Hydrothermal preparation and optical properties of ZnO nanorods
类石墨相氮化碳基光催化剂的制备及其光催化性能研究

分类号:TQ579单位代码:10110学号:S*******中北大学全日制工程硕士学位论文类石墨相氮化碳基光催化剂的制备及其光催化性能研究硕士研究生谢春妹校内指导教师张立新校外指导教师李万辉所在领域化学工程2018年5月24日图书分类号TQ579密级非密UDC注1_____________________________________________________________全日制工程硕士学位论文类石墨相氮化碳基光催化剂的制备及其光催化性能研究谢春妹校内指导教师(姓名、职称)张立新教授校外指导教师(姓名、职称)李万辉高级工程师申请学位级别工程硕士所在领域(研究方向)化学工程(光催化)论文提交日期2018年6月4日论文答辩日期2018年5月24日学位授予日期年月日论文评阅人赵志换副教授弓亚琼副教授答辩委员会主席马国章教授2018年5月24日注1:注明《国际十进分类法UDC》的分类类石墨相氮化碳基光催化剂的制备及其光催化性能研究摘要环境污染和能源问题是人类面临的两个重大问题,特别是由化石燃料燃烧所产生的二氧化碳(CO2)排放到空气中造成的温室效应已成为全球性问题。
CO2既是一种环境污染物,同时也是一种重要的碳源,寻求合适的方法将CO2转化为有价值的产品既可以解决环境问题,同时还能缓解能源危机。
光催化技术是一种绿色环保的技术,以太阳能为动力,反应条件温和,不产生有毒有害的副产物,在催化还原CO2方面有较好的应用。
光催化还原CO2是模拟植物光合作用固定CO2,将引起温室效应的CO2转化成CH4、CH3OH等碳氢燃料。
目前报道的很多光催化材料都是因为光响应范围窄,光催化性能低以及光催化剂的不稳定性而导致其应用范围受到限制,因此,高效、稳定的新型光催化材料成为目前的研究重点。
类石墨相氮化碳(g-C3N4)因其本身具有可见光响应性和良好的发展前景而备受关注,但是纯g-C3N4的比表面积小、光生载流子的分离率低,导致其光催化性能较低。
Na_(3)V_(2)(PO_(4))_(2)O_(2)F钠离子电池正极材料的水热法制备及性能

摘要:采用水热法制备了 Na3V2(PO4)2O2F (NVPOF)钠离子电池正极材料,利用 X 射线衍射(XRD)、扫描电子显微镜(SEM)和恒流 充放电(GCD)等方法研究了其形貌、结构与电化学性能。结果显示,纯相 NVPOF 形貌规则,呈长 1~3 μm、宽 300 nm~1 μm、长宽 比为 2~3 的四棱柱形貌。NVPOF 具有 2 对平稳的充放电平台,在 0.2C 和 2C 电流密度下,放电比容量达到 124.2 和 70.5 mAh· g-1,经 100 次循环后,放电比容量仍有 105.8 和 59.6 mAh·g-1,容量保持率达到 85.2% 和 84.5%,库仑效率基本在 97% 以上,且低 温(0 ℃)电化学性能也有不错的表现。经还原氧化石墨烯(rGO)包覆提高电子电导率,NVPOF@rGO 在 0.5C 和 2C 的室温放电比 容量高达 124.4 和 88.4 mAh·g-1,且 2C 倍率下循环 200 圈后的比容量仍有 78.7 mAh·g-1,容量保持率高达 89%,库仑效率始终保 持在 99% 左右,显示出优异的倍率和循环性能。
关键词:Na3V2(PO4)2O2F;水热法;钠离子电池;循环性能
中图分类号:O646.21
文献标识码:A
文章编号:1001‑4861(2021)07‑1204‑07
WS2复合材料的制备及应用研究进展

第 50 卷 第 1 期2021 年 1月Vol.50 No.1Jan.2021化工技术与开发Technology & Development of Chemical IndustryWS 2复合材料的制备及应用研究进展侯传旭,张德庆(齐齐哈尔大学材料科学与工程学院,黑龙江 齐齐哈尔 161000)摘 要:二硫化钨(WS 2)作为过渡金属二硫化物(TMDs)的一种,具有独特的二维结构、良好的稳定性和半导体特性。
近几年,以WS 2为基体制备的WS 2复合材料表现出许多优异的性能,受到越来越多研究人员的关注。
本文概述了WS 2复合材料的制备方法,以及近年来WS 2复合材料在催化剂、气敏传感器、电极材料、复合纤维材料、电磁波吸收材料等方面的应用,展望了WS 2复合材料的发展前景。
关键词:二硫化钨;复合材料;制备;发展前景中图分类号: TB 333 文献标识码:A 文章编号:1671 -9905(2021)01/02 -0037-04作者简介:侯传旭(1996-),女,汉族,硕士研究生,研究方向为材料物理与化学。
E -mail:*****************收稿日期:2020-11-03WS 2是最早发现并得到研究的层状纳米材料之一[1-2],其制备方法主要有液相剥离法[3]、化学气相沉积法[4]、水热法[5]和固相烧结法[6]等。
根据晶体结构中W 原子的2种配位形式(八面体配位和三棱柱配位),WS 2可分为金属相和半导体相。
金属相通过八面体配位形成 1T 型结构[图1(a)],半导体相则通过三棱柱配位形成2H 型或3R 型结构[图1(b)] [7-9]。
WS 2通过W −S 共价键和较弱的范德华力,层间相互作用结合在一起,具有优异的光学、电学和机械性能[10],在传感器[11-12]、催化剂[13-15]、电极材料[16-17]、润滑剂[18]等领域均有广泛的应用前景。
随着科技的发展,单一功能的WS 2已无法满足人们的需要,因此开发WS 2复合材料显得尤为重要。
水热法合成在可见光照射下具有高催化活性的纳米TiO_2催化剂_英文_

A rticle ID :0253-9837(2004)12-0925-03C ommu nication :925~927Received date :2004-08-23. First author :TANG Peisong,male,born in 1975,PhD student.Correspondin g author :HONG Zhanglian.Tel/Fax:(0571)87951234;E -mail:hong zhanglian@.Fou ndation item :Supported by the Education Department of Zhejiang Province (20030625),SRF for ROCS,SEM (2003-14)and the Na -tional Natural Science Foundation of China (50272059).Preparation of Nanosized TiO 2Catalyst with High Photocatalytic Activity under Visible Light Irradiation by Hydrothermal MethodTANG Peisong,HONG Zhanglian,ZHOU Shifeng,FAN Xianping,WANG Minquan(Dep ar tment of Mater ials Science and Engineer ing ,Zhej iang U niver sity ,H angz hou 310027,China)Key words:nanosize,titania,photocatalysis,hydro thermal method,visible light C LC number:O643 Document code :AT he semiconductor T iO 2is the most important photocatalyst for the degradation of pollutants.Anatase T iO 2has a large band gap of 3 2eV that re -quires powerful UV light to initiate the photocataly tic reactions.Many modification methods such as metal ion doping,composite semiconductors and metal layer modification have been used to extend the light ab -sorption of the catalyst to the v isible lig ht region buthave little effect [1~4].Surface sensitization withdyes [5]is not practical in application as most dyes sel-fdegrade easily.Therefore,the preparation of TiO 2w ith good w avelength response in the visible light re -g ion and high photocatalytic activity for pollutant degradation using natural sunlight is an important g oal in TiO 2photocatalysis.In this paper,the nanosized T iO 2catalyst with high photocatalytic activity under visible light irradia -tion was prepared by the hy drothermal method [6]w ith acetone as the solvent.A high pressure reactor (WH F -0 25L,Weihai Reactor Ltd.,China )and analytical reagent grade tetrabutyl titanate,acetone and alcohol were used.The hydrothermal reaction w as carried out at 240 for 6h at a heating rate of about 2 /min.The T iO 2pow ders were taken out from the cooled reactor and w ashed 4times w ith alco -hol,and dried at 50 for 24h in a vacuum dryer.T he dried powders were calcined at 180,250and 365 for 2h,respectively,and samples TiO 2-1,T iO 2-2and T iO 2-3were obtained.T he TiO 2samples were characterized by XRD,T EM and UV -Vis spectroscopy on an XD -98X -ray diffractometer,a JEM -200CX electron microscopeand a Lambda 20U V -Vis spectrometer,respectively.Diffuse reflectance spectra (DRS)were measured by PELA -1020w ith an integrating sphere accessory in a Lambda 900U V -Vis spectrometer.The photo -catalytic experiments w ere carried out in a sel-f assem -bled instrument w ith a metal halog en lamp (HQI -BT ,400W/D,OSRAM ,German)as the irradiation source.In a 50ml g lass cup,20mg TiO 2and 10ml methyl orange solution (20mg/L)w ere mixed and dispersed by ultrasonic treatm ent for 5m in follow ed by 30m in irradiation w ith a JB450filter (Shanghai Optical Glass Corp.,China)that transmits visible lig ht of w avelength above 450nm.UV -Vis spectra of the upper transparent solution w ere measured after centrifugation.The photocatalytic efficiency w as ca-lculated using the absorption intensity of the standard methyl orange solution at 464nm.Our test revealed that the adsorption amount of methyl orange on the surface of TiO 2-3in darkness w as about 2%,w hich is within the measurement error of the degradation ef -ficiency and would not affect the result of the pho -catalytic efficiency.The removal rate of COD Cr was determined w ith potassium dichromate. The physico -chemical properties and photo -catalytic efficiencies of different T iO 2samples are list -ed in Table 1.It can be seen that TiO 2-1and TiO 2-2show ed high photocatalytic efficiencies of about 99%and 90%,respectively,under visible light illumina -tion ( 450nm),w hile T iO 2-3and P25gave very low degradation rate.The reduction of the COD Cr value for TiO 2-1was above 90%,w hich was m uch higher than that for commercial P25.All the pre -第25卷第12期催 化 学 报2004年12月Vol.25No.12Chinese Jour nal of CatalysisDecember 2004pared TiO 2sam ples could deg rade methyl orange com -pletely under direct visible light irradiation w ithin 10min.Even T iO 2-3w ith a low deg radation rate undervisible light could fully deg rade methyl orange,andits photocatalytic efficiency w as hig her than that of P25.T able 1 Physico -chemical properties and photocatalytic efficiencies for methyl orange degradation of different TiO 2s amplesCatalyst T reatment condition Crystal type Average grain size (nm)M ass loss at 120~500 (%)Reflection ratio at 500nm (%)Degradati on rate(%)T i O 2-1180 ,2h pure anatase 10 3.6521.399 1T i O 2-2250 ,2h pure anatase 10 2.3739.690 3T i O 2-3365 ,2hpure anatase 110.3290.416 2P25*80%anatase+20%rutile300.6094.38 3*Commerical pow der,Degussa Ltd.Fig 1 DRS spectra of d ifferent TiO 2samples (1)T iO 2-1,(2)TiO 2-2,(3)T iO 2-3,(4)P25As show n in Table 1,all the prepared TiO 2sam -ples had sim ilar crystal phase and average grain size,but their mass loss at 120~500 w as different.T here ex isted difference in DRS behaviors of different T iO 2samples.The reflection ratios of TiO 2-1,T iO 2-2,T iO 2-3and P25at 500nm w ere 21 3%,39 6%,90 4%and 94 3%,respectively.Fig 1show s the DRS spectra of different T iO 2samples.In the v isible light reg ion,T iO 2-1and TiO 2-2had similar DRS spectra w ith a low reflection ratio.How ever,both T iO 2-3and P25showed a high reflection ratio.In g eneral,the sum of transmittance,reflectance and absorbance is about 100%[7]when light irradiates a solid surface.The transmittance could be neglected in the T iO 2samples,which had a thickness of about 4mm for the DRS measurements.Therefore,a hig h reflectance in the DRS spectra meant a low ab -sorbance for the TiO 2catalyst.The results imply that the v isible light absorption of TiO 2-1and TiO 2-2w as higher than that of either TiO 2-3or P25.It is inter -esting that w ith the decrease in mass loss at 120~500,the absorbility and the photocatalytic degradationefficiency of T iO 2decreased.Fig 2 TG -DT A cu rves of TiO 2-1Generally,the crystal structure and grain size are the tw o key factors affecting TiO 2photocatalytic activity.Nevertheless,the difference in photocatalyt -ic efficiency of TiO 2-1,TiO 2-2and T iO 2-3under vis -ible light cannot be explained by either the crystal type or grain size.Fig 2show s TG -DTA curves of TiO 2-1.The mass loss at 120~500 on the TG curve corresponded to the exotherm ic peaks at 185,276and 377 on the DTA curve.The mass loss and ex othermic peaks were likely the result of the desorp -tion and oxidation of adsorbed organic materials on the TiO 2surface [8].Thus,we suggest that the high degradation efficiency should orig inate from the ad -sorbed organic materials.The function,kind and amount of these organic materials are still not clear at present,but they are very im portant and need to be clarified.One possibility is that they have a similar role to surface sensitization dyes w hich have high ab -926催 化 学 报第25卷sorption for visible lig ht.The high absorption under v isible lig ht irradiation,which is in good agreement w ith the high visible lig ht degradation efficiency,may be due to an appropriate amount of adsorbed or -g anic materials for both T iO 2-1and T iO 2-2.As for T iO 2-3,most of the surface organic residues desorbed after treatment at high tem perature,thus the ab -sorbance for visible light absorption and the degrada -tion efficiency under visible light dropped to a low v alue comparable to that of P25.T he adsorbed organ -ic materials are thermally stable under 250 heat treatm ent (TiO 2-2)w hile most of the dyes are easilydecomposed and have no surface sensitization effect after such a hig h temperature treatment process. In summary,nanosized TiO 2catalyst with ad -sorbed organic material residues on its surface synthe -sized by the acetone hydrothermal method showed high photocatalytic efficiency and good thermal stabi-lity under visible light irradiation.This nanosized T iO 2pow der is a prom ising photocatalyst for use un -der sunlight irradiation.References1 L insebig ler A L,Lu G Q ,Y ates T Jr.Chem Rev ,1995,95(3):7352 Asahi R,M orikawa T ,Ohw aki T ,Aoki K,T aga Y.Sci -ence ,2001,293(5528):2693 K han S U M ,A-l Shahr y M ,Ingler W B Jr.Science ,2002,297(27):22434 Z hao W,M a W H,Chen Ch Ch,Zhao J C.J A m Chem Soc ,2004,126(15):47825 R amakrishna G ,Ghosh H N.J Phy Chem B ,2001,105(29):70006 Wu M M ,L ong J B,Huang A H ,Luo Y J,Feng S H,Xu R R.L angmuir ,1999,15(26):88227 F ang R Ch.Spectrosco py of Solids (In Chinese).Hefei:Press U niv Sci T echnol China,2001.1-58 Deng X Y ,Cui Z L,Du F L ,Peng Ch.Wuj i Cailiao X ue -bao (Chin J I norg M ater ),2001,16(6):1089水热法合成在可见光照射下具有高催化活性的纳米TiO 2催化剂唐培松, 洪樟连*, 周时凤, 樊先平, 王民权(浙江大学材料与科学工程系,浙江杭州310027)摘要:以丙酮为溶剂,采用水热法在240 合成了表面吸附有机物的纳米T iO 2粉体光催化剂,并采用XR D,T EM ,U V -V is 和DRS 等技术对催化剂进行了表征.结果表明,合成的纳米T iO 2催化剂在可见光激发下具有良好的光催化降解甲基橙的性能和较好的热稳定性.经180,250和365 热处理后,催化剂的晶型和尺寸没有变化,但催化剂表面吸附的有机物发生了明显变化.催化剂表面吸附的有机物、可见光波段的光响应性能和可见光下催化降解甲基橙的效率之间存在良好的关联性,催化剂表面吸附适量的有机物可提高纳米T iO 2催化剂在可见光波段的光响应性能,从而提高其在可见光照射下催化降解甲基橙的性能.关键词:纳米,二氧化钛,光催化,水热法,可见光(Ed YHM)927第12期唐培松等:水热法合成在可见光照射下具有高催化活性的纳米T iO 2催化剂。
固相法合成钴铝蓝色颜料的研究

固相法合成钴铝蓝色颜料的研究朱海翔;陈诚;蔡丽俊;胡校兵;余江渊;朱志刚;王艳香【摘要】CoAl2O4 spinel pigments were prepared by solid-phase synthesis using cobalt oxide and alumina as raw materials. Colorime-ter, XRD, SEM and fiber optic spectrometer analysis were characterized to investigate the effect of reaction temperature, preservation time and the content of molten salt on the color performance, reflection intensity, crystal morphology, particle size and feature.%以工业纯氧化钴和氧化铝为原料,通过固相法合成CoAl2O4尖晶石型钴蓝颜料。
采用色度分析、X射线衍射(XRD)、扫描电镜(SEM)、微型光谱仪等测试手段,研究煅烧温度、保温时间以及矿化剂等工艺参数对样品呈色、反射强度、晶相结构及CoAl2O4尖晶石晶粒大小和发育程度的影响。
【期刊名称】《上海第二工业大学学报》【年(卷),期】2014(000)002【总页数】5页(P109-113)【关键词】固相法;钴铝尖晶石;钴蓝颜料【作者】朱海翔;陈诚;蔡丽俊;胡校兵;余江渊;朱志刚;王艳香【作者单位】上海第二工业大学城市建设与环境工程学院,上海201209; 景德镇陶瓷学院材料科学与工程学院,江西景德镇333001;上海第二工业大学城市建设与环境工程学院,上海201209;上海第二工业大学电子与电气工程学院,上海201209;上海第二工业大学城市建设与环境工程学院,上海201209;上海第二工业大学城市建设与环境工程学院,上海201209; 景德镇陶瓷学院材料科学与工程学院,江西景德镇333001;上海第二工业大学城市建设与环境工程学院,上海201209;景德镇陶瓷学院材料科学与工程学院,江西景德镇333001【正文语种】中文【中图分类】TQ1740 引言钴蓝颜料晶体结构通常指尖晶石类CoAl2O4,其中Co2+离子填充于四面体空隙中称为A位,而Al3+离子填充于八面体空隙当中称为B位[1-3]。
石墨烯量子点的制备及光催化应用

石墨烯量子点的制备及光催化应用摘要:石墨烯量子点作为新的零维(0D)材料被提出,因其自身量子约束、边缘效应以及环境友好等特点,引起了世界范围内学术界和工业界的广泛关注。
笔者综述了石墨烯量子点(GQDs)不同的制备方法。
GQDs具有良好的水溶性,边界富含含氧官能团等优点。
关键词:石墨烯量子点;氧化劈裂法;水热或溶剂法石墨烯量子点是一种0D石墨烯材料,其特征是原子薄的石墨化平面(通常为1层或2层,厚度小于2纳米),横向尺寸通常小于10纳米。
与其他碳基材料如富勒烯、石墨烯等相比,由于其特殊的边缘和量子约束效应,GQDs表现出不同的化学和物理性质,展现了较好的光学特性,打破了石墨烯在光学应用中的零带隙限制。
荧光性质是GQDs最重要的特征,与传统半导体的量子点相比,GQDs具有荧光性质稳定、低毒、水溶性好等优点,具有生物相容性的优势。
1 石墨烯量子点制备1.1氧化劈裂法氧化劈裂法又称氧化切割,是应用最广泛的一种切割方法。
SHEN等[1]提出,将微米级的二维氧化石墨烯薄片切成小块加入HNO3中,结果表明,制备的GQDs具有上转换荧光性质。
ZHOU等[2]提出了一种调节氧化石墨烯横向尺寸的简单、可控的方法。
改法合成的GQDs在重金属离子的电化学传感方面表现出增强的性能。
在以此基础上,CHUA等[3]以富勒烯为起始原料制备了非常小的GQDs(2-3 nm)。
产物表现出较强的发光性能,表明GQDs在光电子和生物标记方面的潜力。
LU等[4]开发了一个简单和肤浅锅GQDs的合成方法。
合成的GQDs具有良好的光稳定性、耐盐性、低毒性和良好的生物相容性。
1.2 水热或溶剂法水热或溶剂热法是制备GQDs的一种简单、快速的方法。
PAN等[5]首次以氧化石墨烯为原料,采用水热法制备了粒径分布为5~13nm的GQDs。
TIAN等[6]报道了一种在二甲基甲酰胺(DMF)环境中应用过氧化氢一步溶剂热法合成GQDs的方法,该方法在整个制备过程中不引入任何杂质,如图2所示。
荧光碳点的制备及其在I-检测中的应用

碘是人体必需的微量元素之一,可参与甲状腺激素的合成,调控人体的生长发育[1-3]。
长期缺碘可引起甲状腺功能低下,而长期碘过量则容易引起碘中毒,表现为消化道刺激症状等[4-5]。
因此,准确测定生物、环境样品及食品蔬菜中的碘含量对人体健康状况分析、食物营养评价和环境评估有重要意义。
目前,I -的检测方法主要有离子色谱法、分光光度法、电化学法、中子活化法和色谱光谱法等[6-9]。
这些方法具有灵敏度高和选择性好的优点,但成本高,操作复杂。
与之相比,荧光分析法不仅选择性好,而且操作简便、成本低廉,可以高灵敏快速检测I -[10-13]。
CDs 与传统的石墨烯量子点相比,其光学性质对荧光碳点的制备及其在I -检测中的应用庞纪平1,江英霞2,颜范勇2,施锦辉3(1.天津中新药业集团股份有限公司中新制药厂,天津300450;2.天津工业大学分离膜与膜过程国家重点实验室/国家分离膜国际联合研究中心,天津300387;3.南通海关综合技术中心,江苏南通226004)摘要:为灵敏快速检测碘离子(I -),以柠檬酸和乙二胺为原料,通过一步水热法合成具有蓝色发射的荧光碳点CDs 。
通过透射电子显微镜(TEM )、紫外-可见吸收光谱(UV-vis )、傅里叶变换红外光谱(FTIR )和荧光光谱对CDs 的结构和光学性能进行表征;并采用CDs 检测水样中的I -,考察其检测效果和淬灭机理。
结果表明:I -可以特异性识别并淬灭CDs 的荧光,淬灭机理为静态淬灭;I -浓度与CDs 的荧光强度在20~90滋mol/L 范围内具有良好的线性响应,检测限为1.743滋mol/L ;加标回收试验表明该方法可成功应用于真实水样中I -的检测。
关键词:碳点;荧光;碘离子;检测;淬灭机理中图分类号:TQ421.32文献标志码:A 文章编号:员远苑员原园圆源载(圆园21)园5原园园62原06收稿日期:2020-09-07基金项目:国家自然科学基金资助项目(51678409);天津市应用基础和先进技术研究计划资助项目(19JCYBJC19800)第一作者:庞纪平(1975—),男,博士,高级工程师,主要研究方向为中药新药开发与生产工艺改进。
纳米氧化锌的制备与光学性能表征

收稿日期:2004-10-09作者简介:吴莉莉(1976-),女,山东潍坊人,在读博士.E -mail :wllzjb @eyou .com 文章编号:1672-3961(2005)02-0001-04纳米氧化锌的制备与光学性能表征吴莉莉,吕 伟,伦 宁,吴佑实(山东大学 材料科学与工程学院, 山东 济南 250061)摘要:用水热法以十二烷基磺酸钠(SDS )为添加剂制备了氧化锌纳米晶,并通过X -射线衍射(XRD )、高分辨透射电镜(HRTEM )、红外光谱(IR )、紫外-可见吸收光谱(UV )以及光致发光光谱(PL )等测试手段对所得产物形貌和光学性能进行了研究.TE M 结果表明,所得产物为六角纤锌矿型氧化锌,直径约40~60nm ,分散性良好.PL 光谱表明所制备的氧化锌样品在405nm 处有一紫光发射峰,在约604nm 处有一红光发射峰.我们认为405nm 紫光发射是由锌空位引起的,红光的发射则是由氧填隙引起的.关键词:氧化锌;纳米晶;水热法;制备;光致发光中图分类号:O611 文献标识码:APreparation of crystal Zn O nanopowders and characteristics ofoptical propertyWU Li -li , L ¨U Wei , LUN Ning , W U You -shi(School of Materials Science and Engineering , Shandong University , Jinan 250061, China )A bstract :ZnO nanocrystals were prepared by favorable hydrother mal method with sodium dodecyl sulphonate (SDS )as additives .The samples were characterized by X -ray diffraction (XRD ),high -resolution transmission electron microscopy (HRTE M ),infrared absorption spectra (IR ),UV -Visible absorption spectra and photolu -minescence spectra (PL ).HRTE M results show that the nanocr ystals have wurtzite (hexagonal )structure with good cr ystal state .The diameter is about 40-60nm and disperse well .The photoluminesc ence spectrum (PL )mainly show two bands :violet emission at 405nm and red one at 604nm .We think the violet emission is caused by zinc vacancy and the red one is resulted in by oxygen interstitial .Key words :Zinc oxide ;nanocrystal ;hydrothermal method ;preparation ;photoluminescence0 引言在过去的50年里,人们对物质的发光性质进行了大量的研究,其中围绕着寻找新材料做了大量的工作.纳米材料的兴起为寻找新的发光材料开辟了道路.纳米材料与体材料相比,由于颗粒尺寸的减小,比表面积的急剧增加,产生了其相对应体材料所不具备的力、光、电、磁、敏感性等方面的特殊性能.近几年来,纳米氧化锌(ZnO )由于它的电子结构特性和潜在的应用而受到广泛的关注.ZnO 为直接带隙宽禁带半导体材料,室温下禁带宽度为3.37eV ,激子束缚能高达60MeV ,是一种适用于室温或更高温度下的紫外光发射材料.自从1997年发现ZnO 薄 第35卷 第2期 Vol .35 No .2 山 东 大 学 学 报 (工 学 版)JOUR N AL OF SHAND ONG U NIVER SITY (ENGINEER IN G SCIE NCE ) 2005年4月 Apr .2005 膜的紫外光发射后【1】,这种材料迅速成为半导体激光器件研究的热点.ZnO的光学性能是与晶体质量密切相关的,对于纳米氧化锌的研究包括高质量的氧化锌薄膜以及颗粒结构氧化锌粉体的制备和发光性能的研究.虽然已长出高质量的体材料,但费时太长,显然体材料用于器件设计是不适合的,外延薄膜的生长则成本太高,因此寻找高质量的纳米微晶ZnO粉体发光材料是很有必要的.因为ZnO纳米粉体结构较易生长,人们对其制备和发光特性做了大量的工作.Wang【2】等用热氧化法制备了有强紫外光发射的氧化锌粉体,M.Abdullah【3】等以ZnO和聚合物复合并掺杂金属E u,制备了红光发射的纳米氧化锌.目前制备氧化锌纳米粉体的方法已有很多,如均相沉淀法、溶胶-凝胶法、水热法、电弧等离子体法、喷雾热解法、气相沉积法等.本文采用水热法以表面活性剂为添加剂,制备了氧化锌纳米粉体,室温下分别观察到了405nm的紫光发射和604nm的红光发射.1 实验1.1 纳米氧化锌粉体的制备称取1.105g(0.005mol)Zn(Ac)2·2H2O和0.29g(0.007mol)LiOH·H2O分别加热溶解在50ml 无水乙醇中,冷却,搅拌下将50ml LiOH溶液慢慢滴加到Zn(Ac)2溶液中,得到ZnO溶胶,然后将混合溶液加热浓缩至80ml,将所得溶液分成两份转移到带聚四氟内衬的容积为60ml的反应釜中,然后加入10ml0.05mol/l的十二烷基碳酸钠(SDS)溶液,混合均匀.密封.将反应釜放入电子炉内,恒定温度120℃,保持24h,然后取出反应釜,自然冷却至室温后,将产物离心分离得到沉淀,沉淀用去离子水和无水乙醇超声离心清洗数次,得到的产物60℃干燥,最终得到ZnO粉末样品.1.2 纳米氧化锌粉体的性能表征样品的XRD物相分析在Bruker D8-advance X-射线衍射仪上进行(Cu靶Kα中λ=1.54178×10-10m),衍射角范围为20°~70°.以Philips U-Twin Win Tec Nai20高分辨电子显微镜观察晶粒的尺寸和形貌.用Nic olet7900傅立叶红外光谱仪和760 CRT双光束紫外分光光度计测试了产物的红外特征和紫外可见吸收.光致发光光谱(PL)在室温下ENDIN B URGH FLS920荧光光谱仪上进行测定.2 结果与讨论2.1 X-射线衍射(X RD)与透射电镜(TEM)形貌分析图1是在实验条件下得到的XRD衍射图谱.从图1可以看出,产物ZnO具有六角纤锌矿型晶体结构(晶格常数a=0.325nm,c=0.521nm).衍射晶面依次为(100),(002),(101),(102),(110),(103), (200),(112),(201),与体相ZnO标准值(JCPDS card 36-1451)一致.虽然是纳米氧化锌,但衍射峰仍相当尖锐,说明产物结晶程度高.图中没有观察到其它杂质峰的存在.图1 氧化锌纳米晶的X-射线衍射谱图Fig.1 The XRD pattern of ZnO nanocrystals将所制备ZnO粉体样品少量置于无水乙醇中,超声分散后取样,在透射电镜下观察,其粒子形貌如图2所示.图2为不同放大倍数ZnO透射电镜照片.图2a~2d显示,用此水热法制备的ZnO粉体晶粒尺寸在40~60nm之间,粒径大小均匀,分散性良好,颗粒形状基本上为短柱状或六角形,说明氧化锌粒子的晶格完整性较好.从图2e傅立叶转换电子衍射图知,每个纳米颗粒为单晶结构,而且晶形完整,具有六角纤锌矿结构.图2f是图2a中选取颗粒的反傅立叶变换图像,可以发现,所选晶体晶形完美. ZnO晶体一般具有取向生长的特性,本文所用原料液的浓度很低,且加入了表面活性剂SDS作为分散剂,从而得到了颗粒状而非棒状取向的ZnO粉体.加入的表面活性剂吸附在颗粒表面,阻止了颗粒的进一步长大,从而起到分散作用.另外,从图2b可以看出,在极少量的ZnO颗粒的外层包覆了一层无定形物质,我们认为这是未完全清洗掉的表面活性剂,证明在众多有表面活性剂参与的反应过程中,表面活性剂通过在颗粒表面的吸附来控制晶体的生长. 2 山 东 大 学 学 报 (工 学 版)第35卷 我们还观察到一有趣的现象,从图2c 高分辨图像可以看出,在某些ZnO 颗粒的外围外延生长一层氧化锌晶体,形成包覆结构,这层外延结构与内部的ZnO 核严格按晶格排列外延生长,形成配比完整,成分单一的结构.这可能是由于在生长过程中,一些小的纳米ZnO 颗粒依靠于一些大颗粒边界而进行自组织生长,这些颗粒通过旋转,而与原先的颗粒有相同的取向.在这个过程中经历的是颗粒的自组织生长,而非单纯的聚集【4】,从热力学角度讲,这种自发的外延生长可以减少接触的界面,从而降低了表面能,这可能是外延生长的驱动力.图2g 是从图2b 中选取的部分区域的反傅立叶变换图像,反映了图2b 的缺陷特点.从图2g 可以看出所选取的颗粒似乎由细小的颗粒堆砌而成,却具有相同的晶体取向.图2 不同放大倍数的Zn O 样品的透射电镜照片(a )低分辨电镜照片,(b ),(c )和(d )高分辨电镜照片,(e )傅立叶转换图像,(f )和(g )反傅立叶转换图像Fig .2 The TEM images of the ZnO nanocry stals with differentmagnifications (a )TE M images ,(b ),(c )and (d )HRTEM images ,(e )FFT images ,(f )and (g )IFFT i mages2.2 氧化锌样品的红外光谱(IR )与紫外-可见吸收光谱(UV )图3是添加SDS 的ZnO 样品和纯SDS 的红外透过光谱.与纯SDS 的红外光谱相比较,图3a ZnO 样品约在416cm -1处出现了Zn -O 振动吸收峰,但在1500~500c m -1波数处仍然出现了C -H 振动吸收峰,说明样品中还有少量的表面活性剂.这与透射电镜观察的结果相吻合.图3中3384cm -1和1600cm -1波数处的吸收峰为样品表面吸附的羟基和空气中水分子的吸收.图3 氧化锌纳米晶的红外透射光谱Fig .3 The IR spectra of ZnO nanocrystals室温下,将一定量所制备的纳米ZnO 样品超声分散在无水乙醇中,在紫外分光光度计上测得样品的紫外-可见吸收光谱如图4所示.从图4可知,样品表现出明显的量子尺寸效应,在200~400nm 之间都有很强的紫外吸收.在波长352nm 处显示很好的激子吸收,与体相材料的激子吸收峰(373nm )相比产生明显蓝移.由于半导体纳米微粒的吸收带隙主要受到电子-空穴量子限域性、电子-库仑相互作用能和介电效应引起的表面极化能的影响.样品的紫外吸收光谱蓝移说明量子尺寸效应大于库仑作用能和表面极化能的影响【5】.图4 氧化锌纳米晶的紫外可见-吸收光谱Fig .4 UV -vis absorption spectra of ZnO nanocry stals 第2期吴莉莉,等:纳米氧化锌的制备与光学性能表征3 2.2Zn O 样品的室温下光致发光(PL )光谱图5是室温下ZnO 样品的光致发光图谱.从图5看,氧化锌样品在405nm 处有一紫光发射峰,在604nm 处有一红光发射峰,而在465nm 处有一弱蓝光发射峰.目前,对于ZnO 紫外发光机制的理论解释已有一致的意见,认为是激子复合发光,而对其可见波段的发光机制仍无定论.引起可见光发射的本征缺陷主要有氧空位、锌空位、氧填隙、锌填隙和氧错位等.有文献利用全势的线性多重轨道方法(full -potential linear -muffin -tin orbital ),即FP -LMTO 方法,计算了ZnO 几种本征缺陷的能级,计算结果表明导带底到锌空位缺陷能级的能量差为3.06e V ,而本文的紫光发射峰在405nm 处(能量为3.06eV ),与此数值恰好吻合,所以,我们认为本文中的405nm 紫光发射是由锌空位引起的.而604nm 的红光发射我们认为是由氧填隙引起,它的缺陷能级的能量差2.07eV 与计算值氧填隙的能级差(2.28eV )最接近,而且在以前的实验中(正在报道中)我们也发现,对非掺杂氧化锌样品进行退火处理时,在含氧气氛下图5 室温下氧化锌纳米晶的光致发光光谱Fig .5 The PL spectra of ZnO nanocrystals at room temperature的退火处理可以大大加强红光的发射,也说明红光的发射有可能是氧填隙引起的.Fu 等人【6】认为ZnO薄膜中存在双空位,其中氧空位形成浅施主能级,锌空位形成浅受主能级,蓝光发射有两种跃迁参与:一种是电子从导带向锌空位形成的浅受主能级的跃迁;另一种是电子从氧空位形成的浅施主能级向价带的跃迁.我们认为位于465nm 处的弱蓝光发射峰有可能是由于微量氧空位形成的浅施主能级向价带的跃迁引起的.参考文献:[1]B AGNALL D M ,CHEN Y F ,ZHU Z ,et al .Opticall y pumpedlasing of ZnO at room temperature [J ].Applied Physics Let -ters ,1997,70(17):2230-2232.[2]WANG X H ,ZHAO D X ,LIU Y C ,et al .The photolumines -cence properties of ZnO whiskers [J ].Journal of Crystal Growth ,2004,263(1-4):316-319.[3]ABDULAH M ,MORIMOTO T ,OKUVAYAMA K .Generatingblue and red lu minescence from ZnO /poly (ethylene glycol )nanocompos ites perpared using an in -s itu method [J ].Ad -vanced Functional Materials .2003,13(10):800-804.[4]YEADON M ,GH ALY M ,YANG J C ,et al .Contact epitaxyobserved in supported nanoparticles [J ].Applied Physics Let -ters ,1998,73(22):3208-3210.[5]李旦振,陈亦琳,林熙.纳米ZnO 的制备及发光特性研究[J ].无机化学学报,2002,18(12):1229-1232.LI Dan -zhen ,CHEN Yi -lin ,LIN Xi .Preparation of nano -size ZnO and Its luminescent spectrum [J ].Chinese Journal of Inor -ganic Chemistry ,2002,18(12):1229-1232.[6]FU Z X ,GUO C X ,LIN B .Cathodoluminecence of ZnO films[J ].Chinese Physics Letters ,1998,18:457-459.(编辑:孙广增) 4 山 东 大 学 学 报 (工 学 版)第35卷 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Materials Science and Engineering B121(2005)42–47Hydrothermal preparation and optical properties of ZnO nanorods Yong-hong Ni a,∗,Xian-wen Wei a,Jian-ming Hong b,Yin Ye aa School of Chemistry and Material Science,Anhui Normal University,Wuhu241000,PR Chinab Center of Material Analysis,Nanjing University,Nanjing210093,PR ChinaReceived9July2004;received in revised form19January2005;accepted26February2005AbstractIn the present paper,ZnO nanorods with the mean size of50nm×250nm were successfully synthesized via a hydrothermal synthesis route in the presence of cetyltrimethylammonium bromide(CTAB).ZnCl2and KOH were used as the starting materials and zinc oxide nanorods were obtained at120◦C for5h.The product was characterized by means of X-ray powder diffraction(XRD),transmission electron microscopy(TEM)and selected area electron diffraction(SAED).The optical properties of the product were studied.Some factors affecting the morphologies and optical properties were also investigated.©2005Elsevier B.V.All rights reserved.Keywords:Hydrothermal synthesis;Semiconductors;Nanorods;Zinc oxides1.IntroductionVarious semiconductor materials are always a research focus in material science due to their unique electronic, optical properties and extensive applications.In these ma-terials,wide and direct band gap semiconductors are of great interest in blue and ultraviolet optical devices such as light-emitting diodes and laser diodes[1].Zinc oxide (ZnO),as a wide and direct band gap(3.37eV)semicon-ductor with a large exciton binding energy(60meV)[2], has already been widely used in piezoelectric transduc-ers,gas sensors,optical waveguides,transparent conduc-tivefilms,varistors and solar cell windows,bulk acous-tic wave devices[3–7].With the development of material science,it is believed that ZnO has further application in manyfields.Over the past decade,ZnO crystallites have been obtained by several preparation approaches includ-ing sol–gel method[8],evaporative decomposition of so-lution[9],wet chemical synthesis[10],gas-phase reaction [11]and hydrothermal synthesis[12],etc.A variety of mor-phologies including prismatic forms[13],bi-pyramidal and dumbbell-like[14],ellipsoidal[12],spheres[15],nanorods ∗Corresponding author.Tel.:+865533883512;fax:+865533869310.E-mail address:niyh@(Y.-h.Ni).[16],nanowires[17]and whiskers[18]have been synthesized to date.Among the above methods to prepare ZnO,hydrother-mal synthesis route,as an important method for wet chem-istry,has been attracting material chemists’attention.Em-ploying this method,for instance,needle-like ZnO crystals were obtained using the decomposition of aqueous solution of Na2Zn–EDTA at330◦C by Nishizawa et al.[19].Shi and co-workers prepared acicular ZnO crystals at190◦C under the assistance of mineralized reagent of NaNO2[20].Recently, Li’s group reported the preparation of ZnO nanorods un-der cetyltrimethylammonium bromide(CTAB)-assisted hy-drothermal route at180◦C for24h using zinc powders as the initial material[21].In this work,we designed a simple sys-tem for the preparation of ZnO nanorods employing ZnCl2 and KOH as the reactants,CTAB,which is a cationic sur-factant,as the directed reagent for growth of ZnO.Reactions were carried out at120◦C for5h.The optical properties of the product were studied.Some factors affecting the mor-phologies and optical properties were also investigated.2.ExperimentalIn a typical experiment,all the reagents were analytically pure and used without further purification.A0.001mol ZnCl20921-5107/$–see front matter©2005Elsevier B.V.All rights reserved. doi:10.1016/j.mseb.2005.02.065Y.-h.Ni et al./Materials Science and Engineering B 121(2005)42–4743and 0.002mol KOH were dissolved into small amount of dis-tilled water,respectively,then a white floccule immediately appeared as soon as they were mixed.After 0.0005mol CTAB was introduced under stirring,the system was transferred into a Teflon-lined stainless steel autoclave of 40ml and filled by distilled water up to 80%volume.Hydrothermal treatments were carried out at 120◦C for 5h.After that,the autoclave was allowed to cool down naturally.White precipitates were collected and washed with distilled water and ethanol sev-eral times to remove impurities.Finally,the precipitates were dried at 50◦C for 5h.This procedure was repeated using (CH 3COO)2Zn ·2H 2O,Zn(NO 3)2·6H 2O and ZnSO 4·7H 2O as the zinc sourceinstead of ZnCl 2or changing the reaction tempera-ture.X-ray powder diffraction (XRD)was carried out on a Rigaku (Japan)D/max-␥A X-ray diffractometer with Cu K ␣radiation (λ=0.154178nm)at a scanning rate of 0.02◦s −1in the 2θrange from 10◦to 70◦.Transmission electron microscopy (TEM)micrographs were taken on a JEM-200CX,JEOL Transmission Electron Microscope,employ-ing an accelerating voltage of 200kV .UV–vis spectra were recorded on a Hitachi U-3010spectrophotometer (Tokyo,Japan).The fluorescence spectra were measured with a F-4500spectrofluorometer (Hitachi)with a quartz cell of 1cm.Fig.1.(a)XRD pattern,(b)TEM image and (c)SAED pattern of ZnO nanorods prepared at 120◦C for 5h,using ZnCl 2and KOH as the reactants,CTAB as the directed reagent.44Y.-h.Ni et al./Materials Science and Engineering B121(2005)42–47Fig.2.(a)The absorption spectrum and(b)the emission spectrum of ZnO nanorods.Fig.3.TEM images of the products prepared at120◦C for5h,using different zinc sources:(a)(CH3COO)2Zn·2H2O,(b)Zn(NO3)2·6H2O and(c)ZnSO4·7H2O.Y.-h.Ni et al./Materials Science and Engineering B121(2005)42–47453.Results and discussionsFig.1(a)shows the XRD pattern of the product.All of the diffraction peaks can be indexed within experimental error as hexagonal ZnO phase(Wurtzite-structure)with lattice con-stants a=3.2508˚A and c=5.2069˚A by comparison with the data from JCPDS cards No.36-1451.The strong and narrow diffraction peaks indicate that the material has a good crys-tallinity and size.No characteristic peaks from impurities such as Zn(OH)2and KCl are detected.The TEM images of the product are given in Fig.1(b). Many rod-like products can be clearly seen.The sizes of the products are homogeneous and the mean size is about 50nm×250nm.The electron diffraction dots shown in Fig.1(c)can be indexed as hexagonal Wurtzite-structural ZnO,which is very consistent with the analysis of XRD.Under hydrothermal conditions,Zn(OH)2can dehydrate to produce ZnO at lower temperature(≥100◦C)[12]and generally,the growth unit for ZnO crystal is considered to be Zn(OH)42−,which has a tetrahedron geometry[13].Some ZnO crystals with a micron-scaled size have been prepared, employing Zn(OH)2as the precursor in the absence of sur-factants[3,12,22].Since a possible interaction exists in a sur-factant and a precursor,it is imaginable that the morphology and size of the product are influenced by the surfactant.In our work,CTAB is a cationic surfactant and ionizes completely in water.The resulted cation is also a tetrahedron with a long hy-drophobic tail[21].Therefore,ion-pairs between Zn(OH)42−and CTA+could form due to electrostatic interaction[21].In the crystallization process,surfactant molecules adsorbed on the crystal nuclei not only serve as a growth director but also as a protector to prevent from aggregation of the product.As a result,ZnO nanorods were produced.Fig.2(a)depicts a UV–vis spectrum of the as-prepared ZnO nanorods,which was obtained on a Hitachi U-3010spec-trophotometer by dispersing ZnO powders in distilled water and using distilled water as the reference.An absorption peak centered at364nm(ca.3.41eV)is found which has a slight blue-shift compared with that of the bulk.The PL spectrum of the as-prepared ZnO nanorods is given in Fig.2(b),which was obtained on a F-4500spectrofluorometer(Hitachi)with a quartz cell of1cm by dispersing ZnO powders in distilled wa-ter,employing the light of250nm as the excitation source.It is clear from thefigure that the spectrum consists of a widened shoulder peak from∼400to430nm and a sharp one centered at443.2nm.The above peak positions were very close to the recent results obtained by Gao and co-workers[23].Usually, the UV emission is attributed to the near band edge emission of the wide band gap of ZnO due to the annihilation of exci-tons.And the blue luminescence is considered to be the result of radiative recombination of photo-generated holes with sin-gularly ionized oxygen vacancies[24,25].In our work,the stronger blue emission should be attributed to much more de-fective of the nanostructures prepared at lower temperature than those deposited at much higher temperatures,at which the UV emission is stronger[26].Fig.4.(a)The absorption spectra and(b)the emission spectra of the products prepared at120◦C for5h,using different zinc sources.Distilled water was used as the reference and the exciting wavelength is250nm.Fig.3shows the TEM images of the products pre-pared using(CH3COO)2Zn·2H2O,Zn(NO3)2·6H2O and ZnSO4·7H2O as the zinc source instead of ZnCl2,respec-tively.As shown in TEM micrographs,some rods andflakes were obtained when(CH3COO)2Zn·2H2O and ZnSO4·7H2O were used as the zinc source,while Zn(NO3)2·6H2O as the zinc source,some elliptic products were produced.The absorption spectra in Fig.4(a)shows that the products have a similar absorption peak located at376nm when (CH3COO)2Zn·2H2O,Zn(NO3)2·6H2O and ZnSO4·7H2O were employed as the zinc source instead of -pared with that of ZnO nanorods prepared using ZnCl2as the zinc source,the absorption peak red-shifts12nm.Fig.4(b)is PL spectra of the products prepared using the different zinc sources.All the emission spectra range from375to475nm, indicating that the PL spectra were not influenced by the change of the zinc source.The broad peaks centered at ca. 405nm are attributed to the recombination of free excitons and the peaks behind460nm should come from oxygen va-cancy of the products.46Y.-h.Ni et al./Materials Science and Engineering B 121(2005)42–47Fig.5.TEM images of the products prepared at various temperatures for 5h:(a)100◦C,(b)150◦C,(c)180◦C and (d)200◦C.Fig.5depicts the TEM images of the products synthesized at various reaction temperatures for the same time.When the temperatures of 100and 150◦C were employed,the main shape of the products is elliptic,while when the temperatures are 180and 200◦C,the main shape of the products is rod-like.The absorption spectra of the products synthesized at various reaction temperatures show that the absorption peak gradu-ally shifts from 360,366,376to 377nm with the increase of the reaction temperature from 100to 200◦C (Fig.6(a)).The PL spectra given in Fig.6(b)shows that all the products have a similar emission spectrum,which comprised a strong emission peak centered at ca.404nm and a weak UV emis-sion peak at 353nm.In 2003,Agostiano and co-workers also found the weak UV emission peak [27].Generally,the dom-inance of the UV emission at 353nm in PL spectra has been rarely observed for ZnO nanocrystals,except when their sur-face has been passivated by organic molecules or when the particles from alcoholic solutions have been UV-irradiated in airless conditions [27].In our work,it is probable that ZnO surface in our samples was partially passivated by CTAB.As a result,the UV luminescence can be responsibly de-tected.From the above experiments,one can easily find that the morphologies and absorption properties of the products can be influenced when zinc source or reaction temperature var-ied,while the PL spectra not change generally.Y.-h.Ni et al./Materials Science and Engineering B121(2005)42–4747Fig.6.(a)The absorption spectra and(b)the emission spectra of the products prepared at various reaction temperatures for5h:(1)100◦C,(2)150◦C,(3) 180◦C and(4)200◦C.Distilled water was used as the reference and the exciting wavelength is250nm.4.ConclusionsZnO nanorods have been successfully synthesized in a simple system at120◦C for5h via the hydrothermal method. ZnCl2and KOH were used as the reactants and CTAB as the directed reagent for growth of ZnO.The absorp-tion peak of the as-obtained ZnO nanorods has a slight blue-shift compared with that of the bulk.Experiments showed that the different zinc source and reaction temper-ature would influence morphologies and absorption prop-erties of thefinal products but the PL spectra not change generally.AcknowledgementWe thank Anhui Provincial Excellent Young Scholars Foundation(No.04046065)for fund support. References[1]B.J.Jin,S.H.Bae,S.Y.Lee,S.Im,Mater.Sci.Eng.B71(2000)301.[2]P.Zu,Z.K.Tang,G.K.L.Wong,M.Kawasaki, A.Ohtomo,H.Koinuma,Y.Segawa,Solid State Commun.103(1997)459. [3]E.Ohshima,H.Ogino,I.Niikura,K.Maeda,M.Sato,M.Ito,T.Fukuda,J.Cryst.Growth260(2004)166.[4]T.L.Yang,D.H.Zhang,J.Ma,H.L.Ma,Y.Chen,Thin Solid Films326(1998)60.[5]B.Sang,A.Yamada,M.Konagai,Jpn.J.Appl.Phys.37(1998)L206.[6]J.F.Cordaro,Y.Shim,J.E.May,J.Appl.Phys.60(1986)4186.[7]P.Verardi,N.Nastase,C.Gherasim,C.Ghica,M.Dinescu,R.Dinu,C.Flueraru,J.Cryst.Growth197(1999)523.[8]nf,W.D.Bond,Am.Ceram.Soc.Bull.63(1984)278.[9]E.Ivers-Tiffee,K.Seitz,Am.Ceram.Soc.Bull.66(1987)1384.[10]N.Y.Lee,M.S.Kim,J.Mater.Sci.26(1991)1126.[11]S.M.Haile,D.W.Jonhagon,G.H.Wiserm,J.Am.Ceram.Soc.72(1989)2004.[12]C.H.Lu,C.H.Yeh,Ceram.Int.26(2000)351.[13]W.J.Li,E.W.Shi,W.Z.Zhong,Z.Yin,J.Cryst.Growth203(1999)186.[14]B.G.Wang,E.W.Shi,W.Z.Zhong,Cryst.Res.Technol.33(1998)937.[15]M.C.Neves,T.Trindade,A.M.B.Timmons,J.D.Pedrosa de Jesus,Mater.Res.Bull.36(2001)1099.[16]J.Zhang,L.Sun,H.Pan,C.Liao,C.Yan,New J.Chem.26(2002)33.[17]C.Xu,G.Xu,Y.Liu,G.Wang,Solid State Commun.122(2002)175.[18]J.Q.Hu,Q.Li,N.B.Wong,C.S.Lee,S.T.Lee,Chem.Mater.14(2002)1216.[19]H.Nishizawa,T.Tani,K.Matsuka,J.Am.Ceram.Soc.67(1984)C-98.[20]W.J.Li,E.W.Shi,J.Mater.Res.14(1999)1532.[21]X.M.Sun,X.Chen,Z.X.Deng,Y.D.Li,Mater.Chem.Phys.78(2002)99.[22]H.Xu,H.Wang,Y.Zhang,S.Wang,M.Zhu,H.Yan,Cryst.Res.Technol.38(2003)429.[23]J.M.Wang,L.Gao,J.Cryst.Growth262(2004)290.[24]C.L.Xu,D.H.Qin,H.Li,Y.Guo,T.Xu,H.L.Li,Mater.Lett.58(2004)3976.[25]K.Vanheusden,W.L.Warren,C.H.Seager,D.R.Tallant,J.A.V oigt,B.E.Gnade,J.Appl.Phys.79(1996)7983.[26]Y.Sun,G.M.Fuge,M.N.R.Ashfold,Chem.Phys.Lett.396(2004)21.[27]P.D.Cozzoli,M.L.Curri,A.Agostiano,G.Leo,M.Lomascolo,J.Phys.Chem.B107(2003)4756.。