【非常考案】2017版高考物理一轮复习(通用版):分层限时跟踪练26.doc
【非常考案】高考物理一轮复习(通用版)分层限时跟踪练6 Word版含解析

分层限时跟踪练(六)(限时40分钟)一、单项选择题1.某班级同学要调换座位,一同学用斜向上的拉力拖动桌子沿水平地面匀速运动,则下列说法正确的是()A.拉力的水平分力等于桌子所受的合力B.拉力的竖直分力小于桌子所受重力的大小C.拉力与摩擦力的合力大小等于重力大小D.拉力与重力的合力方向一定沿水平方向【解析】由于桌子沿水平地面匀速运动,所以一定沿地面有向后的滑动摩擦力,根据摩擦力的产生条件,一定有竖直向上的弹力,所以桌子应受到四个力的作用而平衡,即重力,斜向上的拉力,竖直向上的支持力和沿水平地面向后的摩擦力,且四个力的合力为零,故A错;将斜向上的拉力分解成竖直向上的分力和水平向前的分力,则竖直方向上三力平衡,水平方向上二力平衡,故B正确;拉力与摩擦力的合力大小等于拉力的竖直分力,小于重力,故C错;拉力和重力的合力方向一定斜向下不沿水平方向,故D错.【答案】 B2.(2014·上海高考)如图2-3-11所示,光滑的四分之一圆弧轨道AB固定在竖直平面内,A端与水平面相切.穿在轨道上的小球在拉力F作用下,缓慢地由A向B运动,F始终沿轨道的切线方向,轨道对球的弹力为N.在运动过程中()图2-3-11A.F增大,N减小B.F减小,N减小C.F增大,N增大D.F减小,N增大【解析】小球一直受到重力、支持力、拉力作用,根据共点力平衡有F=mg sin α,N=mg cos α(α是重力与圆弧半径方向的夹角),随着夹角的增大,支持力逐渐减小,拉力逐渐增大,选项A正确.【答案】 A3.如图2-3-12所示,水平固定且倾角为30°的光滑斜面上有两个质量均为m的小球A、B,它们用劲度系数为k的轻质弹簧连接,现对B施加一水平向左的推力F使A、B均静止在斜面上,此时弹簧的长度为l,则弹簧原长和推力F 的大小分别为()图2-3-12A.l+mg2k,233mg B.l-mg2k,233mgC.l+mg2k,23mg D.l-mg2k,23mg【解析】以A、B和弹簧组成的系统为研究对象,则F cos 30°=2mg sin30°,得F=233mg;隔离A有kx=mg sin 30°,得弹簧原长为l-x=l-mg2k,故选项B正确.【答案】 B4.如图2-3-13所示,两个质量均为m的小球用轻质细杆连接静止于内壁光滑的半球形碗内,杆及碗口平面均水平,碗的半径及两小球之间的距离均为R,不计小球半径,则碗对每个小球的支持力大小为()图2-3-13A.33mg B.233mgC.3mg D.2mg【解析】以其中一小球为研究对象,受力情况如图所示.根据题意可知θ=30°,根据平衡条件可知:F N1=mgcos θ=233mg,选项B正确.【答案】 B5.(2016·福州模拟)如图2-3-14所示,光滑水平面上有一14的球体,球体的左侧面也光滑.质量分别为m1、m2的小球(均可看做质点)通过柔软光滑的轻绳连接,且与球体一起以共同的速度v0向左匀速运动,此时m2与球心O的连线与水平线成45°角.m2与球面间的动摩擦因数为0.5,设m2与球面间的最大静摩擦力等于滑动摩擦力,则m2m1的最小值是()图2-3-14A.324 B.223C.2 D. 2【解析】当m1有最大值时,摩擦力沿球面向下,受力如图所示,根据共点力平衡得m2g sin 45°+f=T,f=μN=μm2g cos 45°,T=m1g,联立三式解得m2m1=223,选项B正确.【答案】 B二、多项选择题6.(2016·郴州模拟)如图2-3-15甲所示,在粗糙水平面上静置—个截面为等腰三角形的斜劈A,其质量为M,两个底角均为30°.两个完全相同的、质量均为m的小物块p和q恰好能沿两侧面匀速下滑.若现在对两小物块同时各施加—个平行于斜劈侧面的恒力F1、F2,且F1>F2,如图2-3-15乙所示,则在p和q下滑的过程中,下列说法正确的是()图2-3-15A.斜劈A仍保持静止B.斜劈A受到地面向右的摩擦力作用C.斜劈A对地面的压力大小等于(M+2m)gD.斜劈A对地面的压力大小大于(M+2m)g【解析】题图甲中,三个物体都处于平衡状态,故可以对三个物体组成的整体受力分析,受重力和支持力,故支持力为(M+2m)g,斜劈与地面之间没有摩擦力;在图乙中,物块p、q对斜劈的压力和摩擦力不变,故斜劈受力情况不变,故斜劈A仍保持静止,斜劈A对地面的压力大小等于(M+2m)g,与地面间没有摩擦力,故A、C正确.【答案】AC7.如图2-3-16所示,A、B两物块始终静止在水平地面上,有一轻质弹簧一端连接在竖直墙上P点,另一端与A相连接,下列说法正确的是()图2-3-16A.如果B对A无摩擦力,则地面对B也无摩擦力B.如果B对A有向左的摩擦力,则地面对B也有向左的摩擦力C.P点缓慢下移过程中,B对A的支持力一定减小D.P点缓慢下移过程中,地面对B的摩擦力一定增大【解析】若B对A无摩擦力,因B在水平方向受力平衡,则地面对B无摩擦力,A正确;若B对A有向左的摩擦力,则A对B有向右的摩擦力,由平衡条件知,地面对B有向左的摩擦力,B正确;若弹簧起初处于拉伸状态,则在P点缓慢下移的过程中,弹簧对A物体的拉力减小且拉力在竖直方向的分力减小,则B对A的支持力增大,C错误;在P点缓慢下移过程中,以A、B为整体,若弹簧起初处于拉伸状态,P点下移使弹簧恢复到原长时,地面对B的摩擦力逐渐减小到零,D错误.【答案】AB8.如图2-3-17所示,横截面为直角三角形的斜劈A,底面靠在粗糙的竖直墙面上,力F指向球心水平作用在光滑球B上,系统处于静止状态.当力F增大时,系统还保持静止,则下列说法正确的是()图2-3-17A.A所受合外力增大B.A对竖直墙壁的压力增大C.B对地面的压力一定增大D.墙面对A的摩擦力可能变为零【解析】A一直处于静止状态,所受合外力一直为零,选项A错误;对整体受力分析,根据平衡条件有,水平方向:F N=F,F增大,则F N增大,选项B 正确;对B受力分析,如图所示,根据平衡条件有F=F N′sin θ,可见F增大,则F N′增大,F N″=mg+F N′cos θ,可见F N′增大,则F N″增大,根据牛顿第三定律可知球对地面的压力增大,选项C正确;以整体为研究对象,竖直方向有F N″+f=Mg,若F N″增大至与Mg相等,则f=0,选项D正确.【答案】BCD9.如图2-3-18所示,光滑的夹角为θ=30°的三角杆水平放置,两小球A、B分别穿在两个杆上,两球之间有一根轻绳连接两球,现在用力将小球B缓慢拉动,直到轻绳被拉直时,测出拉力F=10 N,则此时关于两个小球受到的力的说法正确的是(小球重力不计)()图2-3-18A .小球A 受到杆对A 的弹力、绳子的张力B .小球A 受到的杆的弹力大小为20 NC .此时绳子与穿有A 球的杆垂直,绳子张力大小为2033 ND .小球B 受到杆的弹力大小为2033 N 【解析】 由于拉动是缓慢进行的,因此任何一个小球均处于动态平衡状态,则对小球A 而言,仅受两个力的作用,杆对A 的弹力F N2与绳子的张力T 平衡,绳子垂直于A 所在的杆,选项A 正确.小球B 受到三个力平衡,拉力F 绳子弹力T 和杆对它的弹力F N1,把绳子上的弹力正交分解,则有T x =T cos 60°=F ,可得T =2F ,因此小球A 受到的杆的弹力大小为T =2F =20 N ,选项B 正确,C 、D 错误.【答案】 AB三、非选择题10.如图2-3-19所示,P 为一个水闸的剖面图,闸门质量为m ,宽度为b .水闸两侧水面高分别为h 1、h 2,水与闸门间、闸门与轨道间的动摩擦因数分别为μ1、μ2,求拉起闸门至少需要多大的力?图2-3-19【解析】 左侧和右侧水对闸门向右和向左的压力分别为:F 1=ρgh 12·bh 1,F 2=ρgh 22·bh 2.由水平方向合力为零可知,轨道与闸门之间的弹力F N 满足:F 1=F 2+F N ,即F N =F 1-F 2=ρgb (h 21-h 22)2. 提起闸门时在一开始所需的拉力最大,其值为:F =mg +μ2F N +μ1(F 1+F 2)=mg +μ2ρgb 2(h 21-h 22)+μ1ρgb 2(h 21+h 22). 【答案】 mg +μ2ρgb 2(h 21-h 22)+μ1ρgb 2(h 21+h 22)11.(2016·武汉模拟)如图2-3-20所示,质量为m 的匀质细绳,一端系在天花板上的A 点,另一端系在竖直墙壁上的B 点,平衡后最低点为C 点.现测得AC 段绳长是CB 段绳长的n 倍,且绳子B 端的切线与墙壁的夹角为α.试求绳子在C 处和在A 处的弹力分别为多大.(重力加速度为g )图2-3-20【解析】 以BC 段为研究对象,设绳子B 端所受弹力为T B ,C 处所受弹力为T C ,如图甲所示.T B cos α=1n +1mg , T B sin α=T C ,解得T C =mg n +1tan α.以AC 段为研究对象,设绳子A 端所受弹力为T A ,C 处所受弹力为T ′C ,如图乙所示.T A sin β=n n +1mg , T A cos β=T ′C ,T C=T′C,解得T A=mgn+1n2+tan2α.【答案】mgn+1tan αmgn+1n2+tan2α12.(2016·南昌模拟)如图2-3-21所示,在质量为m=1 kg的重物上系着一条长为30 cm的细绳,细绳的另一端连着一个轻质圆环,圆环套在水平棒上可以滑动,环与棒间的动摩擦因数μ为0.75,另有一条细绳,在其一端跨过定滑轮,定滑轮固定在距离圆环50 cm的地方,当细绳的端点挂上重力为G的重物,而圆环将要开始滑动时,(g取10 m/s2)试求:图2-3-21(1)φ角的大小;(2)长为30 cm的细绳的张力;(3)重物G的质量.【解析】(1)因为圆环将要开始滑动,所受的静摩擦力刚好达到最大值,有F=μF N.对环进行受力分析,则有μF N-F T cos θ=0,F N-F T sin θ=0,解得tan θ=1μ=43,得θ=53°.又由于AO=30 cm,AB=50 cm,由数学知识求得φ=90°.(2)如图所示选取坐标轴,根据重物m处于平衡状态,则有G cos θ+F T sin θ=mg,F T cos θ-G sin θ=0,解得F T=8 N.(3)圆环将要滑动时,对重物进行受力分析可知:G sin θ=F T cos θ,又G=m′g,解得m′=0.6 kg.【答案】(1)90°(2)8 N(3)0.6 kg。
【非常考案】2017版高考物理一轮复习(通用版):分层限时跟踪练11.doc

分层限时跟踪练(十一)(限时40分钟)一、单项选择题1.(2016·德兴模拟)如图4-2-16所示,将一小球从倾角为θ的斜面上方O 点以初速度v 0水平抛出后,落到斜面上H 点,OH 垂直于斜面且OH =h .不计空气阻力,重力加速度大小为g ,则v 0的大小为( )图4-2-16A.gh cos 2 θ2sin θB.gh sin 2 θ2cos θC.2gh sin 2 θcos θD .2gh cos 2 θsin θ【解析】 由几何关系得,小球做平抛运动的水平位移x =h sin θ,竖直位移y =h cos θ,根据y =12gt 2得t =2h cos θg ,则初速度v 0=xt=gh sin 2 θ2cos θ.【答案】 B2.(2016·南充模拟)如图4-2-17所示,AB 为半圆环ACB 的水平直径,C 为环上的最低点,环半径为R .一个小球从A 点以速度v 0水平抛出,不计空气阻力.则下列判断正确的是( )图4-2-17A .只要v 0足够大,小球可以击中B 点B .即使v 0取值不同,小球掉到环上时的速度方向和水平方向之间的夹角也相同C .若v 0取值适当,可以使小球垂直撞击半圆环D .无论v 0取何值,小球都不可能垂直撞击半圆环【解析】 小球做平抛运动,在竖直方向上做自由落体运动,可知小球不可能击中B 点,选项A 错误;初速度不同,小球落点的位置不同,运动的时间可能不同,则小球掉到环上时的速度方向和水平方向之间的夹角不同,选项B 错误;小球不可能垂直撞击在半圆环AC 段,因为根据速度的合成,平抛运动的速度方向偏向右,假设小球与BC 段垂直撞击,设此时速度与水平方向的夹角为θ,知撞击点与圆心的连线与水平方向的夹角为θ,连接抛出点与撞击点,与水平方向的夹角为β.根据几何关系知θ=2β,因为平抛运动速度与水平方向夹角的正切值是位移与水平方向夹角正切值的2倍,即tan θ=2tan β,与θ=2β相矛盾,则不可能与半圆弧垂直相撞,选项C 错误,D 正确.【答案】 D3.如图4-2-18所示,位于同一高度的小球A 、B 分别以v 1和v 2的速度水平抛出,都落在了倾角为30°的斜面上的C 点,小球B 恰好垂直打到斜面上,则v 1、v 2大小之比为()图4-2-18A .1∶1B .2∶1C .3∶2D .2∶3【解析】 设A 、B 两球平抛运动的时间为t ,则对A 球:tan 30°=12gt 2v 1t ,对B 球:tan30°=v 2gt ,解得:v 1=gt 2tan 30°,v 2=gt tan 30°,解得:v 1v 2=32,C 正确.【答案】 C4.(2016·宜宾模拟)如图4-2-19所示,从A 点由静止释放一弹性小球,一段时间后与固定斜面上B 点发生碰撞,碰后小球速度大小不变,方向变为水平方向,又经过相同的时间落于地面上C 点,已知地面上D 点位于B 点正下方,B 、D 间的距离为h ,则()图4-2-19A .A 、B 两点间的距离为h 2B .A 、B 两点间的距离为h4C .C 、D 两点间的距离为2h D .C 、D 两点间的距离为233h【解析】 AB 段小球自由下落,BC 段小球做平抛运动,两段时间相同,所以A 、B 两点间距离与B 、D 两点间距离相等,均为h ,故A 、B 错误;BC 段小球做平抛运动,初速度v =2gh ,持续时间t =2hg,所以C 、D 两点间距离x =vt =2h ,故C 正确,D 错误. 【答案】 C5.(2016·兴化模拟)平抛运动可以分解为水平和竖直方向的两个直线运动,在同一坐标系中作出这两个分运动的v -t 图线,如图4-2-20所示.若平抛运动的时间大于2t 1,下列说法中正确的是( )图4-2-20A .图线2表示水平分运动的v -t 图线B .t 1时刻的速度方向与初速度方向的夹角为30°C .t 1时间内的竖直位移与水平位移之比为1∶2D .2t 1时刻的速度方向与初速度方向的夹角为60°【解析】 水平分运动为匀速直线运动,故A 错误;t 1时刻水平方向和竖直方向的分速度相等,则合速度与水平方向的夹角为45°,B 错误;设水平速度为v 0,则t 1时间内的水平位移为x =v 0t 1,竖直方向的位移y =v 02t 1,所以y x =12,C 正确;2t 1时刻竖直方向的速度2v 0,显然速度方向与水平方向的夹角不是60°,D 错误.【答案】 C 二、多项选择题6.(2016·唐山模拟)如图4-2-21所示,一同学分别在同一直线上的A 、B 、C 三个位置投掷篮球,结果都垂直击中篮筐,速度分别为v 1、v 2、v 3.若篮球出手时高度相同,出手速度与水平方向的夹角分别为θ1、θ2、θ3,下列说法正确的是( )图4-2-21A .v 1<v 2<v 3B .v 1>v 2>v 3C .θ1>θ2>θ3D .θ1<θ2<θ3【解析】 此过程可以看成篮球从篮筐水平抛出,由题意可知:其水平射程不同,且速度越大,水平射程越大,故选项A 错误,B 正确;根据平抛运动规律,水平速度越大,落地时速度方向与水平方向的夹角越小,选项C 错误,D 正确.【答案】 BD7.如图4-2-22所示,在水平地面上M 点的正上方某一高度处,将S 1球以初速度v 1水平向右抛出,同时在M 点右方地面上N 点处,将S 2球以初速度v 2斜向左上方抛出,两球恰在M 、N 连线的中点正上方相遇,不计空气阻力,则两球从抛出到相遇过程中()图4-2-22A .初速度大小关系为v 1=v 2B .速度变化量相等C .水平位移大小相等D .都不是匀变速运动【解析】 由题意可知,两球的水平位移相等,C 正确;由于只受重力的作用,故都是匀变速运动,且相同时间内速度变化量相等,B 正确,D 错误;又由v 1t =v 2x t 可得A 错误.【答案】 BC8.如图4-2-23所示,两滑雪运动员从O 点分别以v A 和v B 水平滑出后做平抛运动分别落到斜坡上的A 、B 两点,在落点前瞬间速度与水平方向夹角分别为θA 与θB ,两者在空中运动时间分别为t A 与t B .则()图4-2-23A .t A >tB B .t A <t BC .v A <v BD .θA <θB【解析】 由h =12gt 2可知,因h B >h A ,故t B >t A ,A 错误、B 正确;由tan θ=gtv 0,又由tan α=12gt 2v 0t =gt 2v 0可得tan θ=2tan α,则θA =θB ,D 错误;由v 0=gt2tan α可知,因t A <t B ,故v A <v B ,C 正确.【答案】 BC9.如图4-2-24所示,在高处以初速度v 1水平抛出一个带刺飞镖,在离开抛出点水平距离l 、2l 处分别有A 、B 两个小气球以速度v 2匀速上升,先后被飞镖刺破(认为飞镖质量很大,刺破气球后不会改变其平抛运动的轨迹).则下列判断正确的是()图4-2-24A .飞镖刺破A 气球时,飞镖的速度大小为v A =g 2l 2v 21B .飞镖刺破A 气球时,飞镖的速度大小为v A =v 21+g 2l 2v 21C .A ,B 两个小气球未被刺破前的匀速上升过程中,高度差为3gl 22v 21+v 2lv 1D .A ,B 两个小气球未被刺破前的匀速上升过程中,高度差为3gl 22v 21【解析】 飞镖刺破A 气球时所经历的时间t =lv 1,此时飞镖竖直方向的分速度v y =gt=gl v 1,所以飞镖的速度v =v 21+v 2y =v 21+⎝⎛⎭⎫gl v 12,选项A 错误,B 正确;飞镖从刺破A 到刺破B 所经历的时间t ′=l v 1,此时气球上升的高度h 1=v 2t ′,飞镖下降的高度h 2=v y t ′+12gt ′2,两气球在上升的过程中高度差不变,h =h 2+h 1=3gl 22v 21+v 2lv 1,选项C 正确,D 错误.【答案】 BC 三、非选择题10.一探险队在探险时遇到一山沟,山沟的一侧OA 竖直,另一侧的坡面OB 呈抛物线形状,与一平台BC 相连,如图4-2-25所示.已知山沟竖直一侧OA 的高度为2h ,平台在沟底h 高处,C 点离竖直OA 的水平距离为2h .以沟底的O 点为原点建立平面直角坐标系xOy ,坡面的抛物线方程为y =x 22h .质量为m 的探险队员从山沟的竖直一侧,沿水平方向跳向平台.探险队员视为质点,忽略空气阻力,重力加速度为g .图4-2-25(1)若该探险队员以速度v 0水平跳出时,落在坡面OB 的某处,则他在空中运动的时间为多少?(2)为了能跳在平台上,他的初速度应满足什么条件?请计算说明. 【解析】 (1)x =v 0t ,y +12gt 2=2h ,y =x 22h ,联立解得t =2hv 20+gh.(2)若落在C 处,h =12gt ′2,2h =vt ′,联立解得v =2gh ,若落在B 处,B 点坐标为(x ,h ),满足坡面的抛物线方程,即h =x 22h ,解得x =2h ,又x =vt ″,h =12gt ″2,联立解得v =gh .故初速度应满足gh ≤v ≤2gh .【答案】 (1)2hv 20+gh(2)见解析 11.如图4-2-26所示,倾角为37°的斜面长l =1.9 m ,在斜面底端正上方的O 点将一小球以速度v 0=3 m/s 水平抛出,与此同时释放在顶端静止的滑块,经过一段时间后,小球恰好能够以垂直斜面的方向击中滑块(小球和滑块均视为质点,重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8).求:图4-2-26(1)抛出点O 离斜面底端的高度; (2)滑块与斜面间的动摩擦因数μ.【解析】 (1)设小球击中滑块时的速度为v ,竖直速度为v y由几何关系得: v 0v y=tan 37° ①设小球下落的时间为t ,竖直位移为y ,水平位移为x ,由运动学规律得 v y =gt ② y =12gt 2③ x =v 0t④设抛出点到斜面最低点的距离为h ,由几何关系得 h =y +x tan 37°⑤由①②③④⑤得:x =1.2 m ,h =1.7 m. (2)在时间t 内,滑块的位移为s ,由几何关系得 s =l -xcos 37°⑥设滑块的加速度为a ,由运动学公式得s =12at 2⑦对滑块,由牛顿第二定律得 mg sin 37°-μmg cos 37°=ma⑧由⑥⑦⑧得:μ=0.125. 【答案】 (1)1.7 m (2)0.12512.(2014·浙江高考)如图4-2-27所示,装甲车在水平地面上以速度v 0=20 m/s 沿直线前进,车上机枪的枪管水平,距地面高为h =1.8 m .在车正前方竖直立一块高为两米的长方形靶,其底边与地面接触.枪口与靶距离为L 时,机枪手正对靶射出第一发子弹,子弹相对于枪口的初速度为v =800 m/s.在子弹射出的同时,装甲车开始匀减速运动,行进s =90 m 后停下.装甲车停下后,机枪手以相同方式射出第二发子弹.(不计空气阻力,子弹看成质点,重力加速度g =10 m/s 2)图4-2-27(1)求装甲车匀减速运动时的加速度大小;(2)当L =410 m 时,求第一发子弹的弹孔离地的高度,并计算靶上两个弹孔之间的距离; (3)若靶上只有一个弹孔,求L 的范围. 【解析】 (1)装甲车的加速度a =v 202s =209m/s 2.(2)第一发子弹飞行时间t 1=Lv +v 0=0.5 s 弹孔离地高度h 1=h -12gt 21=0.55 m第二个弹孔离地的高度h 2=h -12g ⎝⎛⎭⎫L -s v 2=1.0 m两弹孔之间的距离Δh =h 2-h 1=0.45 m.(3)第一发子弹打到靶的下沿时,装甲车离靶的距离为L 1 L 1=(v 0+v )2hg=492 m 第二发子弹打到靶的下沿时,装甲车离靶的距离为L 2 L 2=v2hg+s =570 m L 的范围为492 m<L ≤570 m.【答案】 (1)209 m/s 2 (2)0.55 m 0.45 m(3)492 m<L ≤570 m。
《非常考案》2017通用版物理一轮课件:1.3运动学图象、追及和相遇问题

)
图 133
【解析】 由图象可知,x=0 时,初速度不为零,A 错误;由 v2=2ax 知, Δv2 斜率 k= =2a=4 m/s2,所以加速度 a=2 m/s2,质点做匀加速直线运动,B、 Δx Δv 3- 5 C 错误; 由 t= a 求得质点从 x=1 m 处运动到 x=2 m 处所用的时间 t= 2 s, D 正确. 【答案】 D
考 运动学图象 追及和相遇问题
[考纲定位] 匀变速直线运动及其公式、图象(Ⅱ)
分 层 限 时 跟 踪 练
考 点 三
考点 1| x t、v t 图象的理解 xt 图象和 v t 图象的比较 x t 图象 图象 举例 vt 图象
图象 意义
表示位移的变化过程和规律,表示 质点运动在某时刻的 位置 或某段 时间内的位移
【答案】 A
4.[v2x 图象]某质点做直线运动,现以出发点为坐标原点,以运动方向为 x 轴正方向,质点运动的 v2x 图象如图 133 所示.则(
A.质点的初速度为 0 B.质点做变加速直线运动 C.质点做匀加速直线运动,且加速度为 4 m/s2 D.质点从 x=1 m 坐标处运动到 x=2 m 坐标处所用 3- 5 时间 t= 2 s
5.[a t 图象与 v t 图象的转化]一物体做直线运动,其加速度随时间变化的 at 图象如图 134 所示.下列 v t 图象中,可能正确描述此物体运动的是( )
图 134
T 【解析】 由题图可知,在 0~2时间内 a=a0>0,若 v0≥0,物体做匀加速 运动;若 v0<0,物体做匀减速运动,故 B、C 皆错误;由于在 T~2T 时间内 a T =-a0,故物体做匀减速运动且图线斜率的绝对值与 0~2时间内相同,故 A 错 误,D 正确. 【答案】 D
《非常考案》2017通用版物理一轮课件:5.3机械能守恒定律

考点 2| 机械能守恒定律的应用 1.机械能守恒定律的表达式 (1)守恒观点:Ek+Ep= Ek′+Ep′ (一定要选零势能面) -Δ Ep (2)转化观点:Δ Ek= (不需要选零势能面) (3)转移观点:Δ E 增=Δ E 减 (不需要选零势能面) 2.应用机械能守恒的一般步骤 单个物体 (1)选取研究对象多个物体组成的系统 系统内有弹簧
【答案】 A
2.(2014· 课标全国卷Ⅱ)取水平地面为重力势能零点.一物块从某一高度水 平抛出,在抛出点其动能与重力势能恰好相等.不计空气阻力.该物块落地时 的速度方向与水平方向的夹角为( π A. 6 π C. 3 ) π B. 4 5π D. 12
【解析】 根据平抛运动的规律和机械能守恒定律解题.设物块水平抛出 1 2 的初速度为 v0,高度为 h,由机械能守恒定律得2mv0=mgh,即 v0= 2gh.物块 在竖直方向上的运动是自由落体运动,故落地时的竖直分速度 vy= 2gh=vx= π v0,则该物块落地时的速度方向与水平方向的夹角 θ= ,故选项 B 正确,选项 4 A、C、D 错误.
[示例] 质量分别为 m 和 2m 的两个小球 P 和 Q,中间用轻质杆固定连接, L 杆长为 L,在离 P 球3处有一个光滑固定轴 O,如图 535 所示.现在把杆置于 水平位置后自由释放,在 Q 球顺时针摆动到最低点位置时,求:
(1)小球 P 的速度大小;
图 535
(2)在此过程中小球 P 机械能的变化量.
【答案】 ABC
2.[机械能守恒的判断]在如图 531 所示的物理过程示意图中,甲图为一端 固定有小球的轻杆,从右偏上 30°角释放后绕光滑支点摆动;乙图为末端固定 有小球的轻质直角架,释放后绕通过直角顶点的固定轴 O 无摩擦转动;丙图为 置于光滑水平面上的 A、B 两小车,B 静止,A 获得一向右的初速度后向右运动, 某时刻连接两车的细绳绷紧,然后带动 B 车运动;丁图为置于光滑水平面上的 带有竖直支架的小车,把用细绳悬挂的小球从图示位置释放,小球开始摆动.则 关于这几个物理过程(空气阻力忽略不计),下列判断中正确的是( )
《非常考案》2017通用版物理一轮课件:4.4万有引力与航天

【解析】 第一宇宙速度为物体沿近地轨道做匀速圆周运动的运行速度,天 GMm v GM 宫一号轨道半径大于地球半径,由 r2 =m r 得 v= r ,故其速度小于第一 4π2 宇宙速度,故选项 A 错误;赤道上物体随地球自转的加速度 a 总=R 2 ,天宫 T地 4π2 一号的加速度 a 天=r 天 2 ,根据轨道半径和周期关系 R<r 天,T 地>T 天,可知天 T天 宫一号加速度大于赤道上静止物体随地球自转的加速度, 故选项 B 正确; 根据 ω 2π ω天 T地 24×60 = T 知 = = 90 =16,故选项 C 正确;在天宫一号上航天员和其他物 ω地 T天 体均处于完全失重状态,天平不能使用,故 D 错误.
2
【答案】 BC
[规律总结] (1)区别
赤道物体、近地卫星、同步卫星的比较
①同步卫星与地球赤道上的物体的周期都等于地球自转的周期,而不等于 近地卫星的周期. ②近地卫星与地球赤道上的物体的运动半径都等于地球半径 ,而不等于同 步卫星运动半径. ③三者的线速度各不相同.
(2)求解此类题的关键 ①在求解“同步卫星”与“赤道上的物体”的向心加速度的比例关系时应 GM 依据二者角速度相同的特点,运用公式 a=ω r 而不能运用公式 a= r2 .
A.探测器的质量越大,脱离星球所需要的发射速度越大 B.探测器在地球表面受到的引力比在火星表面的大 C.探测器分别脱离两星球所需要的发射速度相等 D.探测器脱离星球的过程中,势能逐渐增大
2 Mm v 【解析】 探测器在星球表面做匀速圆周运动时,由 G R2 =m R ,得 v=
2GM GM R ,则摆脱星球引力时的发射速度 2v= R ,与,半径为 R,则地球的质量为 10M,半径为 2R, 10Mm 5GMm Mm 地球对探测器的引力 F1=G 2 ,比火星对探测器的引力 F2=G 2 2= 2 R R (2R) 大,选项 B 正确;探测器脱离地球时的发射速度 v1= 2G· 10M 10GM = R ,脱 2R
《非常考案》2017通用版物理一轮课件:5.1功和功率

第 1 课时 功和功率
[考纲定位] 功和功率(Ⅱ)
考点 1| 功的分析与计算 1.功的正负 (1)0≤α<90°,力对物体做 正 功. (2)90°<α≤180°,力对物体做负 功,或者说物体克服这个力做了功. (3)α =90°,力对物体不做功. 2.功的计算:W=Flcos α (1)α 是力与位移 方向之间的夹角,l 为物体对地的位移. (2)该公式只适用于恒力 做功. (3)功是 标(填“标”或“矢”)量.
A.0~2 s 内外力的平均功率是 4 W B.第 2 s 内外力所做的功是 4 J C.第 2 s 末外力的瞬时功率最大 D.第 1 s 末与第 2 s 末外力的瞬时功率之比为 9∶4
图 514
【解析】 第 1 s 末质点的速度 F1 3 v1= m t1=1×1 m/s=3 m/s. 第 2 s 末质点的速度 F2 1 v2=v1+ m t2=(3+1×1) m/s=4 m/s. 1 2 1 2 则第 2 s 内外力做功 W2=2mv2-2mv1=3.5 J 0~2 s 内外力的平均功率
甲
乙 图 516 (1)运动过程中汽车发动机的输出功率 P; (2)汽车速度减至 8 m/s 的加速度 a 的大小; (3)BC 路段的长度.
【解析】 (1)汽车在 AB 路段时牵引力和阻力相等, 则 F1=Ff1,输出功率 P=F1v1, 解得 P=20 kW. (2)t=15 s 后汽车处于匀速运动状态,有 P F2=Ff2,P=F2v2,则 Ff2= , v2 解得 Ff2=4 000 N. v=8 m/s 时汽车在做减速运动,有 P Ff2-F=ma,F= v , 解得 a=0.75 m/s2.
(3)对 BC 段由动能定理得 1 2 1 2 Pt-Ff2x=2mv2-2mv1, 解得 x=93.75 m.
《非常考案》2017通用版物理一轮课件:6.3电容器与电容、带电粒子在电场中的运动

(2)计算粒子打到屏上的位置离屏中心的距离 Y 的四种方法: ①Y=y+dtan θ(d 为屏到偏转电场的水平距离);
L ②Y=2+dtan
θ(L 为电场宽度);
图 635
1 2 【解析】 设粒子离开电场 E1 时速度为 v,由动能定理得 qE1d1= mv -0, 2 v= 2qE1d1 1 2 at m ,在电场 E2 中 y=2at ,E2q=ma,L=vt,tan φ= v ,联立以上方
2 E2L2 E2L E2 L 2 q 程得 y=4E d ,tan φ=2E d .所以,在电场 E2 中电场力做功 W=E2qy=4E d , 1 1 1 1 1 1
(1)液滴的质量; (2)液滴飞出时的速度.
图 633
【解析】 (1)根据题意画出带电液滴的受力图如图所示,由图可得:qEcos
α=mg
U 又 E= d qUcos α 解得:m= dg 代入数据得 m=8×10-8 kg.
(2)对液滴由动能定理得: 1 2 1 2 qU=2mv -2mv0, 所以 v= 7 = 2 m/s.
(4)运动规律
l ①水平方向匀速直线运动:t= v0 .
qU 1 2 qUl2 qE ②竖直方向匀加速直线运动:a= m =md ,y=2at =2mdv2. 0
(5)思路图解: 带电粒子垂直进入匀强电场中的运动 只受↓电场力
vy U2l 2y1 U2l2 偏转角:tan θ = = = ;侧移距离:y1= v0 2U1d l 4dU1
[题组突破] 1.[电容器动态变化问题]板间距为 d 的平行板电容器所带电荷量为 Q 时, 两极板间电势差为 U1,板间电场强度为 E1.现将电容器所带电荷量变为 2Q,板 1 间距变为2d,其他条件不变,这时两极板间电势差为 U2,板间场强为 E2,下列 说法正确的是( ) B.U2=2U1,E2=4E1 D.U2=2U1,E2=2E1
2017版高考物理一轮复习(通用版)分层限时跟踪练7含解析

分层限时跟踪练(七)(限时40分钟)一、单项选择题1.就一些实际生活中的现象,某同学试图从惯性角度加以解释,其中正确的是()A.采用了大功率的发动机后,某些一级方程式赛车的速度甚至能超过某些老式螺旋桨飞机,这表明可以通过科学进步使小质量的物体获得大惯性B.射出枪膛的子弹在运动相当长一段距离后连一件棉衣也穿不透,这表明它的惯性变小了C.货运列车运行到不同的车站时,经常要摘下或加挂一些车厢,这会改变它的惯性D.摩托车转弯时,车手一方面要控制适当的速度,另一方面要将身体稍微向里倾斜,通过调控人和车的惯性达到转弯的目的【解析】采用了大功率的发动机后,可以提高车速,但功率的大小与惯性无关,只要质量不变,惯性就不变,故A错;惯性与运动距离无关,故B错;摘下或加挂车厢,会使列车的质量减小或增大,惯性发生变化,故C对;摩托车转弯时,身体稍微向里倾斜是改变其受力情况,惯性与力无关,故D错.【答案】 C2.(2016·襄阳检测)跳水一直是我国的优势项目,如图3-1-8所示,一运动员站在3 m跳板上,图中F1表示人对跳板的弹力,F2表示跳板对人的弹力,则()图3-1-8A.F1和F2是一对平衡力B.F1和F2是一对作用力和反作用力C.先有力F1后有力F2D .F 1和F 2方向相反,大小不相等【解析】 F 1和F 2是一对作用力和反作用力,同时产生,同时消失,大小相等,方向相反,故B 项正确.【答案】 B3.(2015·镇江诊断)一个物体在绳的拉力作用下由静止开始前进,先做加速运动,然后改做匀速运动,再改做减速运动,则下列说法中正确的是( )A .加速前进时,绳拉物体的力大于物体拉绳的力B .减速前进时,绳拉物体的力小于物体拉绳的力C .只有匀速前进时,绳拉物体的力与物体拉绳的力大小才相等D .不管物体如何前进,绳拉物体的力与物体拉绳的力大小总相等【解析】 本题主要考查作用力与反作用力的大小关系.绳拉物体的力与物体拉绳的力是一对作用力与反作用力,不管物体间的相互作用力性质如何,物体的运动状态如何,物体间的相互作用都应遵循牛顿第三定律,即作用力和反作用力总是大小相等、方向相反、作用在同一条直线上.【答案】 D4.如图3-1-9所示,A 、B 两小球分别连在轻绳两端,B 球另一端用弹簧固定在倾角为30°的光滑斜面上.A 、B 两小球的质量分别为m A 、m B ,重力加速度为g ,若不计弹簧质量,在绳被剪断瞬间,A 、B 两球的加速度大小分别为( )图3-1-9A .都等于g 2B ..g 2和0 C.g 2和m A m B ·g 2 D .m A m B·g 2和g 2 【解析】 当A 、B 球静止时,弹簧弹力F =(m A +m B )g sin θ,当绳被剪断的瞬间,弹簧弹力F 不变,对B 分析,则F -m B g sin θ=m B a B ,可解得a B =m A m B·g 2,当绳被剪断后,球A 受的合力为重力沿斜面向下的分力,F 合=m A g sin θ=m A a A ,所以a A =g 2,综上所述选项C 正确.【答案】 C5.如图3-1-10所示为杂技“顶竿”表演的示意图,一人站在地上,肩上扛一质量为M的竖直竹竿,当竿上一质量为m的人以加速度a加速下滑时,竿对“底人”的压力大小为()图3-1-10A.(M+m)g B.(M+m)g-maC.(M+m)g+ma D.(M-m)g【解析】对竿上的人进行受力分析:其受重力mg、摩擦为F f,有mg-F f=ma,则F f=m(g-a).竿对人有摩擦力,人对竿也有反作用力——摩擦力,且大小相等,方向相反.对竿进行受力分析:其受重力Mg、竿上的人对竿向下的摩擦力F f′、“底人”对竿的支持力F N,有Mg+F f′=F N,又因为竿对“底人”的压力和“底人”对竿的支持力是一对作用力和反作用力,由牛顿第三定律,得到F N′=Mg+F f′=(M+m)g-ma.故选项B正确.【答案】 B二、多项选择题6.(2013·山东高考)伽利略开创了实验研究和逻辑推理相结合探索自然规律的科学方法,利用这种方法伽利略发现的规律有()A.力不是维持物体运动的原因B.物体之间普遍存在相互吸引力C.忽略空气阻力,重物与轻物下落得同样快D.物体间的相互作用力总是大小相等、方向相反【解析】伽利略通过实验研究和逻辑推理得到了力不是维持物体运动的原因及在忽略空气阻力时,轻、重物体下落一样快,都做自由落体运动,而B选项考查的是万有引力定律,D选项是牛顿第三定律,因此只有选项A、C正确.【答案】AC7.17世纪,意大利物理学家伽利略根据“伽利略斜面实验”指出:在水平面上运动的物体之所以会停下来,是因为受到摩擦阻力,你认为下列陈述正确的是()A.该实验是一理想实验,是在思维中进行的,无真实的实验基础,故其结果是荒谬的B.该实验是以可靠的事实为基础,经过抽象思维,抓住主要因素,忽略次要因素,从而更深刻地反映自然规律C.该实验证实了亚里士多德“力是维持物体运动的原因”的结论D.该实验为牛顿第一定律的提出提供了有力的实验依据【解析】伽利略的斜面实验是以可靠的事实为基础,经过抽象思维,抓住主要因素,忽略次要因素,推理得出的结论,选项A错误、B正确;伽利略由此推翻了亚里士多德的观点,认为力不是维持物体运动的原因,而是改变物体运动状态的原因,选项C错误;牛顿总结了前人的经验,提出了牛顿第一定律,选项D正确.【答案】BD8.如图3-1-11所示,在水平面上运动的小车里用两根轻绳连着一质量为m 的小球,绳子都处于拉直状态,BC绳水平,AC绳与竖直方向的夹角为θ,小车处于加速运动中,则下列说法正确的是()图3-1-11A.小车一定向左运动B.小车的加速度一定为g tan θC.AC绳对球的拉力一定是mgcos θD.BC绳的拉力一定小于AC绳的拉力【解析】由于小车处于加速运动中,由球的受力情况可知,球的加速度一定向左,A项正确;只有当BC绳的拉力为零时,小车的加速度才是g tan θ,B 项错误;AC绳的拉力在竖直方向上的分力等于球的重力,C项正确;AC绳的拉力恒定,而BC绳的拉力与小车的加速度大小有关,有可能大于AC绳的拉力,D项错误.【答案】AC9.乘坐“空中缆车”饱览大自然的美景是旅游者绝妙的选择.若某一缆车沿着坡度为30 °的山坡以加速度a上行,如图3-1-12所示.在缆车中放一个与山坡表面平行的斜面,斜面上放一个质量为m的小物块,小物块相对斜面静止(设缆车保持竖直状态运行).则()图3-1-12A.小物块受到的摩擦力方向平行斜面向上B.小物块受到的摩擦力方向平行斜面向下C.小物块受到的滑动摩擦力为12mg+maD.小物块受到的静摩擦力为12mg+ma【解析】小物块相对斜面静止,因此小物块与斜面间的摩擦力是静摩擦力,缆车以加速度a上行,小物块的加速度也为a,以物块为研究对象,则有f-mg sin30 °=ma,f=12mg+ma,方向平行斜面向上.【答案】AD三、非选择题10.如图3-1-13所示,将质量m=0.1 kg的圆环套在固定的水平直杆上.环的直径略大于杆的截面直径.环与杆间动摩擦因数μ=0.8.对环施加一位于竖直平面内斜向上且与杆夹角θ=53°的拉力F,使圆环以a=4.4 m/s2的加速度沿杆运动,求F的大小.(取sin 53°=0.8,cos 53°=0.6,g=10 m/s2)图3-1-13【解析】令F sin 53°-mg=0,F=1.25 N.当F<1.25 N时,环与杆的上部接触,受力如图甲.由牛顿第二定律得F cos θ-μF N=ma,F N+F sin θ=mg,解得F=1 N当F>1.25 N时,环与杆的下部接触,受力如图乙.由牛顿第二定律得F cos θ-μF N=maF sin θ=mg+F N解得F=9 N.【答案】 1 N或9 N11.如图3-1-14所示,一辆卡车后面用轻绳拖着质量为m的物体A,A与地面的摩擦不计.图3-1-14(1)当卡车以a1=12g的加速度运动时,绳的拉力为56mg,则A对地面的压力为多大?(2)当卡车的加速度a2=g时,绳的拉力为多大?【解析】(1)卡车和A的加速度一致.由图知绳的拉力的分力使A产生了加速度,故有:56mg cos α=m·12g解得cos α=35,sinα=45.设地面对A的支持力为F N,则有F N=mg-56mg sinα=13mg由牛顿第三定律得:A对地面的压力为13mg.(2)设地面对A弹力为零时,物体的临界加速度为a0,则a0=g cot α=34g,故当a2=g>a0时,物体已飘起.此时物体所受合力为mg,则由三角形知识可知,拉力F2=(mg)2+(mg)2=2mg.【答案】(1)13mg(2)2mg12.如图3-1-15所示,一条轻绳上端系在车的左上角的A点,另一条轻绳一端系在车左端B点,B点在A点正下方,A、B距离为b,两条轻绳另一端在C 点相结并系一个质量为m的小球,轻绳AC长度为2b,轻绳BC长度为b.两条轻绳能够承受的最大拉力均为2mg.图3-1-15(1)轻绳BC刚好被拉直时,车的加速度是多大?(要求画出受力图)(2)在不拉断轻绳的前提下,求车向左运动的最大加速度是多大.(要求画出受力图)【解析】(1)轻绳BC刚好被拉直时,小球受力如图甲所示.因为AB=BC=b,AC=2b,故轻绳BC与轻绳AB垂直,cos θ=22,θ=45°.由牛顿第二定律,得mg tan θ=ma.可得a=g.(2)小车向左的加速度增大,AB、BC绳方向不变,所以AC轻绳拉力不变,BC轻绳拉力变大,BC轻绳拉力最大时,小车向左的加速度最大,小球受力如图乙所示.由牛顿第二定律,得T m+mg tan θ=ma m.因这时T m=2mg,所以最大加速度为a m=3g.【答案】(1)g(2)3g。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分层限时跟踪练(二十六)(限时40分钟)一、单项选择题1.物理课上,老师做了一个奇妙的“跳环实验”.如图9-1-10所示,她把一个带铁芯的线圈L、开关S和电源用导线连接起来后,将一金属套环置于线圈L上,且使铁芯穿过套环.闭合开关S的瞬间,套环立刻跳起.某同学另找来器材再探究此实验.他连接好电路,经重复试验,线圈上的套环均未动.对比老师演示的实验,下列四个选项中,导致套环未动的原因可能是()图9-1-10A.线圈接在了直流电源上B.电源电压过高C.所选线圈的匝数过多D.所用套环的材料与老师的不同【解析】金属套环跳起的原因是开关S闭合时,套环上产生感应电流与通电螺线管上的电流相互作用而引起的.线圈接在直流电源上,S闭合时,金属套环也会跳起.电压越高,线圈匝数越多,S闭合时,金属套环跳起越剧烈.若套环是非导体材料,则套环不会跳起.故选项A、B、C错误,选项D正确.【答案】 D2.(2016·成都检测)法拉第在同一软铁环上绕两个线圈,一个与电池相连,另一个与电流计相连,则()A.接通电池后,电流计指针一直保持偏转B.接通电池时,电流计指针没有偏转C.接通电池后再断开时,电流计指针没有偏转D.接通电池时,电流计指针偏转,但不久又回复到零【解析】接通电池的瞬间穿过线圈的磁通量变化,产生感应电流,电流计指针偏转,过一段时间后磁通量不发生变化,没有感应电流,电流计指针不偏转,选项A、B错误,D 正确;接通电池后再断开时的瞬间,穿过线圈的磁通量发生变化,产生感应电流,电流计指针偏转,选项C错误.【答案】 D3.如图9-1-11所示,在水平光滑桌面上,两相同的矩形刚性小线圈分别叠放在固定的绝缘矩形金属框的左右两边上,且每个小线圈都各有一半面积在金属框内,在金属框接通逆时针方向电流的瞬间()图9-1-11A.两小线圈会有相互靠拢的趋势B.两小线圈会有相互远离的趋势C.两小线圈中感应电流都沿逆针方向D.左边小线圈中感应电流沿顺时针方向,右边小线圈中感应电流沿逆时针方向【解析】接通电流瞬间,通过线圈的磁通量都增大,根据楞决定律,易知感应电流都沿顺时针方向.【答案】 B4.(2015·汕头检测)如图9-1-12所示,两个同心圆线圈a、b在同一平面内,半径R a<R b,一条形磁铁穿过圆心垂直于圆面,穿过两个线圈的磁通量分别为Φa和Φb,则()图9-1-12A.Φa>Φb B.Φa=ΦbC.Φa<Φb D.无法确定【解析】磁通量是指穿过平面的磁感线的净条数;因为每条磁感线都穿过磁体内部,故可知A项正确.【答案】 A5.如图9-1-13所示,正方形闭合导线框处在磁感应强度恒定的匀强磁场中,C、E、D、F为线框中的四个顶点,图甲中的线框绕E点转动,图乙中的线框向右平动,磁场足够大.下列判断正确的是()图9-1-13A.图甲线框中有感应电流产生,C点电势比D点低B.图甲线框中无感应电流产生,C、D两点电势相等C.图乙线框中有感应电流产生,C点电势比D点低D.图乙线框中无感应电流产生,C、D两点电势相等【解析】线框绕E点转动和向右平动,都没有磁通量的变化,无感应电流产生,由右手定则可知,图甲线框中C,D两点电势相等,则A项错,B项对;图乙线框中C点电势比D点高,则C、D两项都错.【答案】 B二、多项选择题6.(2016·天津模拟)如图9-1-14所示,圆环形导体线圈a平放在水平桌面上,在a的正上方固定一竖直螺线管b,二者轴线重合,螺线管与电源和滑动变阻器连接成如图所示的电路.若将滑动变阻器的滑片P向下滑动,下列表述正确的是()图9-1-14A.线圈a中将产生俯视顺时针方向的感应电流B.穿过线圈a的磁通量变大C.线圈a有扩张的趋势D.线圈a对水平桌面的压力F N将增大【解析】若将滑动变阻器的滑片P向下滑动,螺线管b中的电流增大,根据楞次定律,线圈a中将产生俯视逆时针方向的感应电流,穿过线圈a的磁通量变大,线圈a有缩小的趋势,线圈a对水平桌面的压力F N将变大,B、D项正确.【答案】BD7.(2015·全国卷Ⅰ)1824年,法国科学家阿拉果完成了著名的“圆盘实验”,实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图9-1-15所示.实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后.下列说法正确的是()图9-1-15A.圆盘上产生了感应电动势B.圆盘内的涡电流产生的磁场导致磁针转动C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动【解析】当圆盘转动时,圆盘的半径切割磁针产生的磁场的磁感线,产生感应电动势,选项A正确;如图所示,铜圆盘上存在许多小的闭合回路,当圆盘转动时,穿过小的闭合回路的磁通量发生变化,回路中产生感应电流,根据楞次定律,感应电流阻碍其相对运动,但抗拒不了相对运动,故磁针会随圆盘一起转动,但略有滞后,选项B正确;在圆盘转动过程中,磁针的磁场穿过整个圆盘的磁通量始终为零,选项C错误;圆盘中的自由电子随圆盘一起运动形成的电流的磁场方向沿圆盘轴线方向,会使磁针沿轴线方向偏转,选项D错误.【答案】AB8.如图9-1-16所示,金属导轨上的导体棒ab在匀强磁场中沿导轨做下列哪种运动时,铜制线圈c中将有感应电流产生且被螺线管吸引()图9-1-16A.向右做匀速运动B.向左做减速运动C.向右做减速运动D.向右做加速运动【解析】当导体棒向右匀速运动时产生恒定的电流,线圈中的磁通量恒定不变,无感应电流出现,A错;当导体棒向左做减速运动时,由右手定则可判定回路中出现从b→a的感应电流且减小,由安培定则知螺线管中感应电流的磁场向左在减弱,由楞次定律知c中出现顺时针方向的感应电流(从右向左看)且被螺线管吸引,B对;同理可判定C对,D错.【答案】BC9.如图9-1-17所示,一个闭合三角形导线框ABC位于竖直平面内,其下方(略靠前)固定—根与导线框平面平行的水平直导线,导线中通以图示方向的恒定电流.释放导线框,它由实线位置下落到虚线位置未发生转动,在此过程中()图9-1-17A.导线框中感应电流的方向依次为ACBA→ABCA→ACBAB.导线框的磁通量为零时,感应电流却不为零C.导线框所受安培力的合力方向依次为向上→向下→向上D.导线框所受安培力的合力为零,做自由落体运动【解析】根据安培定则可知导线上方的磁场方向垂直于纸面向外,下方的磁场方向垂直于纸面向里,而且越靠近导线磁场越强,所以闭合导线框ABC在下降过程中,导线框内垂直于纸面向外的磁通量先增大,当增大到BC边与导线重合时,达到最大,再向下运动,导线框内垂直于纸面向外的磁通量逐渐减小至零,然后随导线框的下降,导线框内垂直于纸面向里的磁通量增大,达到最大后,继续下降时由于导线框逐渐远离导线,使导线框内垂直于纸面向里的磁通量再逐渐减小,根据楞次定律可知,感应电流的磁场总是阻碍内部磁通量的变化,所以感应电流的磁场先向内,再向外,最后向内,所以导线框中感应电流的方向依次为ACBA→ABCA→ACBA,A正确;当导线框内的磁通量为零时,磁通量仍然在变化,磁通量的变化率不为零,有感应电动势产生,所以感应电流不为零,B正确;根据对愣次定律的理解,感应电流的效果总是阻碍导体间的相对运动,由于导线框一直向下运动,所以导线框所受安培力的合力方向一直向上.不为零,C、D错误.【答案】AB三、非选择题10.为判断线圈绕向,可将灵敏电流计G与线圈L连接,如图9-1-18所示.已知线圈由a端开始绕至b端;当电流从电流计G左端流入时,指针向左偏转.图9-1-18(1)将磁铁N极向下从线圈上方竖直插入L时,发现指针向左偏转.俯视线圈,其绕向为(填“顺时针”或“逆时针”).(2)当条形磁铁从图中虚线位置向右远离L时,指针向右偏转.俯视线圈,其绕向为(填“顺时针”或“逆时针”).【解析】 (1)将磁铁N 极向下插入L 时,根据楞次定律L 的上方应为N 极.由电流计指针向左偏转,可确定L 中电流由b 端流入,根据安培定则,俯视线圈,电流为逆时针,线圈绕向为顺时针.(2)将磁铁远离L ,由楞次定律,线圈L 上方仍为N 极,由于此时电流计指针向右偏转,可确定L 中电流由a 端流入.根据安培定则,俯视线圈,电流为逆时针,线圈绕向也为逆时针.【答案】 (1)顺时针 (2)逆时针11.磁感应强度为B 的匀强磁场仅存在于边长为2l 的正方形范围内,有一个电阻为R 、边长为l 的正方形导线框abcd ,沿垂直于磁感线方向,以速度v 匀速通过磁场,如图9-1-19所示,从ab 进入磁场时开始计时,到线框离开磁场为止.图9-1-19(1)画出穿过线框的磁通量随时间变化的图象;(2)判断线框中有无感应电流.若有,说明感应电流的方向.【解析】 (1)当ab 边进入磁场时,穿过线框的磁通量均匀增加,在t 1=l v时线框全部进入磁场,磁通量Φ=Bl 2不变化;当在t 2=2l v时,ab 边离开磁场,穿过线框的磁通量均匀减少到零,所以该过程的Φ-t 图象如图所示.(2)ab 边进入磁场时有感应电流,根据右手定则可判知感应电流方向为逆时针;ab 边离开磁场时有感应电流,根据右手定则可判知感应电流方向为顺时针;中间过程t 1~t 2磁通量不变化,没有感应电流.【答案】 见解析12.如图9-1-20所示,固定于水平面上的金属架CDEF 处在竖直向下的匀强磁场中,金属棒MN 沿框架以速度v 向右做匀速运动.t =0时,磁感应强度为B 0,此时MN 到达的位置使MDEN 构成一个边长为l 的正方形.为使MN 棒中不产生感应电流,从t =0开始,磁感应强度B 应怎样随时间t 变化?请推导出这种情况下B 与t 的关系式.图9-1-20【解析】要使MN棒中不产生感应电流,应使穿过线圈平面的磁通量不发生变化在t=0时刻,穿过线圈平面的磁通量Φ1=B0S=B0l2设t时刻的磁感应强度为B,此时磁通量为Φ2=Bl(l+vt)由Φ1=Φ2得B=B0ll+vt.【答案】B=B0ll+vt。