入20世纪,代数学的发展更加迅速,出现了许多新的理论和方法,如矩阵论、域论和李群等。

这些新的理论和方法不仅在数学内部有着广泛的应用,也在其他领域中发挥了重要的作用。

在中学阶段,代数是数学教育中的重要内容之一。

通过代数的学习,学生可以掌握数学的基本概念和方法,培养逻辑思维能力,提高解决问题的能力。

在代数的学习中,学生需要理解各种概念、掌握各种运算方法、探究各种方程和不等式的解法,并能够运用代数知识解决实际问题。

总之,中学代数的发展脉络是一个不断演进的过程。

随着时间的推移,代数学的理论和方法不断完善和发展,其在各个领域中的应用也越来越广泛。

在中学阶段,代数的学习对于培养学生的数学素养和逻辑思维能力具有重要意义。

简述代数学的发展历程

简述代数学的发展历程

简述代数学的发展历程代数是一个较为基础的数学分支。

它的研究对象有许多,诸如数、数量、代数式、关系、方程理论、代数结构等等,就是说不仅是数字,还有各种抽象化的结构。

例如整数集作为一个带有加法、乘法和序关系的集合就是一个代数结构。

在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。

这篇文章中一起快速回顾代数发展的那些重要时刻:●公元前1800 年左右,旧巴比伦斯特拉斯堡泥板书中记述其寻找著二次椭圆方程的解法。

●公元前1600 年左右,普林顿322 号泥板书中记述了以巴比伦楔形文字写成的勾股数列表。

●公元前800 年左右,印度数学家包德哈亚那在其著作包德哈尔那绳法经中以代数方法找到了勾股数,给出了线性方程和如与等形式之二次方程的几何解法,且找出了两组丢番图方程组的正整数解。

●公元前600 年左右,印度数学家阿帕斯檀跋在其著作'阿帕斯檀跋绳法经'中给出了一次方程的一般解法和使用多达五个未知数的丢番图方程组。

●公元前300 年左右,在几何原本的第二卷里,欧几里德给出了有正实数根之二次方程的解法,使用尺规作图的几何方法。

此一方法是基于几何学中的毕达哥拉斯学派。

●公元前300 年左右,倍立方的几何解法被提了出来。

现已知道此问题无法使用尺规作图求解。

●公元前100 年左右,中国数学书《九章算术》中处理了代数方程的问题,其包括用试位法解线性方程、二次方程的几何解法及用相当于现今所用之消元法来解线性方程组。

还应用一次内插法。

●公元前100 年左右,写于古印度的巴赫沙利手稿中使用了以字母和其他符号写成的代数标记法,且包含有三次与四次方程,多达五个未知道的线性方程之代数解,二次方程的一般代数公式,以及不定二次方程与方程组的解法。

●公元150 年左右,希腊化埃及数学家希罗(又称海伦)在其三卷数学著作中论述了代数方程。

●200 年左右,希腊化巴比伦数学人丢番图,他居住于埃及且常被认为是“代数之父”,写有一本著名的算术,此书为论述代数方程的解法及数论之作。

近世代数发展史

近世代数发展史

抽象代数就是近世代数,法国数学家伽罗瓦〔1811-1832〕在1832年运用「群」的思想彻底解决了用根式求解代数方程的可能性问题。

他是第一个提出「群」的思想的数学家,一般称他为近世代数创始人。

他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。

抽象代数,包含有群论、环论、伽罗瓦理论、格论、线性代数等许多分支,并与数学其它分支相结合产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科。

抽象代数也是现代计算机理论基础之一。

抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。

法国数学家伽罗瓦〔1811-1832〕在1832年运用「群」的思想彻底解决了用根式求解代数方程的可能性问题。

他是第一个提出「群」的思想的数学家,一般称他为近世代数创始人。

他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。

抽象代数,包含有群论、环论、伽罗瓦理论、格论、线性代数等许多分支,并与数学其它分支相结合产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科。

抽象代数也是现代计算机理论基础之一。

编辑本段定义抽象代数是研究各种抽象的公理化代数系统的数学学科。

由于代数可处理实数与复数以外的物集,例如向量(vector)、矩阵(matrix)、变换(transformation)等,这些物集的分别是依它们各有的演算定律而定,而数学家将个别的演算经由抽象手法把共有的内容升华出来,并因此而达到更高层次,这就诞生了抽象代数。

抽象代数,包含有群(group)、环(ring)、Galois理论、格论等许多分支,并与数学其它分支相结合产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科。

抽象代数已经成了当代大部分数学的通用语言。

编辑本段创始人及理论被誉为天才数学家的Galois(1811-1832)是近世代数的创始人之一。

代数学发展简史及线性代数简史

代数学发展简史及线性代数简史

代数学发展简史及线性代数简史代数学的发展简史:代数学作为一门数学学科,起源非常古老。

早在公元前3000年,古巴比伦人就开始使用代数方法解决一些实际问题,比如计算土地面积与粮食数量。

然而,真正意义上的代数学发展始于古希腊时期。

在公元前5世纪,古希腊数学家毕达哥拉斯提出了“万物皆数字”的概念,并建立了一套基本的代数规则。

他的学生柏拉图以及柏拉图的学生亚里士多德进一步发展了这些理论。

随着时代的推移,代数学逐渐与几何学分离,成为一个独立的学科。

在16世纪,意大利数学家费拉里奥首次使用代数符号来表示未知量。

17世纪,法国数学家笛卡尔在其著作《几何学》中,将代数与几何紧密结合,发展了解析几何。

在18世纪和19世纪,代数学得到了飞速发展,出现了复数、矩阵论、高斯消元法等重要概念和方法。

20世纪是代数学的黄金时期。

在这个时期,代数学被赋予了更深层次的意义。

20世纪初,德国数学家希尔伯特提出了20个关于数学基础的未解问题,其中许多涉及代数学领域。

这些问题推动了代数学的发展,并促使人们对数学基础的研究。

现代代数学已经成为数学中的一门重要分支,涉及众多领域,如数论、代数几何、群论、环论等。

代数学的发展不仅深化了人们对数学本质的认识,也为其他学科的发展提供了强有力的数学工具。

线性代数的发展简史:线性代数作为代数学中的一个重要分支,起源于17世纪。

早在17世纪,数学家哈密尔顿开始研究线性代数的基本概念。

然而,线性代数的理论基础最早是由19世纪英国数学家卡尔·弗里德里希·高斯奠定的。

高斯在矩阵理论和线性方程组的解法上做出了重要贡献,他发展了行列式的概念,并提出了高斯消元法。

19世纪末和20世纪初,线性代数得到了飞速发展。

德国数学家大卫·希尔伯特和俄罗斯数学家安德烈·马尔科夫开创了线性算子理论的研究。

他们引入了现代线性空间的概念,并发展了线性变换、特征值、特征向量等重要概念。

此外,瑞士数学家埃尔米特和德国数学家约尔当也对线性代数做出了重要贡献,他们提出了埃尔米特矩阵和约旦标准型等概念。

近世代数发展简史

近世代数发展简史

近世代数发展简史近世代数是数学中的一个重要分支,它研究的是数与符号之间的关系。

代数的发展可以追溯到古代,但近世代数的起源可以追溯到16世纪。

以下是近世代数发展的简史。

1. 文艺复兴时期(16世纪)在文艺复兴时期,代数开始浮现了一些重要的发展。

意大利数学家Cardano首次提出了解三次方程的方法,并发表了《代数学大全》。

同时,法国数学家Viète 提出了代数中的符号表示法,开创了代数符号的使用。

2. 方程论的发展(17世纪)17世纪,方程论成为代数中的重要研究领域。

法国数学家Fermat和英国数学家Descartes分别独立地发展了代数几何学,将代数与几何相结合。

Fermat提出了著名的“费马大定理”,并在边注中提到了他的证明思路,这成为了代数中的一个重要问题。

3. 群论的兴起(19世纪)19世纪,代数的发展进入了一个新的阶段。

法国数学家Galois提出了群论的概念,并建立了现代代数的基础。

他研究了方程的可解性,并提出了著名的“Galois理论”,解决了费马大定理中的一些特殊情况。

Galois的工作对代数的发展产生了深远的影响。

4. 现代代数的建立(20世纪)20世纪,代数的发展进入了一个全新的阶段。

德国数学家Hilbert提出了代数基础的问题,并提出了一系列的公理化方法。

同时,抽象代数成为了代数中的重要分支,研究了各种代数结构的性质。

在这一时期,代数的研究范围得到了极大的扩展。

5. 应用领域的发展近世代数的发展不仅仅局限于理论研究,还涉及到了许多实际应用领域。

代数在密码学、编码理论、计算机科学等领域都有广泛的应用。

代数的发展为这些领域提供了强大的工具和方法。

总结:近世代数的发展经历了多个阶段,从文艺复兴时期的代数基础研究,到方程论的发展,再到群论和现代代数的建立,代数的研究范围不断扩展。

近世代数的发展不仅仅是理论上的突破,还涉及到了许多实际应用领域。

代数的发展为数学和其他学科的发展做出了巨大贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代数发展史一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识,而历史却能给我们智慧。

数学的历史是重要的,它是文明史的有价值的组成部分,人类的进步和科学思想是一致的。

数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的‚共和国‛。

大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。

这三大类数学构成了整个数学的本体与核心。

在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。

在此简要介绍代数学的有关历史发展情况。

‚代数‛(algebra)一词最初来源于公元9世纪阿拉伯数学家、天文学家阿尔·花拉子米(al-Khowārizmī,约780-850)一本著作的名称,书名的阿拉伯文是‘ilm al-jabr wa’l muqabalah,直译应为《还原与对消的科学》.al-jabr 意为‚还原‛,这里指把负项移到方程另一端‚还原‛为正项;muqabalah 意即‚对消‛或‚化简‛,指方程两端可以消去相同的项或合并同类项.在翻译中把‚a l-jabr‛译为拉丁文‚aljebra‛,拉丁文‚aljebra‛一词后来被许多国家采用,英文译作‚algebra‛。

阿布·贾法尔·穆罕默德·伊本·穆萨·阿尔—花拉子米的传记材料,很少流传下来.一般认为他生于花拉子模[Khwarizm,位于阿姆河下游,今乌兹别克境内的希瓦城(Хива)附近],故以花拉子米为姓.另一说他生于巴格达附近的库特鲁伯利(Qut-rubbullī).祖先是花拉子模人.花拉子米是拜火教徒的后裔,早年在家乡接受初等教育,后到中亚细亚古城默夫(Мерв)继续深造,并到过阿富汗、印度等地游学,不久成为远近闻名的科学家.东部地区的总督马蒙(al-Ma’mūn,公元786—833年)曾在默夫召见过花拉子米.公元813年,马蒙成为阿拔斯王朝的哈利发后,聘请花拉子米到首都巴格达工作.公元830年,马蒙在巴格达创办了著名的‚智慧馆‛(Bayt al-Hikmah,是自公元前3世纪亚历山大博物馆之后最重要的学术机关),花拉子米是智慧馆学术工作的主要领导人之一.马蒙去世后,花拉子米在后继的哈利发统治下仍留在巴格达工作,直至去世.花拉子米生活和工作的时期,是阿拉伯帝国的政治局势日渐安定、经济发展、文化生活繁荣昌盛的时期.花拉子米科学研究的范围十分广泛,包括数学、天文学、历史学和地理学等领域.他撰写了许多重要的科学著作.在数学方面,花拉子米编著了两部传世之作:《代数学》和《印度的计算术》. 1859年,我国数学家李善兰首次把‚algebra‛译成‚代数‛。

后来清代学者华蘅芳和英国人傅兰雅合译英国瓦里斯的《代数学》,卷首有‚代数之法,无论何数,皆可以任何记号代之‛,亦即:代数,就是运用文字符号来代替数字的一种数学方法。

古希腊数学家丢番图(Diophantus)用文字缩写来表示未知量,在公元250年前后丢番图写了一本数学巨著《算术》(Arithmetica)。

其中他引入了未知数的概念,创设了未知数的符号,并有建立方程序的思想。

故有‚代数学之父‛(Father of algebra)的称号。

代数是巴比伦人、希腊人、阿拉伯人、中国人、印度人和西欧人一棒接一棒而完成的伟大数学成就。

发展至今,它包含算术、初等代数、高等代数、数论、抽象代数五个部分。

1、算术算术给予我们一个用之不竭的、充满有趣真理的宝库----高斯(Gauss,1777-1855)数可以说成是统治整个量的世界,而算术的四则可以被认为是作为数学家的完全的装备---麦斯韦(James Clark Maxwell 1831-1879)算术有两种含义,一种是从中国传下来的,相当于一般所说的‚数学‛,如《九章算术》等。

另一种是从欧洲数学翻译过来的,源自希腊语,有‚计算技术‛之意。

现在一般所说的‚算术‛,往往指自然数的四则运算;如果是在高等数学中,则有‚数论‛的含义。

作为现代小学课程内容的算术,主要讲的是自然数、正分数以及它们的四则运算,并通过由计数和度量而引起的一些最简单的应用题加以巩固。

算术是数学中最古老的一个分支,它的一些结论是在长达数千年的时间里,缓慢而逐渐地建立起来的。

它们反映了在许多世纪中积累起来,并不断凝固在人们意识中的经验。

自然数是在对于对象的有限集合进行计算的过程中,产生的抽象概念。

日常生活中要求人们不仅要计算单个的对象,还要计算各种量,例如长度、重量和时间。

为了满足这些简单的量度需要,就要用到分数。

现代初等算术运算方法的发展,起源于印度,时间可能在10世纪或11世纪。

它后来被阿拉伯人采用,之后传到西欧。

15世纪,它被改造成现在的形式。

在印度算术的后面,明显地存在着我国古代的影响。

19世纪中叶,格拉斯曼(Grassmann)第一次成功地挑选出一个基本公理体系,来定义加法与乘法运算;而算术的其它命题,可以作为逻辑的结果,从这一体系中被推导出来。

后来,皮亚诺(Peano)进一步完善了格拉斯曼的体系。

算术的基本概念和逻辑推论法则,以人类的实践活动为基础,深刻地反映了世界的客观规律性。

尽管它是高度抽象的,但由于它概括的原始材料是如此广泛,因此我们几乎离不开它。

同时,它又构成了数学其它分支的最坚实的基础。

2、初等代数作为中学数学课程主要内容的初等代数,其中心内容是方程理论。

代数一词的拉丁文原意是‚归位‛。

代数方程理论在初等代数中是由一元一次方程向两个方面扩展的:其一是增加未知数的个数,考察由有几个未知数的若干个方程所构成的二元或三元方程组(主要是一次方程组);其二是增高未知量的次数,考察一元二次方程或准二次方程。

初等代数的主要内容在16世纪便已基本上发展完备了。

古巴比伦(公元前19世纪~前17世纪)解决了一次和二次方程问题,欧几里得的《原本》(公元前4世纪)中就有用几何形式解二次方程的方法。

我国的《九章算术》(公元1世纪)中有三次方程和一次联立方程组的解法,并运用了负数。

3世纪的丢番图用有理数求一次、二次不定方程的解。

13世纪我国出现的天元术(李冶《测圆海镜》)是有关一元高次方程的数值解法。

16世纪意大利数学家发现了三次和四次方程的解法。

代数学符号发展的历史,可分为三个阶段。

第一个阶段为三世纪之前,对问题的解不用缩写和符号,而是写成一篇论文,称为文字叙述代数。

第二个阶段为三世纪至16世纪,对某些较常出现的量和运算采用了缩写的方法,称为简化代数。

三世纪的丢番图的杰出贡献之一,就是把希腊代数学简化,开创了简化代数。

然而此后文字叙述代数,在除了印度以外的世界其它地方,还十分普通地存在了好几百年,尤其在西欧一直到15世纪。

第三个阶段为16世纪以后,对问题的解多半表现为由符号组成的数学速记,这些符号与所表现的内容没有什么明显的联系,称为符号代数。

韦达(Viète)在他的《分析方法入门》(Inartem analyticem isagoge,1591)著作中,首次系统地使用了符号表示未知量的值进行运算,提出符号运算与数的区别,规定了代数与算术的分界。

韦达是第一个试图创立一般符号代数的的数学家,他开创的符号代数,经笛卡尔(Descarte)改进后成为现代的形式。

笛卡尔用小写字母a, b, c等表示已知量,而用x, y, z 代表未知量。

这种用法已经成为当今的标准用法。

‚+‛、‚-‛号第一次在数学书中出现,是1489年维德曼的著作《商业中的巧妙速算法》(Behend und hüpsch Rechnung uff allen kauffmanschafften, 1489)。

不过正式为大家所公认,作为加、减法运算的符号,那是从1514年由荷伊克开始的。

1540年,雷科德(R. Rcorde)开始使用现在使用的‚=‛。

到1591年,韦达在著作中大量使用后,才逐渐为人们所接受。

1600年哈里奥特(T. Harriot)创用大于号‚>‛和小于号‚<‛。

1631年,奥屈特给出‚×‛、‚÷‛作为乘除运算符。

1637年,笛卡尔第一次使用了根号,并引进用字母表中头前的字母表示已知数、后面的字母表示未知数的习惯做法。

至于‚≮‛、‚≯‛、‚≠‛这三个符号的出现,那是近代的事了。

数的概念的拓广,在历史上并不全是由解代数方程所引起的,但习惯上仍把它放在初等代数里,以求与这门课程的安排相一致。

公元前4世纪,古希腊人发现无理数。

公元前2世纪(西汉时期),我国开始应用负数。

1545年,意大利的卡尔达诺(N. Cardano)在《大术》中开始使用虚数。

1614年,英国的耐普尔发明对数。

17世纪末,一般的实数指数概念才逐步形成。

3、高等代数在高等代数中,一次方程组(即线性方程组)发展成为线性代数理论;而二次以上方程发展成为多项式理论。

前者是向量空间、线性变换、型论、不变量论和张量代数等内容的一门近世代数分支学科,而后者是研究只含有一个未知量的任意次方程的一门近世代数分支学科。

作为大学课程的高等代数,只研究它们的基础。

高次方程组(即非线性方程组)发展成为一门比较现代的数学理论----代数几何。

线性代数是高等代数的一大分支。

我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。

在线性代数中最重要的内容就是行列式和矩阵。

行列式和矩阵在十九世纪受到很大的注意,而且写了成千篇关于这两个课题的文章。

向量的概念,从数学的观点来看不过是有序三元数组的一个集合,然而它以力或速度作为直接的物理意义,并且数学上用它能立刻写出物理上所说的事情。

向量用于梯度,散度,旋度就更有说服力。

同样,行列式和矩阵如导数一样(虽然在数学上不过是一个符号,表示包括的极限的长式子,但导数本身是一个强有力的概念,能使我们直接而创造性地想象物理上发生的事情)。

因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。

然而已经证明这两个概念是数学物理上高度有用的工具。

线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的。

十七世纪日本数学家关孝和提出了行列式(determinant)的概念,他在1683年写了一部叫做《解伏题之法》的著作,意思是‚解行列式问题的方法‛,书里对行列式的概念和它的展开已经有了清楚的叙述。

而在欧洲,第一个提出行列式概念的是德国的数学家,微积分学奠基人之一莱布尼兹(Leibnitz,1693年)。

1750年克莱姆(Cramer)在他的《线性代数分析导言》(Introduction d l'analyse des lignes courbes alge'briques)中发表了求解线性系统方程的重要基本公式(既人们熟悉的Cramer克莱姆法则)。

相关文档
最新文档