离散数学集合论部分形成性考核书面作业
离散数学作业3[答案]
![离散数学作业3[答案]](https://img.taocdn.com/s3/m/08f8c23043323968011c920a.png)
离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。
本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业。
要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年11月7日前完成并上交任课教师(不收电子稿)。
并在03任务界面下方点击“保存”和“交卷”按钮,完成并上交任课教师。
一、填空题1.设集合{1,2,3},{1,2}==,则P(A)-P(B )= {{3},{1,3},{2,3},A B{1,2,3}} ,A⨯ B= {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3.2>} .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为1024.3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,∈R⋂x∈>y且=且∈<{B,,xAyAyBx}则R的有序对集合为{<2, 2>,<2, 3>,<3, 2>},<3,3> .4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}yyx∈=<>∈x,,x,2{ByA那么R-1={<6,3>,<8,4>}5.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有的性质是没有任何性质.6.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素{<c,b>,<d,c>},则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设A={1, 2}上的二元关系为R={<x, y>|x∈A,y∈A, x+y =10},则R的自反闭包为{<1,1>,<2,2>} .9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1,1>,<2,2>,<3,3> 等元素.10.设集合A={1, 2},B={a, b},那么集合A到B的双射函数是{<1, a >, <2, b >}或{<1, b >, <2, a >} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R={<1, 1>,<2, 2>,<1, 2>},则(1) R是自反的关系;(2) R是对称的关系.(1)错误。
形考任务2-集合论部分形成性考核书面作业

离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业.要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word文档3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、填空题1.设集合{1,2,3},{1,2}==,则P(A)-P(B )=A B{{1,2},{2,3},{1,3},{1,2,3}} ,A⨯B= {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为1024 .3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,∈∈∈x=且y且<>R⋂{B,,xAyAyBx}则R的有序对集合为{<2,2>,<2,3>,<3,2>,<3,3>} .4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}x∈yy=<>∈y2,x,{BxA,那么R-1={<6,3>,<8,4>} .5.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有的性质是反自反性.6.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素<c,b>,<d,c>,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设A={1, 2}上的二元关系为R={<x, y>|x∈A,y∈A, x+y =10},则R的自反闭包为<c,b>,<d,c> .9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1,1>,<2,2>,<3,3> 等元素.10.设A={1,2},B={a,b},C={3,4,5},从A到B的函数f ={<1, a>, <2, b>},从B到C的函数g={< a,4>, < b,3>},则Ran(g︒ f)= <1,1>,<2,2>,<3,3> .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R={<1, 1>,<2, 2>,<1, 2>},则(1) R是自反的关系;(2) R是对称的关系.解: (1)结论不成立.因为关系R要成为自反的,其中缺少元素<3,3>.(2)结论不成立.因为关系R中缺少元素<2,1>2.设A={1,2,3},R={<1,1>, <2,2>, <1,2> ,<2,1>},则R是等价关系.解:(1)错误、由于<3,3>不在R中,R不具有自反性,所以R不是A上的等价关系!3.若偏序集<A ,R >的哈斯图如图一所示,则集合A 的最大元为a ,最小元不存在.答:错误,按照定义,图中不存在最大元和最小元。
2020年国家开放大学电大《离散数学》形成性考核三次

电大离散数学作业答案3-7合集离散数学作业3离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次.内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习.基本上是按照考试的题型(除单项选择题外)安排练习题目.目的是通过综合性书面作业.使同学自己检验学习成果.找出掌握的薄弱知识点.重点复习.争取尽快掌握。
本次形考书面作业是第一次作业.大家要认真及时地完成集合论部分的综合练习作业。
一、填空题1.设集合{1,2,3},{1,2}A B==.则P(A)-P(B )={{3}.{1,3}.{2,3}.{1,2,3}} .A⨯ B={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3.2>} .2.设集合A有10个元素.那么A的幂集合P(A)的元素个数为 1024.3.设集合A={0, 1, 2, 3}.B={2, 3, 4, 5}.R是A到B的二元关系.},,{BAyxByAxyxR⋂∈∈∈><=且且则R的有序对集合为 {<2, 2>.<2, 3>.<3, 2>}.<3,3> .4.设集合A={1, 2, 3, 4 }.B={6, 8, 12}. A到B的二元关系R=},,2,{ByAxxyyx∈∈=><那么R-1= {<6,3>,<8,4>}5.设集合A={a, b, c, d}.A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>}.则R具有的性质是没有任何性质.6.设集合A={a, b, c, d}.A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>}.若在R中再增加两个元素{<c,b>,<d,c>} .则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系.则R1∪R2.R1∩R2.R1-R2中自反关系有 2个.8.设A={1, 2}上的二元关系为R={<x, y>|x∈A.y∈A, x+y =10}.则R的自反闭包为 {<1,1>,<2,2>} .9.设R是集合A上的等价关系.且1 , 2 , 3是A中的元素.则R中至少包含 <1,1>,<2,2>,<3,3> 等元素.10.设A={1.2}.B={a.b}.C={3.4.5}.从A到B的函数f ={<1, a>, <2, b>}.从B 到C 的函数g ={< a .4>, < b .3>}.则Ran(g ︒ f )= {3,4} .二、判断说明题(判断下列各题.并说明理由.)1.若集合A = {1.2.3}上的二元关系R={<1, 1>.<2, 2>.<1, 2>}.则(1) R 是自反的关系; (2) R 是对称的关系.(1) 错误。
离散数学图论部分形成性考核书面作业4答案

离散数学作业4离散数学图论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。
本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。
一、填空题1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 .2.设给定图G (如右由图所示),则图G 的点割集是 {f} .3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点 度数之和 等于边数的两倍.4.无向图G 存在欧拉回路,当且仅当G 连通且 等于出度 .5.设G=<V ,E >是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于 n-1 ,则在G 中存在一条汉密尔顿路.6.若图G=<V , E>中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 W(G-V1) ≤∣V 1∣ .7.设完全图K n 有n 个结点(n ≥2),m 条边,当 n 为奇数 时,K n中存在欧拉回路.8.结点数v 与边数e 满足 e=v-1 关系的无向连通图就是树.9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 4 条边后使之变成树.10.设正则5叉树的树叶数为17,则分支数为i = 5 .二、判断说明题(判断下列各题,并说明理由.)1.如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回路..姓 名: 学 号: 得 分: 教师签名:(1) 不正确,缺了一个条件,图G应该是连通图,可以找出一个反例,比如图G是一个有孤立结点的图。
中央电大形成性测评系统离散数学作业3答案(集合论部分)

精选离散数学作业3离散数学集合论部分形成性考核书面作业一、填空题1.设集合{1,2,3},{1,2}A B ==,则P (A )-P (B )= {{1,2},{2,3},{1,3},{1,2,3}} ,A B = {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .2.设集合A 有10个元素,那么A 的幂集合P (A )的元素个数为 1024 . 3.设集合A ={0, 1, 2, 3},B ={2, 3, 4, 5},R 是A 到B 的二元关系,},,{B A y x B y A x y x R ⋂∈∈∈><=且且则R 的有序对集合为 {<2,2>,<2,3>,<3,2>,<3,3>} .4.设集合A ={1, 2, 3, 4 },B ={6, 8, 12}, A 到B 的二元关系R =},,2,{B y A x x y y x ∈∈=><那么R -1= {<6,3>,<8,4>}5.设集合A ={a , b , c , d },A 上的二元关系R ={<a , b >, <b , a >, <b , c >, <c , d >},则R 具有的性质是 反自反性 .6.设集合A ={a , b , c , d },A 上的二元关系R ={<a , a >, <b , b >, <b , c >, <c ,d >},若在R 中再增加两个元素 <c, b>, <d, c> ,则新得到的关系就具有对称性.7.如果R 1和R 2是A 上的自反关系,则R 1∪R 2,R 1∩R 2,R 1-R 2中自反关系有 2 个.8.设A ={1, 2}上的二元关系为R ={<x , y >|x A ,y A , x +y =10},则R 的自反闭包为 {<1,1>,<2,2>} .9.设R 是集合A 上的等价关系,且1 , 2 , 3是A 中的元素,则R 中至少包含 <1,1>,<2,2>,<3,3> 等元素.10.设集合A ={1, 2},B ={a , b },那么集合A 到B 的双射函数是姓 名: 学 号: 得 分: 教师签名:{<1,a>,<2,b>}或{<1,b>,<2,a>} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R ={<1, 1>,<2, 2>,<1, 2>},则 (1) R 是自反的关系; (2) R 是对称的关系.解:(1) 结论不成立.因为关系R 要成为自反的,其中缺少元素<3, 3>. (2) 结论不成立.因为关系R 中缺少元素<2, 1>.2.如果R 1和R 2是A 上的自反关系,判断结论:“R -11、R 1∪R 2、R 1∩R 2是自反的” 是否成立?并说明理由. 解:结论成立.因为R 1和R 2是A 上的自反关系,即I A R 1,I A R 2. 由逆关系定义和I A R 1,得I A R 1-1; 由I A R 1,I A R 2,得I A R 1∪R 2,I AR 1R 2.所以,R 1-1、R 1∪R 2、R 1R 2是自反的.3.若偏序集<A ,R >的哈斯图如图一所示,则集合A 的最大元为a ,最小元不存在.解:错误,按照定义,图中不存在最大元和最小元。
离散数学图论部分形成性考核书面作业4答案

离散数学图论部分形成性考核书面作业4答案离散数学作业4离散数学图论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。
本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。
一、填空题1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 .2.设给定图G (如右由图所示),则图G 的点割集是 {f} .3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点 度数之和 等于边数的两倍.4.无向图G 存在欧拉回路,当且仅当G 连通且 等于出度 . 5.设G=<V ,E >是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于 n-1 ,则在G 中存在一条汉密尔顿路.6.若图G=<V , E>中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 W(G-V1) ≤∣V 1∣ .7.设完全图K n 有n 个结点(n ≥2),m 条边,当 n 为奇数 时,K n中存在欧拉回路.8.结点数v 与边数e 满足 e=v-1 关系的无向连通图就是树.姓 名: 学 号: 得 分: 教师签名:4.设G是一个有7个结点16条边的连通图,则G为平面图.解:(1) 错误假设图G是连通的平面图,根据定理,结点数v,边数为e,应满足e小于等于3v-6,但现在16小于等于3*7-6,显示不成立。
所以假设错误。
5.设G是一个连通平面图,且有6个结点11条边,则G有7个面.(2) 正确根据欧拉定理,有v-e+r=2,边数v=11,结点数e=6,代入公式求出面数r=7三、计算题1.设G=<V,E>,V={ v1,v2,v3,v4,v5},E={ (v1,v3),(v2,v3),(v2,v4),(v3,v4),(v3,v5),(v4,v5) },试(1) 给出G的图形表示;(2) 写出其邻接矩阵;(3) 求出每个结点的度数;(4) 画出其补图的图形.解:(1)οοοοvοv vv v(2) 邻接矩阵为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0110010110110110110000100(3) v 1结点度数为1,v 2结点度数为2,v 3结点度数为3,v 4结点度数为2,v 5结点度数为2(4) 补图图形为2.图G =<V , E >,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ), (a , e ), (b , d ), (b , e ),(c , e ), (c , d ), (d , e ) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G 的图形; (2)写出G 的邻接矩阵; (3)求出G 权最小的生成树及其权值. (1)G 的图形如下:οο ο οv οv v vv(2)写出G的邻接矩阵(3)G权最小的生成树及其权值3.已知带权图G如右图所示.(1) 求图G的最小生成树;(2)计算该生成树的权值.解:(1) 最小生成树为(2) 该生成树的权值为(1+2+3+5+7)=184.设有一组权为2, 3, 5, 7, 17, 31,试画出相应的最优二叉树,计算该最优二叉树的权.12357权为 2*5+3*5+5*4+7*3+17*2+31=131四、证明题1.设G 是一个n 阶无向简单图,n 是大于等于3的奇数.证明图G 与它的补图G 中的奇数度顶点个数相等.证明:设,G V E =<>,,G V E '=<>.则E '是由n 阶无向完全图n K 的边删去E 所得到的.所以对于任意结点u V ∈,u 在G 和G 中的度数之和等于u 在n K 中的度数.由于n 是大于等于3的奇数,从而n K 的每个结点都是偶数度的( 1 (2)n -≥度),于是若u V ∈在G 中是奇数度结点,则它在G 中也是奇数度结点.故图G 与它的补图G 中的奇数度结点个数相等.35251717311362.设连通图G 有k 个奇数度的结点,证明在图G 中至少要添加2k条边才能使其成为欧拉图.证明:由定理3.1.2,任何图中度数为奇数的结点必是偶数,可知k 是偶数. 又根据定理4.1.1的推论,图G 是欧拉图的充分必要条件是图G 不含奇数度结点.因此只要在每对奇数度结点之间各加一条边,使图G 的所有结点的度数变为偶数,成为欧拉图.故最少要加2k条边到图G 才能使其成为欧拉图.。
离散数学集合论部分形成性考核书面作业

姓名:学号: 离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次, 内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习, 基本上是按照考试的题型安排练习题目, 目的是经过综合性书面作业, 使同学自己检验学习成果, 找出掌握的薄弱知识点, 重点复习, 争取尽快掌握。
本次形考书面作业是第一次作业, 大家要认真及时地完成集合论部分的综合练习作业。
要求: 将此作业用A4纸打印出来, 手工书写答题, 字迹工整,解答题要有解答过程, 完成并上交任课教师( 不收电子稿) 。
并在03任务界面下方点击”保存”和”交卷”按钮, 以便教师评分。
一、单项选择题1.若集合A={2, a, {a}, 4}, 则下列表述正确的是( ).A.{a, {a }}A B.{ a }A C.{2}AD. A答 B2.设B = { {2}, 3, 4, 2}, 那么下列命题中错误的是( ) .A.{2}∈B B.{2, {2}, 3, 4}B C.{2}B D.{2, {2}}B答 B3.若集合A={a, b, {1, 2 }}, B={1, 2}, 则( ) .A.B A B.A B C.B A D.BA答 D4.设集合A = {1, a }, 则P(A) = ( ).A.{{1}, {a}} B.{∅,{1}, {a}}C.{∅,{1}, {a}, {1, a}} D.{{1}, {a}, {1, a }}答 C5.设集合A = {1, 2, 3}, R是A上的二元关系,R ={<a , b>a∈A, b∈ A且1=a}-b则R具有的性质为( ) .A.自反的 B.对称的 C.传递的 D.反对称的答 B6.设集合A = {1, 2, 3, 4, 5, 6 }上的二元关系R ={<a , b>a , b∈A, 且a =b }, 则R具有的性质为( ) .A.不是自反的 B.不是对称的 C.反自反的D.传递的答 D7.设集合A={1 , 2 , 3 , 4}上的二元关系R = {<1 , 1>, <2 , 2>, <2 , 3>, <4 , 4>},S = {<1 , 1>, <2 , 2>, <2 , 3>, <3 , 2>, <4 , 4>}, 则S是R的( ) 闭包.A.自反 B.传递 C.对称 D.以上都不对答 C8.设集合A={a, b}, 则A上的二元关系R={<a, a>, <b, b>}是A上的( )关系.A.是等价关系但不是偏序关系 B.是偏序关系但不是等价关系C.既是等价关系又是偏序关系 D.不是等价关系也不是偏序关系答 C9.设集合A = {1 , 2 , 3 , 4 , 5}上的偏序关系的哈斯图如右图所示,若A的子集B5元素3为B的( ) .A.下界 B.最大下界C.最小上界 D.以上答案都不对答 C10.设集合A ={1 , 2, 3}上的函数分别为:f = {<1 , 2>, <2 , 1>, <3 , 3>},g = {<1 , 3>, <2 , 2>, <3 , 2>},h = {<1 , 3>, <2 , 1>, <3 , 1>},则h =( ) .A.f◦g B.g◦f C.f◦f D.g◦g 答 A二、填空题1.设集合{1,2,3},{1,2}==, 则A BA⋃B= , A⋂B= .答{1,2,3}, {1,2}2.设集合{1,2,3},{1,2}==, 则A BP(A)-P(B )= , AB= .解(){,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}P A=∅P B=∅(){,{1},{2},{1,2}}答{{3},{1,3},{2,3},{1,2,3}}{<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>}3.设集合A有10个元素, 那么A的幂集合P(A)的元素个数为.答2104.设集合A = {1, 2, 3, 4, 5 }, B = {1, 2, 3}, R从A到B的二元关系,R ={<a , b>a∈A, b∈B且2≤a + b≤4}则R的集合表示式为.答{1,1,1,2,1,3,2,1,2,2,3,1}R=<><><><><><>5.设集合A={1, 2, 3, 4 }, B={6, 8, 12}, A到B的二元关系R=}yyx∈=<>x∈A,,2,y{Bx那么1R-=解{3,6,4,8}R=<><>答{6,3,8,4}<><>6.设集合A={a, b, c, d}, A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>}, 则R具有的性质是.答反自反7.设集合A={a, b, c, d}, A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>}, 若在R中再增加两个元素 , 则新得到的关系就具有对称性.答<c, b>, <d, c>8.设A={1, 2}上的二元关系为R={<x, y>|x A, y A, x+y =10}, 则R的自反闭包为.答 {<1,1>,<2,2>}9.设R是集合A上的等价关系, 且1 , 2 , 3是A中的元素, 则R中至少包含等元素.答<1,1>, <2,2>, <3,3>。
国开离散数学形考任务6-数理逻辑部分形成性考核书面作业

离散数学数理逻辑部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业.要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word文档3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、填空题1.命题公式()→∨的真值是1或T .P Q P2.设P:他生病了,Q:他出差了.R:我同意他不参加学习.则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为.3.含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式是(P∧Q∧R) ∨(P∧Q∧﹁R) .4.设P(x):x是人,Q(x):x去上课,则命题“有人去上课.”可符号化为∃∧Q(x)) .5.设个体域D={a, b},那么谓词公式)x∨∃消去量词后的等值式为xA∀yB()(y(A(a) ∨A(b)) ∨((B(a) ∧B(b)) .6.设个体域D={1, 2, 3},A(x)为“x大于3”,则谓词公式(∃x)A(x) 的真值为0(F) .7.谓词命题公式(∀x)((A(x)∧B(x)) ∨C(y))中的自由变元为y .8.谓词命题公式(∀x)(P(x) →Q(x) ∨R(x,y))中的约束变元为x .三、公式翻译题1.请将语句“今天是天晴”翻译成命题公式.设P:今天是晴天。
则﹁P。
2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式.设P:小王去旅游。
Q:小李去旅游。
则P∧Q3.请将语句“他去旅游,仅当他有时间.”翻译成命题公式.设P:他去旅游。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学作业2离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业.要求:将此作业用A4纸打印出来,并在03任务界面下方点击“保存”和“交卷”按钮,以便教师评分.作业应手工书写答题,字迹工整,解答题要有解答过程,完成后上交任课教师(不收电子稿).一、填空题1.设集合{1,2,3},{1,2}A B==,则P(A)(B )= {{3}, {1,2,3}, {1, 3 }, {2,3}} ,A⨯{<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为1024 .3.设集合{0, 1, 2, 3},{2, 3, 4, 5},R是A到B的二元关系,},,{BAyxByAxyxR⋂∈∈∈><=且且则R的有序对集合为{<2, 2>,<2, 3>,<3, 2>},<3, 3>4.设集合{1, 2, 3, 4 },{6, 8, 12},A到B的二元关系R=},,2,{ByAxxyyx∈∈=><那么R-1={<6,3>,<8,4>}5.设集合{a, b, c, d},A上的二元关系{<a, b>, <b, a>, <b, c>, <c, d>},则R具有的性质是反自反性,反对称性.6.设集合{a, b, c, d},A上的二元关系{<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素<c, b>, <d, c>,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R12中自反关系有2 个.8.设{1, 2}上的二元关系为{<x, y>∈A,y∈A, =10},则R的自反闭包为{<1, 1>, <2, 2>} .9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1, 1>, <2, 2>, <3, 3> 等元素.10.设{1,2},{a,b},{3,4,5},从A到B的函数f ={<1, a>, <2, b>},从B到C的函数{< a,4>, < b,3>},则(g︒ f二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系{<1, 1>,<2, 2>,<1, 2>},则 (1) R 是自反的关系; (2) R 是对称的关系. 解:(1)错误,R 不是自反关系,因为没有有序对<3,3>.(2)错误,R 不是对称关系,因为没有有序对<2,1>2.设{1,2,3},{<1,1>, <2,2>, <1,2> ,<2,1>},则R 是等价关系.解:错误, 即R 不是等价关系.因为等价关系要求有自反性x R x, 但<3, 3>不在R 中.3.若偏序集<A ,R >的哈斯图如图一所示,则集合A 的最大元为a ,最小元不存在.解:错误.集合A 的最大元不存在,a 是极大元. 4.设集合{1, 2, 3, 4},{2, 4, 6, 8},,判断下列关系f 是否构成函数f :B A →,并说明理由.ο ο ο ο a b c d 图一 ο ο ο ge fο(1) {<1, 4>, <2, 2,>, <4, 6>, <1, 8>};(2) {<1, 6>, <3, 4>, <2, 2>};(3) {<1, 8>, <2, 6>, <3, 4>, <4, 2,>}.解:(1) f不能构成函数.因为A中的元素3在f中没有出现.(2) f不能构成函数.因为A中的元素4在f中没有出现.(3) f可以构成函数.因为f的定义域就是A,且A中的每一个元素都有B中的唯一一个元素与其对应,满足函数定义的条件.三、计算题1.设}4,2{==CE,求:A=B5,2,1{5,4,3,2,1{=},},4,1{},(1) (A⋂B)⋃;(2) (A⋃B)-(B⋂A) (3) P(A)-P(C);(4) A⊕B.解:(1)因为A∩{1,4}∩{1,2,5}={1},{1,2,3,4,5}-{2,4}={1,3,5}所以(A∩B ) ⋃{1}⋃{1,3,5}={1,3,5}(2)(A⋃B)-(B⋂A)= {1,2,4,5}-{1}={2,4,5}(3)因为P(A)={φ,{1}, {4}, {1,4}}P(C)={φ,{2},{4},{2,4}}所以P(A)(C)={ φ,{ 1},{ 4},{ 1,4}}-{φ,{ 2},{ 4},{2,4 }}(4) 因为A⋃{ 1,2,4,5}, A⋂{ 1}所以A⊕⋃⋂{1,2,4,5}-{1}={2,4,5}2.设{{1},{2},1,2},{1,2,{1,2}},试计算(1)(A-B);(2)(A∩B);(3)A×B.解:(1)A-B ={{1},{2}}(2)A∩B ={1,2}(3)A×{<{1},1>,<{1},2>,<{1},{1,2}>,<{2},1>,<{2},2>,<{2},{1,2}>,<1,1>,<1,2>,<1, {1,2}>,<2,1>,<2,2>,<2, {1,2}>}3.设{1,2,3,4,5},{<x,y>∈A,y∈A且≤4},{<x,y>∈A,y∈A且<0},试求R,S,R•S,S•R,1,1,r(S),s(R).解:{<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}, \1={<1,1>,<2,1>,<3,1>,<1,2 >,<2,2>,<1, 3>}φ, 1 =φr(S)={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}s(R)= {<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}R•φS•φ4.设{1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,{2, 4, 6}.(1) 写出关系R的表示式;(2 )画出关系R的哈斯图;(3) 求出集合B的最大元、最小元.解:{<1,1>,<1,2>,<1,3>,<1,4,<1,5>,<1,6>,<1,7>,<1,8>,<2,2>,<2,4>,<2,6>,<2,8>,<3 ,3>,<3,6>,<4,4>,<4,8>,<5,5>,<6,6>,<7,7>,<8,8>}(2)关系R的哈斯图如图四(3)集合B没有最大元,最小元是:2四、证明题1.试证明集合等式:A⋃ (B⋂C)=(A⋃B) ⋂ (A⋃C).证明:设,若x∈A⋃ (B⋂C),则x∈A或x∈B⋂C,即x∈A或x∈B且x∈A或x∈C.即x∈A⋃B且x∈A⋃C,即x∈(A⋃B) ⋂ (A⋃C),所以A⋃ (B⋂C)⊆ (A⋃B) ⋂ (A⋃C).反之,若x∈(A⋃B) ⋂ (A⋃C),则x∈A⋃B且x∈A⋃C,即x∈A或x∈B且x∈A或x∈C,即x∈A或x∈B⋂C,即x∈A⋃ (B⋂C),所以(A⋃B) ⋂ (A⋃C)⊆ A⋃ (B⋂C).因此.A⋃ (B⋂C)=(A⋃B) ⋂ (A⋃C).2.试证明集合等式A⋂ (B⋃C)=(A⋂B) ⋃ (A⋂C).7证明:设∩(B∪C),(A∩B)∪(A∩C),若x∈S,则x∈A且x∈B∪C,即x ∈A且x∈B或x∈A且x∈C,也即x∈A∩B或x∈A∩C,即x∈T,所以S⊆T.反之,若x∈T,则x∈A∩B或x∈A∩C,即x∈A且x∈B 或x∈A且x∈C也即x∈A且x∈B∪C,即x∈S,所以T⊆S.因此.3.对任意三个集合A, B和C,试证明:若= ,且A,则B = C.证明:设x∈A,y∈B,则<x,y>∈A⨯B,因为A⨯B = A⨯C,故<x,y>∈ A⨯C,则有y∈C,所以B⊆ C.设x∈A,z∈C,则<x,z>∈ A⨯C,因为A⨯B = A⨯C,故<x,z>∈A⨯B,则有z∈B,所以C⊆B.故得.4.试证明:若R与S是集合A上的自反关系,则R∩S也是集合A上的自反关系.证明:R1和R2是自反的,∀x∈A,<x, x> ∈R1,<x, x> ∈R2,则<x, x> ∈R1∩R2,所以R1∩R2是自反的.。