第10章数据的收集、整理(2)
人教版七年级数学(下册)第十章-数据的收集、整理与总结教案

人教版七年级数学(下册)第十章-数据的收
集、整理与总结教案
教学目标
1. 理解数据的概念和数据在日常生活中的作用。
2. 掌握数据的收集方法,包括观察法、实验法和调查法。
3. 学会整理数据的方法,包括制作频数表、制作条形统计图和
折线统计图。
4. 能够运用所学知识对数据进行分析和总结。
教学准备
1. 教材:人教版七年级数学(下册)第十章教材。
2. 教具:白板、黑板、多媒体课件、绘图工具。
教学过程
1. 导入:通过实例引入数据的概念和作用,激发学生的研究兴趣。
2. 授课:介绍数据的收集方法,包括观察法、实验法和调查法,并进行详细讲解和示范。
3. 练:分组进行实践操作,让学生亲自收集数据,并使用合适
的方法整理和表达数据。
4. 深化:引导学生分析和总结所收集的数据,提出问题并讨论。
5. 归纳:对本节课所学内容进行归纳总结,强化学生对数据收集、整理和总结方法的理解。
6. 作业:布置相应的练题和作业,巩固所学知识。
教学评价
1. 观察学生在课堂上的表现和参与程度。
2. 检查学生的作业完成情况和答案正确率。
3. 进行小组或个别评价,关注学生的理解深度和解决问题的能力。
教学活动设计合理,有助于学生对数据的收集、整理和总结方
法有更深入的认识。
第十章-数据的收集、整理与描述

§10.1 统计调查(1)【教学目标】1.了解通过全面调查收集数据的方法和划记法,经历简单的数据的收集、整理、描述和分析数据得出结论,即数据处理的一般过程;2.会设计简单的调查问卷收集数据,能根据问题查找有关资料,获得数据信息,会用表格整理数据,用条形图、扇形图直观地描述数据;3.通过实际参与收集、整理、描述、分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,初步培养重视调查研究的良好习惯和科学态度.【教学过程】一、预习导航回忆小学所学的统计的有关知识,并在旁边空白处记录下来.二、新知探究自学课本回答下列问题:我们可以采用的方法收集数据;统计中经常用整理数据;可以用和来直观地描述数据.叫做全面调查.尝试练习1:问题一:如果要了解全班同学对语文、数学、外语、政治、历史、地理、生物七个学科的喜爱情况,你会怎样做?1.收集数据如何收集数据,让各小组的同学在下面的问卷调查中获取数据.填完后交小组长,由小组长表唱票,小组成员在表格中进行统计.1. 确定调查目的;2. 选择调查对象;3. 设计调查问题.2.整理数据语数外物政历地生51 1 2 人学科类3.描述数据描述数据的方法通常用条形统计图或扇形统计图来直观地反映数据揭示的信息. 条形统计图:就是用坐标的形式来描述.如:扇形统计图:用一个圆代表总体,然后将各部分所占的百分比将圆分成若干个部分,再在各部分中标出相应的百分比和名称.如图所示:制作扇形统计图关键是确定各部分所占圆心角的大小,它的确定方法就是用该部分数据所占的百分比×360o ,如语文所占的百分比是20%,则相对应的圆心角为360o ×20%=72o.注意:各部分的圆心角之和可能与360 o有一定的误差.条形统计图与扇形统计图的优缺点各是什么? 4.全面调查的意义 在上面的调查中,我们利用调查问卷得到了全班同学喜爱的学科数据,利用表格整理数据,并用统计图直观形象的描述了数据.利用表和图分析了解到了全班同学喜爱学科的情况.在这个调查中,全班同学是要考查的全体对象.像这样考查全体对象的调查就叫做全面调查(也叫做普查).三、巩固提高例 经调查,某班同学上学所用的交通工具中,自行车占60%,公交车占30%,其他占10%,请画出扇形图描述以上统计数据.例 春节文艺晚会是大家都喜欢的节目,下面是路刚班级喜爱某种节目的人数分布 表,但因不小心,他打翻墨水,有些地方被墨水遮掉了.请你帮他解决以下问题.(1)被墨水遮掉的3处应是① _______ ②_______ ③________;(2)从上表中可知该班同学喜欢_______的人数最多;(3)画出条形图表示全班同学喜欢某种节目的分布情况. 四、课堂小结五、当堂检测1. 某中学初一(3)班50名学生参加数学测验,测验题目共20题,每题5分满分100分.统计结果如下:节目编号节目类别 划计 人数 百分比 1 相声 ① ② ③_ 2 小品 正 8 19% 3 歌曲 正5 12% 4 舞蹈 正 8 19% 5 杂技 正 7 17%6 戏曲 3 7% 合计42421语文% 数学25 %全对的2人对19题的8人对18题的10人对17题的9人对16题的6人对15题的6人对14题的5人对12题的2人对10题的1人对6题的1人.(1)请你设计一张表格对以上数据进行统计并填上相应数据?(2)你能用条形图把上述数据表示出来吗?2. 根据下面的数据制作扇形统计图并回答问题.对滨州市家庭人口数据的一次统计结果表明:2口之家占24%,3口之家占41%,4口之家占20%,5口之家占10%,6口之家占3%,其他占2%.(1)哪一类家庭人口多?占百分之几?(2)哪两类家庭的百分比之和超过了半数,且最多?(3)哪两类家庭的百分比之和刚达到30%?§10.1 统计调查(2)【教学目标】1.了解总体、个体、样本及样本容量的概念,通过抽样调查,初步感受抽样的必要性及样本的代表性,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析;2.理解抽样调查的方法,通过案例理解简单随机抽样,体会用样本估计总体的统计思想,合理运用抽样调查方法来解决实际问题;3.通过实际参与收集、整理、描述、分析数据的活动,体会数学在生活和生产中的作用,激发学生爱数学的热情.【教学过程】一、预习导航我们可以采用的方法收集数据;统计中经常用整理数据;可以用和来直观地描述数据.叫做全面调查.二、新知探究自学课本,回答下列问题:如果要对某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?(1) 抽样调查的意义在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查.,叫做抽样调查.(2)总体、个体、样本、样本容量的定义总体: .个体: .样本: .样本容量: .(3)抽样的注意事项:①抽样调查要具有广泛性和代表性,即样本容量要恰当.样本容量过少,那么不能很好地反映总体的情况,比如要调查2000名学生对电视节目的喜爱情况,若抽取的样本容量为几名学生就不能反映2000名学生的喜爱情况;如果抽取的学生人数过多,必然花费大量的时间、精力,达不到省时省力的目的.再如要调查60岁以上的老人的生病情况,在医院去抽取一些60岁以上的住院病人,它又不具有代表性,则应从60岁以上的老人册中任意抽取部分老人的生病情况来反映总体的60岁老人的生病情况,才能达到目的.②抽取的样本要有随机性.为了使样本能较好地反映总体的情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体都有相等的机会被抽到,所谓随机就是机会相等.例如在2000名学生的注册学号中,随意抽取100个学号,调查这些学号对应的100名学生.当然还可以在上学或放学时,在学校门口随机进行调查;或则每隔10个人调查一个,直到调查满确定的样本容量.总体说来抽样调查最大的优点就是在抽样过程中避免了人为的干扰和偏差,因此,随机抽样是最科学、应用最广泛的抽样方法,一般情况下,样本容量越大,估计精确度就越高.尝试练习:某校有2000名学生,要想了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?⑴可以用全面调查的方法对全校学生逐个进行调查吗?这样做你认为有什么不足之处?⑵能否有既省时省力又能解决问题的新方法?请阅读教材P153-155后,小组讨论交流你的理解.⑶什么是总体、个体、样本、样本容量?在上面的问题中总体、个体、样本、样本容量分别是什么?⑷你明白了统计的思想了吗?抽样调查是实际中经常采用的调查方式.抽样调查有什么优点?需要注意什么?⑸见教材P154表10-2,你知道哪个节目最受学生喜爱?百分比为多少?据此你知道全校2000名学生中有多少学生最喜爱这个节目?⑹试用条形图和扇形图来描述表10-2中的数据.三、巩固提高1. 为了解全校学生的平均身高,小明调查了座位在自己旁边的3名同学,把他们的身高的平均值作为全校学生的平均身高的估计.⑴小明的调查是抽样调查吗?⑵如果是抽样调查,指出调查的总体、个体、样本和样本容量.⑶这个调查结果能较好地反映总体的情况吗?如果不能,请说明理由.2. 举出不宜用全面调查的例子,并说明理由.3. 某班要选3名学生代表本班参加班级间的交流活动.现在按下面的办法抽取:把全班同学的姓名分别写在没有明显差别的小纸片上,把纸片混放在一个盒子里,充分搅拌后,随意抽取3张,按照纸片上所写的名字选取3名同学.你觉得上面的抽取过程是简单随机抽样吗?为什么?四、课堂小结五、当堂检测1.要调查下面几个问题,你认为应该作全面调查还是抽样调查?⑴了解全班同学每周体育锻炼的时间.⑵调查市场上某种食品的色素含量是否符合国家标准.⑶鞋厂检测生产的鞋底能承受的弯折次数.2.指出下列调查中的总体、个体、样本和样本容量.⑴从一批电视机中抽取20台,调查电视机的使用寿命.⑵从学校七年级中抽取30名学生,调查学校七年级学生每周用于数学作业的时间.3.小明家搞池塘养鱼已三年,头一年放养鱼苗20000尾,其成活率约为70%,在秋季捕捞时,随意捞出10尾,称得每尾的质量如下(单位:千克):0.8 0.9 1.2 1.3 0.8 0.9 1.1 1.0 1.2 0.8.⑴估计这塘鱼的总产量是多少千克?⑵如果把这塘鱼全部卖掉,其市场售价为每千克4元,那么能收入多少元?除去当年的投资成本16000元,第一年纯收入是多少元?⑶已知该养鱼户的第二年纯收入为48000元,那么第二年比第一年增长的百分率是多少?§10.1 统计调查(3)【教学目标】1.感受分层抽样的必要性,初步掌握分层抽样的基本步骤和方法;2.经历收集、处理数据的过程,会用分层抽样的方法来收集数据、整理数据、分析数据、做出决策,能利用分层抽样的知识解决简单实际生活中的问题;3.增强用统计方法解决实际问题的意识,通过研究解决问题的过程,初步培养学生合作交流的意识和探究精神.【教学过程】一、预习导航1.什么是抽样调查?2.什么是总体、个体、样本和样本容量?3.统计的思想是什么?4.抽样调查有什么优点?简单随机抽样时需要注意什么?二、新知探究:自学课本,回答下列问题:(1)分层抽样:.分层抽样的优点:.(2)在什么情况下分层?分层的根据是什么?尝试练习问题某地区有500万电视观众,要想了解他们对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况.⑴不能用对学生调查数据去估计整个地区电视观众的情况呢?⑵如果抽取一个容量为1000的样本进行调查,你会怎样调查?⑶采用分层抽样与在整个地区直接进行简单随机抽样相比,这样抽取样本一般能更好地反映总体.如果青少年、成年人、老年人的人数比为2∶5∶3,则可按下表抽取:教材P157表10-3是按上述做法进行调查并整理得到的数据,从中可以大致估计出整个地区观众对五种节目的喜爱情况.请你画条形图和扇形图描述表10-3中的数据.⑷由表10-3中数据还可以估计各个年龄段中观众对某类节目喜爱的情况.如,各个娱乐37% 35.2% 19.7%三、巩固提高1. 如果整个地区的观众中,青少年、成年人、老年人的人数比为3∶4∶3,要抽取容量为500的样本,则各年龄段分别抽取多少人合适?2. 根据表10-3,请你计算各个年龄段中最喜爱新闻、体育、戏曲类节目的百分比,画出折线图,分析随年龄变化,观众喜爱节目的变化情况.3. 活动1的问题中,除了根据年龄段分不同的人群,还可以按其他特征分吗?四、课堂小结五、当堂检测1.调查收集数据的方式通常有______________和_____________两种.当总体中个体数目较少时用________________的方式获得数据较好,当总体中个体数目较多时用____________的方式获得数据较好.但关于电视机寿命、火柴质量等具有破坏性的调查不宜采用_____________,国家人口普查采用________________.2.对某中学学生户外活动时间进行抽样调查,学校共有学生1500名,其中男生有800名,女生有700名.如果样本大小为150,小明现有三种方案:A:在七年级学生中用简单随机抽样,抽取150名学生进行调查;B:对全校学生进行简单随机抽样,抽取150名学生进行调查;C:分别在男生中用简单随机抽样抽取80名,在女生中用简单随机抽样抽取70名进行调查.你觉得哪种方案调查的结果会更精确一点?说说你的理由.3.小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小张和小李两人中新手是 .4.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成 下列各题:(1) 该月小王手机话费共有多少元?(2) 扇形统计图中,表示短信费的扇形的圆心角为多少度? (3) 请将表格补充完整; (4)50403020100项目金额/§10.2 直方图(1)【教学目标】1.了解频数及频数分布的概念,根据实际问题,会选择合适组距对数据进行等距分组,用表格整理数据,表示频数分布,会画简单的频数分布直方图(等距分组),并利用频数分布直方图解释数据中蕴含的信息;2.通过学习用表格整理数据表示频数分布,体会表格在整理数据中的作用,通过学习用简单频数分布直方图描述数据的方法,进一步体会统计图表在描述数据中的作用;3. 初步建立统计的观念,初步培养调查研究的良好习惯和实事求是的科学态度.【教学过程】一、预习导航1.什么是分层抽样?2.分层抽样的优点是什么?二、新知探究自学课本回答下列问题:称为组距.叫做频数.尝试练习:活动1提出问题探索解决问题的方法问题1:为了参加学校年级之间的广播操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛.你知道应该怎样选择吗?为什么?问题2:已知63名学生的身高数据,为了使选取的参赛选手身高比较整齐,你知道怎样做才能知道数据(身高)的分布情况吗?(即在哪些身高范围学生比较多?而哪些身高范围学生比较少?)活动2 用频数分布描述数据的方法阅读教材,并结合以上探究,你知道用频数分布描述数据的一般步骤是什么?注意对以下概念的理解:1.组距2.频数3.频数分布直方图4.频数折线图活动3 应用频数分布解决简单的实际问题为了考察某种大麦穗长的分布情况,在一块试验田里抽取了100个麦穗,量得它们的长度(数据见教材).列出样本的频数分布表,画出频数分布直方图.问题在活动1的问题2中,对数据进行分组时,组距取3,把数据分成8组.如果组距取2或4,那么数据分成几个组?这样做能否选出身高比较整齐的40名队员?三、巩固提高1. 为了解九年级女生的身高(单位:cm)情况,某中学对部分九年级女生身高进行了一次测量, 所得数据整理后列出了频数分布表,并画了部分频数分布直方图(图、表如下):cm)根据以上图表,回答下列问题:(1)M=_______,m=_______,N=_______,n=__________; (2)补全频数分布直方图.四、课堂小结五、当堂检测1.一个容量为80的样本最大值是143,最小值是50,取组距为10,则可以分成( ) A .10组 B .9组 C .8组 D .7组2.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据的个数分别是2, 8, 15, 5,则第四组频数是______.3.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其它类同).这个时间段内顾客等待时间不少于6分钟的人数为( ) A .5 B .7 C .16 D .33(第3题)/min§10.2 直方图(2)【教学目标】1.根据实际问题,会选择合适组距对数据进行等距分组,用表格整理数据,表示频数分布;2.会画简单的频数分布直方图(等距分组),并利用频数分布直方图解释数据中蕴含的信息. 进一步体会统计图表在描述数据中的作用;3. 增强学习统计的兴趣,初步培养调查研究的良好习惯和科学态度.【教学过程】一、预习导航1.什么是组距、频数?2.用频数分布描述数据的一般步骤是什么?二、新知探究:活动熟练掌握用频数分布直方图解决问题的一般步骤从蔬菜大棚中收集到50株西红柿秧上小西红柿的个数:28 62 54 29 32 47 68 27 55 4336 79 46 54 25 82 16 39 32 6461 59 67 56 45 74 49 36 39 5285 65 48 58 59 64 91 67 54 5768 54 71 26 59 47 58 52 52 70请按组距为10将数据分组,列出频数分布表,画出频数分布直方图和频数折线图,分析数据分布的情况.(先独立思考后分组交流评讲)三、巩固提高:⑴全班有多少同学?⑵组距是多少?组数是多少?⑶跳绳的次数x在100≤x<140范围内的同学有多少?占全班同学的百分之几?⑷画出适当的统计图表示上面的信息.⑸你怎样评价这个班的跳绳成绩?四、课堂小结五、当堂检测1.某县教育部门对该县参加奥运知识竞赛的7500名初中学生的初试成绩(成绩均为整数..)(1)抽取样本的容量为;(2)根据表中数据,补全图中频数分布直方图;(3)若规定初试成绩在90分以上(不包括90分)的学生进入决赛,则全县进入决赛的学生约为人.2.为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小护士”组成了“控制噪声污染”课题学习研究小组.该小组抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位: dB ),将调查的数据进行处理(设所测数据均为正整数)组别噪声声级分组频数频率1 44.5~59.5 4 0.12 59.5~74.5 a 0.23 74.5~89.5 10 0.254 89.5~104.5 b c5 104.5~119.56 0.15合计40 1.00根据表中提供的信息解答下列问题:(1)频数分布表中的a=___________,b=____________,c=____________;(2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75 dB的测量点约有多少个?第十章 数据的收集、整理与描述复习【教学目标】1. 通过复习小结,进一步领悟到现实生活中通过数据处理,对未知的事情作出合理的推断的事实;2. 通过复习,进一步明确数据处理的一般过程;3. 在与他人交流合作的过程中学会收集、整理、描述数据. 【教学过程】一、本章知识网络: 数据处理的一般过程得出结论直方图折线图扇形图条形图据收集数据抽样调查全面调查二、知识链接:1. 统计图 扇形统计图 容易表示出一个对象在总体中所占的百分比. 条形统计图 可以表示出各种情况下各个项目的具体数目. 折线统计图 可以表现出同一对象的发展变化情况2. 全面调查 为一特定目的而对所有考察对象作的全面调查 抽样调查 为一特定目的而对部分考察对象作的调查 抽样调查中的总体 所要考察的对象的全体 个体 其中每一个考察对象样本 从总体中取出的一部分个体 样本容量 样本中个体的数目 3. 直方图画频数分布直方图的一般步骤(1)计算最大值与最小值 (2)决定组距与组数(3)列频数分布表 (4)画频数分布直方图三、巩固练习:1. 右图是根据某中学为地震灾区捐款情况而制作的统计图,已知该校在校学生2000人,请你根据统计图计算该校七年级有学生 人, 七年级共捐款 元,该校三个年级共捐款 元.人均捐款数(元)0246810121416七年级八年级九年级年级/日4821温度/℃2. 某校七年级学生进行体育测试,七年级(2)班男生的立定跳远成绩制成频数分布直方图,图中从左到右各矩形的高之比是2:3:7:5:3,最后一组的频数是6,根据直方图所表达的信息,解答下列问题.(1)该班有多少名男生?(2)若立定跳远的成绩在 2.0米以上(包括2.0米)为合格率是多少四、当堂检测 一、精心选一选,你一定能行1.下列调查适合作全面调查的是( ) A.了解在校大学生的主要娱乐方式 B.了解我市居民对废电池的处理情况 C.日光灯管长要检测一批灯管的使用寿命D.对甲型HINI 流感患者的同一车厢乘客进行医学检查2.要了解全校学生的课外作业负担情况,你认为作抽样方法比较合适的是( ) A.调查全校女生 B.调查全校男生C.调查九年级全体学生D.调查七、八、九年级各100人 3.要反映某市一周内每天的最高气温的变化情况,宜采用( ) A.条形统计图 B.扇形统计图 C.折线统计图 D.频数分布直方图4.小明在选举班委时得了28票,下列说法错误的是( ) A.不管小明所在的班级有多少学生,所有选票中选小明的选票频率不变 B. 不管小明所在的班级有多少学生,所有选票中选小明的选票频数不变 C.小明所在班级的学生人数不少于28人 D.小明的选票的频率不能大于15.一个班有40名学生,在期末体育考试中,优秀的有18人,在扇形统计图中,代表体育优秀扇形的圆心角度数是( ) A.144 B.162 C.216 D.250二、耐心填一填,你一定很棒的! 6.为了考察某校七年级男生的身高情况,调查了60名男生的身高,那么它的总体是____________,个体是__________________,样本是______________.7.小明家本月的开支情况如右图所示,如果用于其它方面的支出是150元,那么他家用于教育支出是____________元.8.某市为了了解七年级学生的身体素质情况,随机抽取了500名七年级学生进行检测,身体素质达标率为92%,请你估计该市6万名七年级学生中,身体素质达标的大约有_____________万人.9.测得某市2月份1~10日最低气温随日期变化折线图如图所示 ()1 最低气温为2c 的天数为_______天.()2 该市这10天的天气变化趋势是___________________.三、挑战你的技能10.老师布置每位学生估计本班的数学平均成绩,小玲是数学兴趣小组的成员,就向数学兴趣小组的全体成员做了调查,用他们的数学平均成绩估计本班的数学平均成绩,这样的抽样调查合理吗?为什么?11.某校为了了解七年级学生的学习情况,在这个年级抽取了50名学生对某课进行了测试.将所得的成绩(成绩均为整数)进行整理(如下边所示),请你画出频数分布直方图和频数折线图,并回答问题:(1)全班有多少同学?(2)组距是多少?组数是多少?(3)测试成绩在70≤x<80范围的同学有多少?占全班同学的百分比?(4)画出适当的统计图表示上面的信息.(5)你怎样评价这个班的测试成绩?12. 某校学生会准备调查全校七年级学生 每天(除课间操外)的课外锻炼时间. (1)确定调查方式时,甲说:“我到(1)班去调查全体同学”;乙同学说:“我到体育场上去询问参加锻炼的同学”;丙同学说:“我到全校七年级每个班去随机调查一定数量的同学”.你认为调查方式最合理的是(填“甲”、或“乙”或“丙”)____________________(2)他们采用了最为合适的调查方法收集数据,并绘制了条形和扇形统计图,请将两幅统计图补充完整;图1(3)若该七年级共有1200名同学,请你估计其中每天(除课间操外)课外锻炼时间不大于20分钟的人数.20分钟约40分钟及以上图2。
人教版七年级数学下册第十章数据的收集、整理与描述第二节直方图习题(含答案) (60)

人教版七年级数学下册第十章数据的收集、整理与描述第二节直方图复习试题(含答案)一、单选题1.一组数据的最大值是97,最小值76,若组距为4,则可分为几组()A.4 B.5 C.6 D.7【答案】B【解析】根据题意,一组数据的最大值是97,最小值76,最大值与最小值的差为=5.25;则可分为6组.21;若组距为4,有214故选C.点睛:本题考查组数的确定方法,注意极差的计算与最后组数的确定,组数不要太少,也不能太多.2.小明在选举班委时得了28票,下列说法错误的是()A.不管小明所在的班级有多少学生,所有选票中选小明的选票频率不变B.不管小明所在的班级有多少学生,所有选票中选小明的选票频数不变C.小明所在班级的学生人数不少于28人D.小明的选票的频率不能大于1【答案】A【解析】【分析】根据频率=频数,即可解答.数据总和【详解】解:频率=频数数据总和,当全班人数变化时,所有选票中选小明的选票频率也随着变化;根据各小组频数之和等于数据总和,各小组频率之和等于1;可得B,C,D,都正确,A错误.故选A.【点睛】本题是对频率、频数灵活运用的综合考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系:频率=频数数据总和.3.小亮把全班50名同学的期中数学测试成绩,绘成如图所示的条形图,其中从左起第一、二、三、四个小长方形高的比是1∶3∶5∶1.从中同时抽一份最低分数段和一份最高分数段的成绩的概率分别是().A.110、110B.110、12C.12、110D.12、12【答案】A【解析】试题分析:设第一个长方形的高为x,则第二、三、四个小长方形高分别为3x,5x,x,由题意得x+3x+5x+x=50,解得x=5,即最低分为5人,最高分为5人,根据概率公式从中同时抽一份最低分数段和一份最高分数段的成绩的概率分别是550=110、550=110.故选A.点睛:本题考查频率分布直方图的知识和概率公式,难度不大,注意掌握如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.4.在全班45人中进行了你最喜爱的电视节目的调查活动,喜爱的电视剧有人数为18人,喜爱动画片有人数为15人,喜爱体育节目有人数为10人,则下列说法正确的是()A.喜爱的电视剧的人数的频率是1818+15+10B.喜爱的电视剧的人数的频率是1845C.喜爱的动画片的人数的频率是1818+10D.喜爱的体育节目的人数的频率是181514545--【答案】B【解析】试题分析:频率应为频数除以总数,所以喜欢看电视剧、动画片和体育节目的频率分别是1845、1545、1045,故选B.5.在-(-3),(-3)2,(-3)3,︱-3︱中,负数出现的频率为()A.25%B.50%C.75%D.100%【答案】A【解析】试题分析:-(-3)=3,(-3)2=9,(-3)3=-27,︱-3︱=3,所以负数出现的频率为25%,故选A.6.小文同学统计了他所在小区居民每天微信阅读的时间,并绘制了直方图.有以下说法:①小文同学一共统计了60人;②每天微信阅读不足20分钟的人数有8人;③每天微信阅读30~40分钟的人数最多;④每天微信阅读0-10分钟的人数最少.根据图中信息,上述说法中正确的是( )A.①②③④B.①②③C.②③④D.③④【答案】D【解析】①小文同学一共统计了4+8+14+20+16+12=74(人),则命题错误;②每天微信阅读不足20分钟的人数有4+8=12(人),故命题错误;③每天微信阅读30−40分钟的人数最多,正确;④每天微信阅读0−10分钟的人数最少,正确.故选D.点睛: 本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.7.要反映一个家庭在教育方面支出占总收入的比,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图【答案】B【解析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:由统计图的特点,知要反映一个家庭在教育方面支出占总收入的比,宜采用扇形统计图.故选B.8.某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是()A.该班有50名同学参赛B.第五组的百分比为16%C.成绩在70~80分的人数最多D.80分以上的学生有14名【答案】D【解析】A.8÷(1-4 %-12 %-40 %-28 %)=50(人),故正确;B. 1-4 %-12 %-40 %-28 %=16%,故正确;C.由图可知,成绩在70~80分的人数最多,故正确;D.50×(28 %+16 %)=22(人),故不正确;9.单位在植树节派出50名员工植树造林,统计每个人植树的棵树之后,绘制出如图所示的频数分布直方图(图中分组含最低值,不含最高值),则植树7棵及以上的人数占总人数的( )A .40%B .70%C .76%D .96%【答案】C【解析】 由图可得,植树7棵及以上的人数占总人数的5029650-=% ,故选D. 10.下列关于统计图的说法中,错误的是( )A .条形图能够显示每组中的具体数据B .折线图能够显示数据的变化趋势C .扇形图能够显示数据的分布情况D .直方图能够显示数据的分布情况【答案】C【解析】A. ∵条形图能够显示每组中的具体数据,故正确;B. ∵折线图能够显示数据的变化趋势,故正确;C. ∵扇形图能够显示部分与总体的关系,故不正确;D. ∵直方图能够显示数据的分布情况,故正确;。
人教版七年级下册数学教学设计(教案):第十章数据的收集、整理与描述单元备课

第十章“数据的收集、整理与描述”单元备课本章是统计部分的第一章,内容包括:1.利用全面调查与抽样调查(以抽样调查为重点)收集和整理数据;2.利用统计图表(以直方图为重点)描述数据;3.展现收集、整理、描述和分析数据得出结论的统计调查的基本过程.本章共安排三个小节和两个选学内容,教学(不包括选学内容)约需10课时,具体安排如下(仅供参考):10.1 统计调查约3课时10.2 直方图约2课时课题学习从数据谈节水约3课时数学活动小结约2课时一、教科书内容与本章学习目标(一)本章知识结构框图本章知识结构如下图所示:(二)教科书内容10.1节“统计调查”,主要介绍收集、整理与描述数据的一些常用方法.全面调查和抽样调查是统计调查的常用方法.教科书以调查人们对几种电视节目的喜爱情况为背景,设计了两个问题,通过统计调查问题1回顾了全面调查;通过统计调查问题2介绍了抽样调查.教科书首先设置问题1,要求学生考察全班同学喜爱五种电视节目的情况.解决这个问题需要统计调查,首先是收集数据,由此引出利用调查问卷收集数据的方法;对于收集到的数据需要进行整理才能看出数据分布的规律,这就涉及如何整理数据的问题,教科书介绍了利用频数分布表(没有给出频数分布的概念)整理数据的方法;为了更直观地看出全班同学喜爱五种电视节目的情况,教科书选用了学生在小学已经学过的条形图和扇形图展示了数据的分布规律;最后通过分析统计图表就可以看出全班同学五种电视节目的情况.对于扇形图,学生在小学只能从扇形图中读出信息,不会画出扇形图来描述数据,在本节中,教科书结合问题1介绍了如何画出扇形图,这是本学段的一个教学要求.问题1的统计调查过程实际上让学生经历了一个收集、整理、描述和分析数据得出结论,即数据处理的一般过程.数据的来源一般有两条渠道:一条是通过统计调查或科学试验直接得到第一手统计数据;另一条是通过查阅资料等间接获得第二手统计数据.统计调查是获得第一手数据的重要途径,它们常常通过访问、邮寄、电话、电脑辅助等形式来收集数据;科学试验是取得自然科学数据的主要手段;各种文献资料、报刊杂志、广播、电视媒体等提供了大量的统计数据,通过这些资料或媒体可以获得第二手数据.本章主要学习通过统计调查来收集数据,并对收集到的数据进行整理的方法.关于通过科学试验获得数据的方法,教科书通过一个选学栏目作了简单介绍;对于通过查阅资料等间接手段收集数据的方法,主要安排在课题学习和习题中.用样本估计总体是统计的基本思想,抽样调查是实际中经常采用的一种调查方式,也是本节重点介绍的统计调查方法.教科书沿用问题1的情景,设计了问题2,介绍利用抽样调查收集数据.在问题2中,调查全校学生对五种电视节目的喜爱情况,由于学生人数较多,采用全面调查的方式收集数据不太实际,抽样调查是一种经济、有效、省时省力的方法,这就使学生对抽样的必要性有所感受.结合着必要性的讨论,教科书给出了与抽样调查有关的概念和术语,如样本、总体、个体、样本容量等.为了使样本尽可能具有好的代表性,抽取样本时,要求每一个学生都有相等的机会被抽到,教科书介绍了一种利用学号随机抽取样本,实现简单随机抽样的方法.这个抽样方法简单有效,便于学生理解样本的代表性.有了样本数据,就可以整理、描述和分析样本数据,通过分析样本数据来估计总体的情况.通过问题2的学习,学生经历了一个利用抽样调查处理数据、解决问题的统计过程,对抽样调查的必要性、样本的代表性、单随机抽样,以及通过样本估计总体的思想等有所了解.在问题1,2的基础上,教科书设置了问题3.问题3是比较学生所在学校三个年级学生的平均体重,教科书没有给数据,也没有给分析和解决过程,需要学生自主合作完成.教科书这么做的目的是考虑到统计内容有较强的实践性,希望学生通过亲自参与统计活动这种有效方式学习统计内容.问题3中设置的三个小问题,事实上是给学生完成此问题适当的引导.其中调查方案的确定,需要根据学生自己所在学校的实际情况进行综合权衡,选取相对合适的调查方案.即使是调查同一所学校,也完全可以采用不同的调查方式收集数据,但要能解决所提问题为前提,其实这是辩证地认识两种调查方式特点的过程,更是正确认识统计方法特点的过程.通过问题3,让学生亲自参与在实际问题中收集、整理、描述和分析数据得出结论的统计过程,培养应用意识和解决问题的能力,初步建立数据分析观念,感受统计的思想.“捉-放-捉(capture-recapture)”是生产和科研中经常用到的方法,常常被用来根据部分的情况估计整体的情况,例如估计养鱼池中鱼的个数,森林中某种动物的个数等,这个方法体现了用样本估计总体的思想.教科书在选学栏目“实验与探究瓶子中有多少粒豆子”中,模拟这种方法设计了一个活动,通过学生动手活动体验这种方法,感受用样本估计总体的思想,并了解试验也是获得数据的有效方法.10.2节“直方图”,重点讨论利用直方图来描述数据.对于直方图,学生在前两个学段没有接触,这是本学段学习的一种新统计图.教科书从学生熟悉的问题情景入手:从63名学生中选出40名参加广播体操比赛.选择参赛队员的一个要求是队员的身高应尽可能整齐.我们可以用不同的方法选出符合这个要求的队员,教科书介绍了利用频数分布确定人选的方法.分析数据的频数分布,首先是将数据分组,根据一组数据的最大值、最小值可以确定这组数据的极差,极差反映了数据的变化范围.参照极差,可以确定组距,进而可以将数据进行分组,利用频数分布表给出了身高数据的分布情况,分析频数分布表可以看出大部分学生的身高分布在哪个范围,由此可以确定参赛选手的身高.对于取值比较少的数据(如前一节最喜爱的电视节目),可以用条形图描述频数分布,而对于取值比较多的数据(如身高),分组后可以用直方图来描述频数分布.教科书利用问题4介绍了根据频数分布表作出频数分布直方图的方法.教科书结合一个实际问题介绍直方图描述数据的方法,使得对于统计图表的认识具体化.10.3节“课题学习从数据谈节水”,要求学生综合利用学过的统计知识和方法从事统计活动,经历收集、整理、描述和分析数据的基本过程.教科书选择了一个具有实际意义和时代气息的问题——水资源问题为主题编写课题学习,这不仅有利于统计知识的深入学习,而且具有“节能减污,保护环境”的教育价值.这个课题学习由两部分组成,第一部分要求学生阅读背景材料,从中收集数据,通过数据处理回答问题.第二部分要求学生运用已学的统计调查知识,完成一个以“家庭人均月生活用水量”为题的统计调查活动,并结合第一部分的内容撰写一份报告.课题学习的设计目的,一方面是让学生感受对数据进行合适处理,可以挖掘其中蕴涵的信息,体会统计方法的意义;另一方面是让学生经历在实际问题中收集、整理、描述和分析数据得出结论的统计过程,在经历这个统计调查的过程中,发展学生的数据分析观念,感受统计的思想,逐步建立用数据说话的习惯.(三)本章学习目标1.经历收集数据、整理、描述和分析数据的活动,了解数据处理的过程.了解全面调查和抽样调查两种收集数据的方式,会设计简单的调查问卷.2.通过实例,体会抽样的必要性,了解简单随机抽样.通过简单随机抽样,体会样本估计总体的合理性,能根据统计结果作出简单的判断和预测.3.通过实例,了解频数及频数分布的意义,会用表格整理数据,体会表格在整理数据中的作用.5.能画扇形图和简单频数分布直方图(等距分组的情形),并能利用频数分布直方图解释数据中蕴涵的信息.会根据问题需要选择适当的统计图描述数据,进一步体会统计图在描述数据中的作用.6.通过表格、折线图、趋势图等,感受随即现象的变化趋势.7.通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立数据分析观念,培养重视调查研究的良好习惯和科学态度.三、对教学的几个建议1.注意统计思想的渗透与体现2.在统计过程中学习统计,改进学生的学习方式3.挖掘现实生活中的素材进行教学4.准确把握教学要求5.关注信息技术的使用。
人教版七年级数学下册第十章数据的收集、整理与描述第二节直方图习题(含答案) (63)

人教版七年级数学下册第十章数据的收集、整理与描述第二节直方图复习试题(含答案)某校未为了解学生每天参加体育锻炼的时间情况,随机选取该校的部分学生进行调查.以下是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查的学生中,每天参加体育锻炼的时间不少于90min的有_____人,这些学生数占被调查总人数的百分比为_____%,每天参加体育锻炼的时间不足60min的有_____人;(2)被调查的学生总数为_____人,统计表中m的值为_____,统计图中n 的值为_____,被调查学生每天参加体育锻炼时间的中位数落在_____组;(3)该校共有960名学生,根据调查结果,估计该校每天参加体育锻炼的时间不少于60min的学生数.【答案】(1)18,15,30(2)120,42,25,C(3)720【解析】【分析】(1)根据统计图表中的信息即可得到结论;(2)根据统计图表中的信息列式计算即可;(3)根据题意列式计算即可得到结论.【详解】解:(1)被调查的学生中,每天参加体育锻炼的时间不少于90min的有18人,这些学生数占被调查总人数的百分比为15%,每天参加体育锻炼的时间不足60min的有12+18=30人;故答案为18,15,30;(2)被调查的学生总数为18÷15%=120人,统计表中m的值为120﹣12﹣18﹣30﹣18=42,统计图中n的值为×100%×100=25,被调查学生每天参加体育锻炼时间的中位数落在C组;故答案为120,42,25,C;(3)960×=720,答:估计该校每天参加体育锻炼的时间不少于60min的学生数为720人.【点睛】本题考查了频(数)率分布直方图:频率分布表列出的是在各个不同区间内取值的频率,频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率.直角坐标系中的纵轴表示频率与组距的比值,即小长方形面积=组距×频数组距=频率.②各组频率的和等于1,即所有长方形面积的和等于1.也考查了用样本估计总体.32.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.【答案】(1)12;(2)补充频数分布直方图见解析; (3)本次测试的优秀率是0.44;(4)小宇与小强两名男同学分在同一组的概率是16.【解析】试题分析:(1)用总人数减去第1、2、3、5组的人数,即可求出a 的值; (2)根据(1)得出的a 的值,补全统计图;(3)用成绩不低于40分的频数乘以总数,即可得出本次测试的优秀率; (4)用A 表示小宇,B 表示小强,C 、D 表示其他两名同学,画出树状图,再根据概率公式列式计算即可.试题解析:(1)表中a 的值是:a=50-4-8-16-10=12; (2)根据题意画图如下:(3)本次测试的优秀率是12100.4450+=.答:本次测试的优秀率是0.44;(4)用A表示小宇,B表示小强,C、D表示其他两名同学,根据题意画树状图如下:共有12种情况,小宇与小强两名男同学分在同一组的情况有4种,则小宇与小强两名男同学分在同一组的概率是41.123考点:1.频数(率)分布直方图;2.频数(率)分布表;3.列表法与树状图法.33.为积极创建全国文明城市,某市对某路口的行人交通违章情况进行了20天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)第7天,这一路口的行人交通违章次数是多少次;这20天中,行人交通违章6次的有多少天;(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过宣传教育后,行人的交通违章次数明显减少.经对这一路口的再次调查发现,平均每天的行人交通违章次数比第一次调查时减少了4次,求通过宣传教育后,这一路口平均每天还出现多少次行人的交通违章.【答案】(1)8,5;(2)图像见解析;(3)3次. 【解析】 【分析】(1)直接根据折线统计图可读出数据; (2)求出8次的天数,补全图形即可;(3)求出这20天的平均数,然后再算出交通违章次数即可. 【详解】解:(1)第7天,这一路口的行人交通违章次数是8次; 这20天中,行人交通违章6次的有5天; (2)补全的频数直方图如图所示:(3)第一次调查,平均每天行人的交通违章次数为:536574859320⨯+⨯+⨯+⨯+⨯=7(次)∵7-4=3(次)∵通过宣传教育后,这一路口平均每天还出现3次行人的交通违章. 【点睛】本题考查折线统计图,频数分布直方图.34.现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:(1)写出的值并补全频数分布直方图;(2)本市约有名教师,用调查的样本数据估计日行走步数超过步(包含步)的教师有多少名?(3)若在名被调查的教师中,选取日行走步数超过步(包含步的两名教师与大家分享心得,求被选取的两名教师恰好都在步(包含步)以上的概率.【答案】(1)0.16,0.24,10,2;补图见解析;(2)11340;(3)【解析】试题分析:(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.试题解析:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为.考点:列表法与树状图法;用样本估计总体;频数(率)分布表;频数(率)分布直方图.35.养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【答案】(1)作图见解析;(2)C;(3)1020.【解析】试题分析:(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.试题解析:(1)本次调查的总人数为10÷5%=200,则20~30分钟的人数为200×65%=130(人),D项目的百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人).答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.考点:频数(率)分布直方图;用样本估计总体;扇形统计图;中位数.36.随若移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A .和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调査,得到如下图表(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图;(3)若该中学约有名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调査结果,就中学生如何合理使用手机给出你的一条建议.【答案】(1)50人;(2)0.2;10;20.补图见解析;(3)400人.【解析】【分析】【详解】(1)从C可以看出:5÷0.1=50(人)答:这次被调查的学生有50人;=0.2,n=0.2×50=10,p=0.4×50=20(2)m=1050补全图形如图所示:(3)800×(0.1+0.4)=800×0.5=400(人)答:全校学生中利用手机购物或玩游戏的共有400人建议:中学生使用手机要多用于学习.考点:频数、频率、统计图实际应用37.为了解某个某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30天,对每天的最高气温(单位:)进行调查,并将所得的数据按照,,,,分成五组,得到如图频率分布直方图.(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代表);(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中最高气温超过(1)中平均数的天数;(3)如果从最高气温不低于的两组内随机选取两天,请你直接写出这两天都在气温最高一组内的概率.【答案】(1)这30天最高气温的平均数为20.4℃;中位数为22℃;(2)该地这个季度中最高气温超过(1)中平均数的天数为48天;(3)这两天都在气温最高一组内的概率为.【解析】试题分析:(1)根据30天的最高气温总和除以总天数,即可得到这30天最高气温的平均数,再根据第15和16个数据的位置,判断中位数;(2)根据30天中,最高气温超过(1)中平均数的天数,即可估计这个季度中最高气温超过(1)中平均数的天数;(3)从6天中任选2天,共有15种等可能的结果,其中两天都在气温最高一组内的情况有6种,据此可得这两天都在气温最高一组内的概率.试题解析:(1)这30天最高气温的平均数为:=20.4℃;℃中位数落在第三组内,℃中位数为22℃;(2)℃30天中,最高气温超过(1)中平均数的天数为16天,℃该地这个季度中最高气温超过(1)中平均数的天数为×90=48(天);(3)从6天中任选2天,共有15种等可能的结果,其中两天都在气温最高一组内的情况有6种,故这两天都在气温最高一组内的概率为=.考点:1.列表法与树状图法;2.用样本估计总体;3.频数(率)分布直方图;4.加权平均数;5.中位数.38.为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:请根据图表信息回答下列问题:(1)频数分布表中的a= ,b= ;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?【答案】(1)25;0.10;(2)补图见解析;(3)200人.【解析】【分析】(1)由阅读时间为0<t≤2的频数除以频率求出总人数,确定出a与b的值即可;(2)补全条形统计图即可;(3)由阅读时间在8小时以上的百分比乘以2000即可得到结果.【详解】解:(1)根据题意得:2÷0.04=50(人),则a=50﹣(2+3+15+5)=25;b=5÷50=0.10;故答案为25;0.10;(2)阅读时间为6<t≤8的学生有25人,补全条形统计图,如图所示:(3)根据题意得:2000×0.10=200(人),则该校2000名学生中评为“阅读之星”的有200人.【点睛】此题考查了频率(数)分布表,条形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.39.随着社会的发展,私家车变得越来越普及,使用节能低油耗汽车,对环保有着非常积极的意义,某市有关部门对本市的某一型号的若干辆汽车,进行了一项油耗抽样实验:即在同一条件下,被抽样的该型号汽车,在油耗1L的情况下,所行驶的路程(单位:km)进行统计分析,结果如图所示:(注:记A为12~12.5,B为12.5~13,C为13~13.5,D为13.5~14,E为14~14.5)请依据统计结果回答以下问题:(1)试求进行该试验的车辆数;(2)请补全频数分布直方图;(3)若该市有这种型号的汽车约900辆(不考虑其他因素),请利用上述统计数据初步预测,该市约有多少辆该型号的汽车,在耗油1L的情况下可以行驶13km以上?【答案】(1)30;(2)作图见解析;(3)660.【解析】试题分析:(1)根据C所占的百分比以及频数,即可得到进行该试验的车辆数;(2)根据B的百分比,计算得到B的频数,进而得到D的频数,据此补全频数分布直方图;(3)根据C,D,E所占的百分比之和乘上该市这种型号的汽车的总数,即可得到结果.试题解析:(1)进行该试验的车辆数为:9÷30%=30(辆);(2)B:20%×30=6(辆),D:30﹣2﹣6﹣9﹣4=9(辆),补全频数分布直方图如下:(3)900×=660(辆).答:该市约有660辆该型号的汽车,在耗油1L的情况下可以行驶13km以上.考点:频数(率)分布直方图;用样本估计总体;扇形统计图.40.某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.身高分组频数频率152≤x<155 3 0.06155≤x<158 7 0.14158≤x<161 m 0.28161≤x<164 13 n164≤x<167 9 0.18167≤x<170 3 0.06170≤x<173 1 0.02根据以上统计图表完成下列问题:(1)统计表中m= ,n= ,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.【答案】(1) 14,0.26.补图见解析;(2) 161≤x<164.(3).【解析】试题分析:(1)设总人数为x人,则有=0.06,解得x=50,再根据频率公式求出m,n.画出直方图即可;(2)根据中位数的定义即可判断;(3)画出树状图即可解决问题;试题解析:(1)设总人数为x人,则有=0.06,解得x=50,℃m=50×0.28=14,n==0.26.频数分布直方图:(2)观察表格可知中位数在161≤x<164内,(3)将甲、乙两班的学生分别记为甲1、甲2、乙1、乙2树状图如图所示:所以P(两学生来自同一所班级)=.考点:列表法与树状图法;频数(率)分布表;频数(率)分布直方图;中位数.。
第十章 数据的收集、整理与描述 复习练习题(二)

数据的收集、整理与描述1.下列调查中,调查方式选择正确的是()A.为了了解100个灯泡的使用寿命,选择全面调查;B.为了了解某公园全年的游客流量,选择全面调查;C.为了了解生产的50枚炮弹的杀伤半径,选择全面调查;D.为了了解一批袋装食品是否有防腐剂,选择全面调查.2.为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各班随机抽取10%的学生3.某地区有8所高中和22所初中,要了解该地区中学生的视力情况,下列抽样方式获得的数据最能反映该地区中学生视力情况的是( )A.从该地区随机选取一所中学里的学生B.从该地区30所中学生里随机选取800名学生C.从该地区的一所高中和一所初中各选取一个年级的学生D.从该地区的22所初中里随机选取400名学生4.为了了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是()A、某市八年级学生的肺活量B、从中抽取的500名学生的肺活量C、从中抽取的500名学生D、5005.为了解某市参加中考的32000名学生的体质情况,抽查了其中1600名学生的体重进行统计分析.下面叙述正确的是()A、32000名学生是总体B、1600名学生的体重是总体的一个样本C、每名学生是总体的一个个体D、以上调査是普查6.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机;B.这批电视机的寿命;C.抽取的100台电视机的寿命;D.100.7.滨州市教育局为了了解实行课改后七年级学生在家的学习时间,应采用的最佳调查方式是()A.对所有学校进行全面调查B.抽取农村和城区部分学校进行调查C.只对一所学校进行调查D.只对城区学校进行调查8.为了了解某校七年级500名学生的身高情况,从中抽取了100名学生进行测量,这100名学生的身高是()A.总体的一个样本 B.个体C.总体 D.样本容量9.今年我市有9万名初中毕业生参加升学考试,为了了解9万名考生的数学成绩,从中抽取2000名考生数学成绩进行统计分析.在这个问题中总体是()A.9万名考生B.2000名考生C.9万名考生的数学成绩D.2000名考生的数学成绩10.期末统考中,甲校优秀人数占30%,乙校优秀人数占35%,则两校优生人数()A.甲校多于乙校B.乙校多于甲校C..甲、乙校—样多D.无法比较11.某校公布了该校反映各年级学生体育达标情况的两张统计图,该校七、八、九三个年级共有学生800人。
数学-七年级下册-第10章数据的收集整理与描述(单元总复习第2课时)-人教课标版-

典型例题 扇形图的认识
3、某班有图上表 示三好学生和优秀学生干部人数的圆 心角分别是 ( ) A.720, 360 B.1000,500
C.1200,600 D.800, 400
配套练习
扇形图的认识 4、如图,某校共有学生700人,图中 扇形A、B、C、D分别参加语、数、 英三个兴趣小组的人数的百分比,规定 每人只能参加一个兴趣小组且每人均参 加课外小组,则不参加数学小组的学生 有( ) A.441人 B.259人 C.451人 D.249人
知识结构 统 计 调 查
全 抽 面 样 调 调 查 查
收 集 数 据
整 理 数 据
描 述 数 据
分 析 数 据
得 出 结 论
条 扇 折 直 形 形 线 方 图 图 图 图
频率分布直方图
步骤: 1 计算最大值与最 小值的差 2 决定组距与组数 3 决定分点 4 列出频率分布表
注:(1)纵坐标有两种表示 方式,一是频数/组距,另 一种是频数 (2)频数的大小可通过 每个小长方形的面积确定 (3)频数折线图可直接 在直方图中画出,但要在 两端加上零点。
典型例题
分组方法
8、有若干个数据,最大值是124,最小 值是103.• 用频数分布表描述这组数据 时,若取组距为3,则应分为( ) A.6组 B.7组 C.8组 D.9组
配套练习
分组方法
9、已知一个样本: 27,23,25,27,29,31,27,30, 32,28,31,28,26,27,29,28, 24,26,27,30 那么频数为 8 的范围是( ) A .24.5 ~26.5 B.26.5~28.5 C.28.5~30.5 D.30.5~32.5
配套练习 条形图的认识 6、如图是某乡镇企业2002─2004年创 造的利润折线统计图 (1)回答下列问题: ①这3年平均每 年创造利润多少 万元? ②利润最高的一 年比最低的一年 多百分之几? (结果保留一位小数)
最新人教版七年级数学下册第十章数据的收集、整理与描述题测试题及答案(2)

人教版七年级下册第7章平面直角坐标系水平测试卷第10章数据的收集、整理与描述期末复习测试卷一、选择题(每小题3分,共30分)1.为了了解某校学生对篮球、足球、羽毛球、乒乓球、网球等五类的喜爱,小李采用了抽样调查,在绘制扇形图时,由于时间仓促,还有足球、网球等信息还没有绘制完成,如图所示,根据图中的信息,这批被抽样调查的学生最喜欢足球的人数不可能是()A.100人B.200人C.260人D.400人2.宾馆有100间相同的客房,经过一段时间的经营,发现客房定价与客房的入住率之间有下表所示的关系,按照这个关系,要使客房的收入最高,每间客房的定价应为()3.下列调查中,最适合采用抽样调查(抽查)的是()A.调查“神州十一号飞船”各部分零件情况B.调查旅客随身携带的违禁物品C.调查全国观众对湖南卫视综艺节目“声临其境”的满意情况D.调查某中学九年级某班学生数学暑假作业检测成绩4.下列调查中,调查方式选择不合理的是A.调查我国中小学生观看电影《厉害了,我的国》情况,采用抽样调查的方式B.调查全市居民对“老年餐车进社区”活动的满意程度,采用抽样调查的方式C.调查“神州十一号”运载火箭发射前零部件质量状况,采用全面调查普查的方式D.调查市场上一批LED节能灯的使用寿命,采用全面调查普查的方式5.为了了解某校2000名学生的体重情况,从中抽取了150名学生的体重,就这个问题来说,下面说法正确的是()A.2000名学生的体重是总体B.2000名学生是总体C.每个学生是个体D.150名学生是所抽取的一个样本6.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表:和最合适...的是()A.20双B.30双C.50双D.80双7.井冈山景区为估计该地区国家保护动物穿山甲的只数,先捕捉20只穿山甲给它们分别作上标志,然后放回,待有标志的穿山甲完全回归山林后,第二次捕捉40只穿山甲,发现其中2只有标志。
从而估计该地区有穿山甲()A.400只B.600只C.800只D.1000只8.一个容量为40的样本最大值为35,最小值为12,取组距为4 ,则可以分为()A.4组B.5组C.6组D.7组9.为积极响应南充市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等.从中随机抽取了部分学生成绩进行统计,绘制成如图所示的两幅不完整的统计图,根据图中信息,以下说法不正确的是()A.样本容量是200 B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等的大约有900人10.如图是某城市6月份1日至7日每天的最高、最低气温的折线统计图,在这7天中,日温差最大的一天是()A.6月1日B.6月2日C.6月3日D.6月5日二、选择题(每小题3分,共30分)11.一组数据分为5组,第一组的频率为0.15,第二组的频率为0.21,第三组的频率为0.29,第四组的频率为0.15,则第五组的频率是______.12.小明同学根据全班同学的血型绘制了如图所示的扇形统计图,已知A型血的有20人,则O型血的有____人.13.一次考试考生有2万人,从中抽取500名考生的成绩进行分析,这个问题的样本是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.为了绘制一组数据的频数分布直方图,首先要 算出这组数据的变化范围,数据的变化范围是 指数据的 ( ) C A. 最大值 B. 最小值 C. 最大值与最小值的差 D. 数据的个数
阅读数量(百本) 10 8 6 4 2 0
8.4 6.4 2.0 3.5 2.4 种类 5.5
艺术类 科技类 传记类 小说类 其它类 动漫类
(1)这些课外书籍中,哪类书的阅读数量最大? (2)这500名学生一学期平均每人阅读课外书多少本? (3)若该地区共有2万名初中学生,请估计他们一学期 阅读课外书的总本数.
图中是连续十周测试甲、乙两名运动员体能训练情况 的折线统计图.教练组规定:体能测试成绩70分以上 (包括70分)为合格. (1)请根据图l-5-8中所提供的信息填写下表:
图10-11
60
57.5
2 4
图中是连续十周测试甲、乙两名运动员体能训练情况 的折线统计图.教练组规定:体能测试成绩70分以上 (包括70分)为合格. (2)请从下面两个不同的角度对运动员体能测试结果 进行判断: ①依据平均数与成绩合格的次数比较甲和 乙的体能测试成绩谁的较好?
阅读数量(百本) 10 8 6 4 2 0
8.4 6.4 2.0 5.5 2.4 种类
3.5
艺术类 科技类 传记类 小说类 其它类 动漫类
解:(1) 这些类型得课外书籍中,小说类课外书阅读数量最大. (2) (2.0+3.5+6.4+8.4+2.4+5.5)×100÷500=5.64≈6(本) 答:这500名学生一学期平均每人阅读课外书6本 (3) 20000×6=120000(本)或2×6=12(万本) 答:他们一学期阅读课外书得总数是12万本.
他做的对吗???
8、在对七年级某班的一次数学测验成绩进行统计分 析中,各分数段的人数如图所示(分数取正整数,满 分100分),请观察图形,并回答下列问题。 (1)该班有 44 名学生; (2)70.5~80.5这一组的频数是 14 ,频率是 0.32 ; (3)请你估算该班这次测验的平均成绩是 80分。
人数
16 14 12 10 8 6 4 2 0
50.5 60.5 70.5 80.5 90.5 100.5 分数
9. 为了了解某中学初三年级250名学生升学考试 的数学成绩,从中抽取50名学生的数学成绩 进行了分析,求得 下面是 50名学 x 样本 94.5 生数学成绩的统计表. 10 ⑴数据统计图中的数据a=____ ,b=____. 0.06
图 8
第8中学的九年级学生在社会实践中,调查了500位市 民某天早上出行上班所用的交通工具,结果用扇形统计图 表示. (1)请你将扇形统计图改成用折线统计图表示的形式 ; (2)请根据此项调查,对城市交通给政府提出一条建 议.
500位杭州市民出行的交通工具折线统计图
人数 300 250 200 150
②依据平均数与中位数比较甲和乙,
的体能测试成绩谁的较好?
答:乙;甲
图10-11
60
57.5
2 4
Hale Waihona Puke 图中是连续十周测试甲、乙两名运动员体能训练情况 的折线统计图.教练组规定:体能测试成绩70分以上 (包括70分)为合格. (3)依据折线统计图和成绩合格的次数, 分析哪位运动员体能训练的效果好.
60
57.5
⑵估计该校初三 年级这次升学 考试数学平均 94.5 成绩为___ 分
体验乐园 (我要体验成功的喜悦)
A
B
C D
某区教育部门要了解初中学生阅读课外书籍的情况, 随机调查了本地区500名初中学生一学期阅读课外书 的本数,并绘制了如图的统计图.请根据统计图反映 的信息回答问题. (1)这些课外书籍中,哪类书的阅读数量最大? (2)这500名学生一学期平均每人阅读课外书多少本? (3)若该地区共有2万名初中学生,请估计他们一学期 阅读课外书的总本数.
衣着 食品 31% 25% 教育 其他 23% 21% 甲
衣着 23%
食品 34%
教育 其他 19% 24% 乙
6.根据预测,21世纪中叶我国劳动者构成比例绘制成扇 形统计图如图5所示,则第一、二、三产业劳动者的构成 2 1 2 比例是______∶______∶______.
7.在1000个数据中,用适当的方法抽取50个作 为样本进行统计,频率分布表中54.5~57.5这 一组的频率是0. 12,那么估计总体数据落在 54.5~57.5 之间的约有 ( A ) A.120个 B.60个 C.12个 D.6个
图 8
100
50 0 交通工具
步行
自行车
电动车
公交车
私家车
解:(2)如实行公交优先;或宣传步行有利健康等.
你说、他说,大家都来说
3 刘强同学为了调查全市初中生人数,他对自己 所在城区人口和城区初中生人数作了调查:城区人 口约3万,初中生人数约1200.全市人口实际约300 万,为此他推断全市初中生人数为12万.但市教育 局提供的全市初中生人数约8万,与估计数据有 很大偏差.请你用所学的统计知识,找出其中错 误的原因( )
提示:可能是样本在总体中所占比例太小; 或样本不具代表性、广泛性、随机性;
2 4
答:从折线图上看,两名运动 员体能测试成绩都呈上升趋势, 但乙的增长速度比甲快,并且 后一阶段乙的成绩合格次数比 甲多,所以乙训练效果较好。
图10-11
为了了解某校七年级男生的体能情况,从该校七年级抽取 50名男生进行1分钟跳绳测试,把所得数据整理后,画出 频数分布直方图.已知图中从左到右第一、第二、第三、 第四小组的频数的比为1:3:4:2. (1)求第二小组的频数和频率; (2)求所抽取的50名男生中,1分钟跳绳次数在100次以 上(含100次)的人数占所抽取的男生人数的百分比.
4 某住宅小区六月份中1日至6日每天用水量变化 情况如图所示,那么这6天的平均用水量是 ( C ) A、30吨
B、31吨
C、32吨 D、33吨
5.右图是甲、乙两户居民家庭全年支出费用的扇形统计图。 根据统计图,下面对全年食品支出费用判断正确的是( D )
A. 甲户比乙户多 C.甲、乙两户一样多 B. 乙户比甲户多 D. 无法确定哪一户多
频数 (学生人数)
⑴15,0.3; ⑵60%
次数
49.5 74.5 99.5 124.5 149.5
第8中学的九年级学生在社会实践中,调查了500位市 民某天早上出行上班所用的交通工具,结果用扇形统计图 表示. (1)请你将扇形统计图改成用折线统计图表示的形式 ; (2)请根据此项调查,对城市交通给政府提出一条建 议.