26.1.4二次函数y=ax2+bx+c的图像与性质

合集下载

二次函数y=ax2 bx c的图象和性质(1)

二次函数y=ax2 bx c的图象和性质(1)

2、填表:
抛物线
开口方向
对称轴
顶点坐标
y 2x2
y 2(x 1)2
y 2(x 1)2
开口向上 直线x=0 开口向上 直线x=1 开口向上 直线x=-1
(0, 0) (1, 0) (-1, 0)
二次函数y=a(x-h)²对称轴为_直__线__x_=_h_,顶点坐标(_h_,_0_)_ .
h>0时,y=ax²向右平移h个单位 y=a(x-h)²;
y 0.5x2 1 开口向下 直线x=0 (0,1) y 0.5x2 1 开口向下 直线x=0 (0,-1)
二次函数y=ax²+k对称轴为 y轴 ,顶点坐标为 (0,k) .
k>0时,y=ax²向上平移k个单位 y=ax²+k;
k<0时,y=ax²向下平移| k|个单位 y=ax²+k.
复习引入
二次函数y=a(x-h)2的性质
抛物线 顶点坐标
y=a(x-h)2 (a>0)
(h,0)
y=a(x-h)2 (a<0)
(h,0)
对称轴
直线x=h
直线x=h
位置 在x轴的上方(除顶点外)
增减性
最值
开口大小
在对称轴的左侧,y随着x的增大 而减小. 在对称轴的右侧, y随 着x的增大而增大.
h<0时, y=ax²向左平移| h|个单位 y=a(x-h)².
简记为“上加下减,左加右减”.
议一议
1.在上面的坐标系中作出二次函数y=3(x+1)2 的图象.它与二次函数y=3x2和y=3(x-1)2的图 象有什么关系?它是轴对称图形吗?它的对称 轴和顶点坐标分别是什么?
2. x取哪些值时,函数y=3(x+1)2的值随x值的增 大而增大?

26.1.4二次函数y=ax2+bx+c的函数图象和性质

26.1.4二次函数y=ax2+bx+c的函数图象和性质
怎样把函数y=3x2-6x+5的转化成y=a(x-h)2+k的形式?
y 3x 6 x 5 配方: 5 2 3 x 2 x 3 5 2 3 x 2 x 1 1 3 2 老师提示: 2 3x 1 3 配方后的表达
2 二次函数y=ax +bx+c的图象和性质 y
x
画函数y=ax²+bx+c的图象
你能画出二次函数y=3x2-6x+5的图像吗?
我们知道,像二次函数y=a(x-h)2+k的图 象,顶点坐标为(h,k),通过平移抛物线 y=ax2可以得到。
二次函数y=3x2-6x+5也能化成这种形式吗?
函数y=ax²+bx+c的图象
函数y=ax²+bx+c的顶点式
配方:
2 b 4 ac b y a x . 2a 4a
2
例.求次函数y=ax² +bx+c的对称轴和顶点坐标.
y ax2 bx c
c 2 b a x x a c 2提取二次项系数老师提 Nhomakorabea:2
提取二次项系数 配方:加上再减去一次项 系数绝对值一半的平方 整理:前三项化为平方形 式,后两项合并同类项 化简:去掉中括号
式通常称为顶 点式
3x 1 2.
2
函数y=3x2-6x+5的图象特征
2.根据顶点式确定开口方向,对称轴,顶点 坐标.
y 3x 1 2. ∵a=3>0,∴开口向上; 对称轴:直线x=1; 顶点坐标:(1,2).
增减性 最值
b 4ac b 2 当x 时, 最小值为 2a 4a

22.1.4二次函数y=ax2 bx c的图像和性质 初中初三九年级数学教学课件PPT 人教版

22.1.4二次函数y=ax2 bx c的图像和性质 初中初三九年级数学教学课件PPT 人教版

最值
x=h时,y最小值=k
x=h时,y最大值=k
二、学习目标:
1.理解二次函数 y=ax2+bx+c 与 y =a(x - h)2 +k之间 的联系,体会转化思想; 2.通过图象了解二次函数 y=ax2+bx+c 的性质,体 会数形结合的思想. 3 .会求二次函数的最值,并能利用它解决简单的实际 问题. • 学习重点: 会用配方法将数字系数的二次函数的表达式化为 y = a(x - h)2 +k 的形式,并能由此得到二次函数 y = ax2 +bx+c 的图象和性质.
答:经过15秒,火箭到达最高点,起最大高度为1135米。
总结:求二次函数最值,有两个方法. (1)用配方法;(2)用公式法.
四、课堂小结
二次函数 y ax2 bx c 的性质:
(1)顶点坐标
b 4ac b2
2a
,
4a
;
(2)对称轴是直线 x b
2a
(3)开口方向:当 a>0时,抛物线开
2
直接画函数
的图象
y 1 x2 6x 21 2
描点、连线,画出函数 y 1 x 62 3
图像.
2
问题:
y
1 2
x2
6x
21
1.看图像说说抛物线
y 1 x2 6x 21
2
的增减性。


5





(6,3)
O
5
10
2.怎样平移抛物线 y 1 x2 2
可以得到抛物线
y 1 x2 6x 21?
口向上;当 a<0时,抛物线开口向下。

二次函数y=ax2+bx+c的图像和性质

二次函数y=ax2+bx+c的图像和性质

二次函数y=ax2+bx+c的图像和性质
二次函数,又称之为平方函数,它是最基本的解析函数之一。

它的标准形式是y=ax2+bx+c,其中a,b, c是实数,a≠0。

二次函数的图像是根据函数表达式的特性来推断的,只要我们把函数上的点代入进函数的表达式,并确定函数的拐点,就可以找出图形的形状。

一般来说,当a>0时,二次函数的图像是一条“U”形(有可能是拱状或者凹状),当a<0时,二次函数的图像是一条蛇形抛物线(有可能是凸状或者凹状),沿X轴的对称轴是当x=-b/2a时,它的最高点或者最低点是(-b/2a,f (-b/2a))。

二次函数不仅表示物理现象,也可以表示天文现象,甚至于在经济学中也有运用。

从数学上来讲,它具有众多的特性和性质,如:
A、二次函数有且只有两个极值,可能是极大值或极小值;
B、当a > 0时,函数有一个唯一的最小值点,沿X轴的对称轴也就是当x=-b/2a时的单位;
C、当a < 0时,函数有一个唯一的最大值点,同样沿X轴的对称轴也就是当x=-b/2a时的单位;
D、当x→±∞时,函数值→±∞,即它是一个可以到达正负无穷远处的无限延伸曲线。

以上就是二次函数的图像与性质,只要我们掌握了它的一般形式与特性,就可以很容易的根据题设的条件把它画出来,用它来描述和解决各种实际问题,它是一种有效的数学工具。

经典人教版26.1.4二次函数y=ax2+bx+c的图像与性质.ppt

经典人教版26.1.4二次函数y=ax2+bx+c的图像与性质.ppt
2 x 22 7 7
所以当x=2时,y最小值=-7 。
.精品课件.
17
解法二(公式法):
因为a=2>0,抛物线 y 2x2 8x 1 有最低 点,所以y有最小值,
因为- b
8
4ac b2 2,
4 21 82
7
2a 2 2
4a
42
所以当x=2时,y最小值=-7 。
总结:求二次函数最值,有两个方法. (1)用配方法;(2)用公式法.
3 半的平方
老师提示:
配方后的表达
3x
12
2 3
化简:去整理:前三项 化为平方形式,后两项 合并同类项
式通常称为配
3x 12 2.
掉中括号
方式或顶点式
.精品课件.
7
归纳
二次函数 画法:
y=
—12 x2-6x
+21图象的
(1)“化” :化成顶点式 ;
(2)“定”:确定开口方向、对称轴、顶 点坐标;
.精品课件.
18
例6已知函数
y
1 2
x2
3x
1 2
,当x为何值
时,函数值y随自变量的值的增大而减小。
解法一:a 1 0 ,∴抛物线开口向下,
2
又y 1 x2 3x 1 1 x2 6x 9 9 1
2
22
2
1 x 32 9 1
2
22
1 x 32
2
5
∴ 对称轴是直线x=-3,当 x>-3时,y
图你像能的说特出征二吗次?函数y=—21 x2-6x+21
.精品课件.
4
如何画出y 1 x2 6x 21的图象呢? 2
我们知道,像y=a(x-h)2+k这样的函数,

二次函数y=ax2 bx c地图像及性质

二次函数y=ax2 bx c地图像及性质

二次函数c+=2的图象y+axbx【教学目标】1、会用描点法画出二次函数、与的图象;2、能结合图象确定抛物线、、的对称轴与顶点坐标;3、通过比较抛物线与同的相互关系,培养观察、分析、总结的能力;【教学重点】画出形如、与形如的二次函数的图象,能指出上述函数图象的开口方向,对称轴,顶点坐标.【教学难点】理解函数、、与及其图象间的相互关系【知识点梳理】知识点一、二次函数的定义:形如y=ax2+bx+c(a≠0,a,b,c为常数)的函数称为二次函数(quadratic funcion) .其中a为二次项系数,b为一次项系数,c为常数项.知识点二、二次函数的图象及画法二次函数y=ax2+bx+c(a≠0)的图象是对称轴平行于y轴(或是y轴本身)的抛物线.几个不同的二次函数.如果二次项系数a相同,那么其图象的开口方向、形状完全相同,只是顶点的位置不同.1. 用描点法画图象首先确定二次函数的开口方向、对称轴、顶点坐标,然后在对称轴两侧,以顶点为中心,左右对称地画图.画结构图时应抓住以下几点:对称轴、顶点、与x轴的交点、与y轴的交点.2. 用平移法画图象由于a相同的抛物线y=ax2+bx+c的开口及形状完全相同,故可将抛物线y=ax2的图象平移得到a值相同的其它形式的二次函数的图象.步骤为:利用配方法或公式法将二次函数化为y=a(x-h)2+k的形式,确定其顶点(h,k),然后做出二次函数y=ax2的图象.将抛物线y=ax2平移,使其顶点平移到(h,k).知识点三、二次函数y=ax2+bx+c(a≠0)的图象与性质1.函数y=ax2(a≠0)的图象与性质:2.函数y=ax2+c(a≠0)的图象及其性质:(1)当a>0时,开口方向、对称轴、增减性与y=ax2相同,不同的是顶点坐标为(0,c),当x=0时,y最小=c(2)当a<0时,开口方向、对称轴、增减性与y=ax2相同,不同的是顶点坐标为(0,c),当x=0时,y最大=c3.二次函数y=ax2+bx+c(a≠0)的图象与性质:二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线.它的顶点坐标是,对称轴是直线的左侧,抛物线自左知识点四、抛物线y=ax2+bx+c中a、b、c的作用【典型例题】题型一:k ax y +=2的图象和性质例1、一条抛物线的开口方向、对称轴与221x y =相同,顶点纵坐标是-2,且抛物线经过点(1,1),求这条抛物线的函数关系式.例2 、 在同一平面直角坐标系画出函数 、、的图象.由图象思考下列问题: (1)抛物线的开口方向,对称轴与顶点坐标是什么?(2)抛物线 的开口方向,对称轴与顶点坐标是什么? (3)抛物线 ,与的开口方向,对称轴,顶点坐标有何异同?(4)抛物线 与 同有什么关系?例3、已知二次函数7)1(82-+--=k x k x y ,当k 为何值时,此二次函数以y 轴为对称轴?写出其函数关系式.变式训练: 1、已知函数231x y =, 3312+=x y , 2312-=x y . (1)分别画出它们的图象; (2)说出各个图象的开口方向、对称轴、顶点坐标; (3)试说出函数5312+=x y 的图象的开口方向、对称轴、顶点坐标.2、 不画图象,说出函数3412+-=x y 的开口方向、对称轴和顶点坐标,并说明它是由函数241x y -=通过怎样的平移得到的. 3、 若二次函数22+=ax y 的图象经过点(-2,10),求a 的值.这个函数有最大还是最小值?是多少?题型二:2)(h x a y -=的图象和性质例1、不画出图象,你能说明抛物线23x y -=与2)2(3+-=x y 之间的关系吗?例2、已知函数221x y -=,2)1(21+-=x y , 2)1(21--=x y . (1)在同一直角坐标系中画出它们的图象;(2)分别说出各个函数图象的开口方向、对称轴和顶点坐标; (3)分别讨论各个函数的性质.例3、根据上题的结果,试说明:分别通过怎样的平移,可以由抛物线221x y -=得到抛物线2)1(21+-=x y 和2)1(21--=x y ?变式训练:1、函数2)1(3+-=x y ,当x 时,函数值y 随x 的增大而减小.当x 时,函数取得最 值,最 值y= .2、不画出图象,请你说明抛物线25x y =与2)4(5-=x y 之间的关系.3、将抛物线2ax y =向左平移后所得新抛物线的顶点横坐标为 -2,且新抛物线经过点(1,3),求a 的值.题型三:2)(h x a y -=+k 的图象和性质例1、把抛物线c bx x y ++=2向上平移2个单位,再向左平移4个单位,得到抛物线2x y =,求b 、c 的值.例2、把抛物线223x y -=向左平移3个单位,再向下平移4个单位,所得的抛物线的函数关系式为 .例3、在同一直角坐标系中,画出下列函数的图象.23x y -=,2)2(3+-=x y ,1)2(32-+-=x y ,并指出它们的开口方向、对称轴和顶点坐标.变式训练:1、抛物线22121x x y -+=可由抛物线221x y -=向 平移 个单位,再向 平移 个单位而得到.2、将抛物线522++-=x x y 先向下平移1个单位,再向左平移4个单位,求平移后的抛物线的函数关系式.3、将抛物线23212++-=x x y 如何平移,可得到抛物线32212++-=x x y ?4、抛物线c bx x y ++-=23是由抛物线132+--=bx x y 向上平移3个单位,再向左平移2个单位得到的,求b 、c 的值.题型四、c bx ax y ++=2的图象和性质例1、通过配方,确定抛物线6422++-=x x y 的开口方向、对称轴和顶点坐标,再描点画图.例2、已知抛物线9)2(2++-=x a x y 的顶点在坐标轴上,求a 的值.例3、已知抛物线253212+-=x x y ,求出它的对称轴和顶点坐标,并画出函数的图象.例4、利用配方法,把下列函数写成2)(h x a y -=+k 的形式,并写出它们的图象的开口方向、对称轴和顶点坐标.(1)162++-=x x y(2)4322+-=x x y(3)nx x y +-=2(4)q px x y ++=2变式训练:1、(1)二次函数x x y 22--=的对称轴是 .(2)二次函数1222--=x x y 的图象的顶点是 ,当x 时,y 随x 的增大而减小.(3)抛物线642--=x ax y 的顶点横坐标是-2,则a = . 2、抛物线c x ax y ++=22的顶点是)1,31(-,则a 、c 的值是多少? 3、已知622)2(-++=k kx k y 是二次函数,且当0>x 时,y 随x 的增大而增大.(1)求k 的值;(2)求开口方向、顶点坐标和对称轴.4、当0<a 时,求抛物线22212a ax x y +++=的顶点所在的象限.5、已知抛物线h x x y +-=42的顶点A 在直线14--=x y 上,求抛物线的顶点坐标.题型五、c bx ax y ++=2的最大或最小值例1、求下列函数的最大值或最小值:(1)5322--=x x y ; (2)432+--=x x y .例2、某产品每件成本是120元,试销阶段每件产品的销售价x (元)与产品的日销售量y(件)之间关系如下表:若日销售量y 是销售价x 的一次函数,要获得最大销售利润,每件产品的销售价定为多少元?此时每日销售利润是多少?例3、某商场销售一批衬衫,平均每天可售出20件,每件盈利40件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经过市场调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天盈利最多?变式训练:1、对于二次函数m x x y +-=22,当x= 时,y 有最小值.2、已知二次函数b x a y +-=2)1(有最小值 –1,则a 与b 之间的大小关系是( ) A .a <b B .a=b C .a >b D .不能确定3、求下列函数的最大值或最小值:(1)x x y 22--=; (2)1222+-=x x y .4、已知二次函数m x x y +-=62的最小值为1,求m 的值.,5、心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间满足函数关系:)300(436.21.02≤≤++-=x x x y .y 值越大,表示接受能力越强.(1)x 在什么范围内,学生的接受能力逐步增强?x 在什么范围内,学生的接受能力逐步降低?(2)第10分时,学生的接受能力是多少?(3)第几分时,学生的接受能力最强?6、如图,有长为24m 的篱笆,一面利用墙(墙的最大可用长度a 为10m ),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB 为x m ,面积为S m 2.(1)求S 与x 的函数关系式;(2)如果要围成面积为45 m 2的花圃,AB 的长是多少米?(3)能围成面积比45 m 2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.题型六、利用待定系数法求二次函数的函数关系式例1、某涵洞是抛物线形,它的截面如图26.2.9所示,现测得水面宽1.6m ,涵洞顶点O 到水面的距离为2.4m ,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?例2、根据下列条件,分别求出对应的二次函数的关系式.(1)已知二次函数的图象经过点A (0,-1)、B (1,0)、C (-1,2);(2)已知抛物线的顶点为(1,-3),且与y 轴交于点(0,1);(3)已知抛物线与x 轴交于点M (-3,0)、(5,0),且与y 轴交于点(0,-3);(4)已知抛物线的顶点为(3,-2),且与x 轴两交点间的距离为4.例3、已知二次函数c bx x y ++=2的图象经过点A (-1,12)、B (2,-3),(1)求该二次函数的关系式;(2)用配方法把(1)所得的函数关系式化成k h x a y +-=2)(的形式,并求出该抛物线的顶点坐标和对称轴.例4、已知二次函数的图象与一次函数84-=x y 的图象有两个公共点P (2,m )、Q (n ,-8),如果抛物线的对称轴是x= -1,求该二次函数的关系式.变式训练:1、根据下列条件,分别求出对应的二次函数的关系式.(1)已知二次函数的图象经过点(0,2)、(1,1)、(3,5);(2)已知抛物线的顶点为(-1,2),且过点(2,1);(3)已知抛物线与x 轴交于点M (-1,0)、(2,0),且经过点(1,2).2、二次函数图象的对称轴是x=-1,与y 轴交点的纵坐标是–6,且经过点(2,10),求此二次函数的关系式.3、某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽AB=4m ,顶部C 离地面高度为4.4m .现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8m ,装货宽度为2.4m .请判断这辆汽车能否顺利通过大门.4、已知二次函数c bx ax y ++=2,当x=3时,函数取得最大值10,且它的图象在x 轴上截得的弦长为4,试求二次函数的关系式.5、抛物线n mx x y ++=22过点(2,4),且其顶点在直线12+=x y 上,求此二次函数的关系式.【随堂练习】1、二次函数y=ax 2+bx 2+c 的图象如图所示,则a 0,b 0,c 0(填“>”或“<”=.)2、二次函数y=ax 2+bx +c 与一次函数y=ax +c 在同一坐标系中的图象大致是图中的( )3、在同一坐标系中,函数y=ax 2+bx 与y=xb 的图象大致是图中的( )4、如图所示的是桥梁的两条钢缆具有相同的抛物线形状.按照图中建立的直角坐标系,左面的一条抛物线可以用y=0.0225x 2+0.9x +10表示,而且左右两条抛物线关于y 轴对称,你能写出右面钢缆的表达式吗?5、图中各图是在同一直角坐标系内,二次函数y=ax 2+(a +c )x +c 与一次函数y=ax +c 的大致图象,有且只有一个是正确的,正确的是( )6、抛物线y=ax 2+bx +c 如图所示,则它关于y 轴对称的抛物线的表达式是 .7、已知二次函数y=(m -2)x 2+(m +3)x +m +2的图象过点(0,5).(1)求m 的值,并写出二次函数的表达式;(2)求出二次函数图象的顶点坐标、对称轴.8、启明公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件.为了获得更好的利益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x (万元)时,产品的年销售量将是原销售量的y 倍,且y=-102x +107x +107,如果把利润看作是销售总额减去成本费和广告费. (1)试写出年利润S (万元)与广告费x (万元)的函数表达式,并计算广告费是多少万元时,公司获得的年利润最大?最大年利润是多少万元?(2)把(1)中的最大利润留出3万元作广告,其余的资金投资新项目,现有6个项目可供选择,各项目每股投资金额和预计年收益如下表:如果每个项目只能投一股,且要求所有投资项目的收益总额不得低于1.6万元,问有几种符合要求的投资方式?写出每种投资方式所选的项目.9、已知抛物线y=a (x -t -1)2+t 2(a ,t 是常数,a ≠0,t ≠0)的顶点是A ,抛物线y=x 2-2x +1的顶点是B (如图).(1)判断点A 是否在抛物线y=x 2-2x +1上,为什么?(2)如果抛物线y=a (x -t -1)2+t 2经过点B .①求a 的值;②这条抛物线与x 轴的两个交点和它的顶点A 能否成直角三角形?若能,求出t 的值;若不能,请说明理由.10、如图,E 、F 分别是边长为4的正方形ABCD 的边BC 、CD 上的点,CE=1,CF=34,直线FE 交AB 的延长线于G ,过线段FG 上的一个动点H ,作HM ⊥AG 于M .设HM=x ,矩形AMHN 的面积为y .(1)求y 与x 之间的函数表达式,(2)当x 为何值时,矩形AMHN 的面积最大,最大面积是多少?11、已知点A (-1,-1)在抛物线y=(k 2-1)x 2-2(k -2)x +1上.(1)求抛物线的对称轴;(2)若点B 与A 点关于抛物线的对称轴对称,问是否存在与抛物线只交于一点B 的直线?如果存在,求符合条件的直线;如果不存在,说明理由.12、如图,A、B是直线ι上的两点,AB=4cm,过ι外一点C作CD∥ι,射线BC与ι所成的锐角∠1=60°,线段BC=2cm,动点P、Q分别从B、C同时出发,P以每秒1cm的速度,沿由B向C的方向运动;Q以每秒2cm的速度,沿由C向D的方向运动.设P、Q运动的时间为t秒,当t>2时,PA交CD于E.(1)用含t的代数式分别表示CE和QE的长;(2)求△APQ的面积S与t的函数表达式;(3)当QE恰好平分△APQ的面积时,QE的长是多少厘米?13、如图所示,有一边长为5cm的正方形ABCD和等腰三角形PQR,PQ=PR=5cm,PR=8cm,点B、C、Q、R在同一直线ι上.当CQ两点重合时,等腰△PQR以1cm/秒的速度沿直线ι按箭头所示方向开始匀速运动,t秒后,正方形ABCD与等腰△PQR重合部分的面积为Scm2.解答下列问题:(1)当t=3秒时,求S的值;(2)当t=5秒时,求S的值;14、如图2-4-16所示,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA,O恰在圆形水面中心,OA=1.25米.由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线的路线落下.为使水流形状较为漂亮,要求设计成水流在与高OA距离为1米处达到距水面最大高度2.25米.(1)如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水不致落到池外?(2)若水池喷出的抛物线形状如(1)相同,水池的半径为3.5米,要使水流不致落到池外,此时水流最大高度应达多少米?(精确到0.1米,提示:可建立如下坐标系:以OA 所在的直线为y 轴,过点O 垂直于OA 的直线为x 轴,点O 为原点)15、某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日生产的产品全部售出.已知生产x 只玩具熊猫的成本为R (元),每只售价为P (元),且R ,P 与x 的表达式分别为R=500+30x ,P=170-2x .(1)当日产量为多少时,每日获利为1750元?(2)当日产量为多少时,可获得最大利润?最大利润是多少?16、阅读材料,解答问题.当抛物线的表达式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标出将发生变化.例如y=x 2-2mx +m 2+2m -1①,有y=(x -m )2+2m -1②,∴抛物线的顶点坐标为(m ,2m -1),即⎩⎨⎧-==. ④, ③12m y m x 当m 的值变化时,x 、y 的值也随之变化,因而y 值也随x 值的变化而变化.把③代入④,得y=2x -1.⑤可见,不论m 取任何实数,抛物线顶点的纵坐标y 和横坐标x 都满足表达式y=2x -1. 解答问题:(1)在上述过程中,由①到②所学的数学方法是 ,其中运用了 公式,由③、④到⑤所用到的数学方法是 .(2)根据阅读材料提供的方法,确定抛物线y=x 2-2mx +2m 2-3m +1顶点的纵坐标y 与横坐标x 之间的表达式.【家庭作业】1.抛物线y=-2x 2+6x -1的顶点坐标为 ,对称轴为 .2.如图,若a <0,b >0,c <0,则抛物线y=ax 2+bx +c 的大致图象为( )3.已知二次函数y=41x 2-25x +6,当x= 时,y 最小= ;当x 时,y 随x 的增大而减小.4.抛物线y=2x 2向左平移1个单位,再向下平移3个单位,得到的抛物线表达式为 .5.二次函数y=ax 2+bx +c 的图象如图所示,则ac 0.(填“>”、“<”或“=”=)。

数学九年级人教版《二次函数y=ax2 bx c的图象和性质》

数学九年级人教版《二次函数y=ax2 bx c的图象和性质》
人民教育出版社 九年级 | 上册
第二十二章 ·二次函数
二次函数y=ax2+bx+c的 图像和性质
温故知新
二次函数y=a(x+m)2+k的图象和y=ax2的图象之间的关系。
y=ax2(a≠0)图像 当m>0时 向左平移m个单位
y=a(x+m)2
当m<0时 向右平移|m|个单位
当k>0时 向上平移k个单位 y=a(x+m)2+k
b ②若a<0,当x> 2a 时,y随x的增大而减小;
当x<

b 2a
时,y随x的增大而增大。
知识点详解
(6)抛物线y=ax²+bx+c与坐标轴的交点。 ①抛物线y=ax²+bx+c与y轴的交点坐标为(0,c)。 ②抛物线y=ax²+bx+c与x轴的交点坐标为(x1,0),(x2,0),其中为x1,x2方程 y=ax²+bx+c的两实数根。
=2(x-2)2-7≥-7 所以当x=2时,y最小值=-7 。
例题详解
解法二(公式法):
因为a=2>0,抛物线y=2x2-8x+1有最低点,所以y有最小值,
因为
-b

8
4ac b2 4 21 82
2,

7
2a 2 2
4a
42

所以当x=2时,y最小值=-7。 总结:求二次函数最值,有两个方法。 (1)用配方法;(2)用公式法。
二次函数y=-3(x-2)2-4的图象可以y=-3x2的图象向右平移2个单位,再向下 平移4个单位得到对称轴是直线x=2顶点坐标是(2,-4)。

二次函数y=ax2+bx+c的图象和性质

二次函数y=ax2+bx+c的图象和性质

-5
顶点坐标:(2,1)
1.抛物线y=x2-4x+3与y轴的交点坐标是 ,
与x轴的交点坐标是
(。1,0)或(3,0)
抛物线与y轴的交 点有什么特征?
(0,3)
抛物线与x轴的交 点有什么特征?
写出下列抛物线的开口方向、对称轴和顶点:
(1) y 3x2 2x (2) y x2 2x
(3) y 2x2 8x 8
开口方向:向上。
对称轴:x
b 2a
2
2
1 2
2
y
4ac b2 4a
4
1 2
3
(
2
)2
4
1 2
1
顶点坐标:(2,1)
y
1 2
x2
-
2
x
3
(1) y 2x2 - 12x13
解:a
1 2
0
开口方向:向上。
对称轴:x
b 2a
2
2
1 2
2
y
4ac b2 4a
4
1 2
3
(
2
)2
4
1 2
1
顶点坐标:(2,1)
当x<h时,
y随着x的增大而减小。 y随着x的增大而增大。
当x>h时,
当x>h时,
y随着x的增大而增大。 y随着x的增大而减小。
x=h时,y最小值=k
x=h时,y最大值=k
抛物线y=a(x-h)2+k(a≠0)的图象可由y=ax2的图象通 过上下和左右平移得到.
我们已经知道二次函数y=a(x-h)2+k
的图象和性质,能否利用这些知识
来讨论二次函数 y 1 x2 6x 21图象和
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b (3) a,b决定抛物线对称轴的位置:(对称轴是直线x = - 2a ) -
① a,b同号 ② b=0 ③ a,b异号
对称轴在y轴左侧; 【左同右异】 对称轴是y轴; 对称轴在y轴右侧
例2、已知函数y = ax2 +bx +c的图象如 下图所示,x= 1 为该图象的对称轴,根
3
据图象信息你能得到关于系数a,b,c的 y 一些什么结论?
你能快速地确定下列二次函数的对称轴、顶点 坐标、开口方向并画出它们的草图吗? 1)y=2x2+3 2)y=4(x-1)2 3) y=2(x+3)2+5
1 2 y x 6 x 21 你能说出二次函数 2
一般画一个二次函数的草图,需要确定哪 几个因素?
的对称轴、顶 点坐标与开口方向吗?如何画出它的图象?
1 3 .
-1
.
1
x
1.抛物线y=2x2+8x-11的顶点在 A.第一象限 B.第二象限 C.第三象限 D.第四象限
(C )
2.不论k 取任何实数,抛物线y=a(x+k)2+k(a≠0) 的顶点都在 ( B) A.直线y = x上 B.直线y = - x上 C.x轴上 D.y轴上 3.若二次函数y=ax2 + 4x+a-1的最小值是2,则a 的值是 (A) • A 4 B. -1 C. 3 D.4或-1
函数y=ax²+bx+c的对称轴、顶点坐标 是什么?
2
b y ax bx c的对称轴是:x 2a 2 b 4ac b 顶点坐标是:( , ) 2a 4a
b 4ac b 2 y a x . 2a 4a
2
用顶点坐标公式求出下列函数的对称轴、顶点坐标:
1 2 y x 6 x 21 2
你知道是怎样配 方的吗?
配 方
(1)“提”:提出二次项系数;
( 2 )“配”:括号内配成完全平方;
(3)“化”:化成顶点式。
1 (x―6) 2 +3 y= — 2
x
1 y ( x 6) 2 3 2
… …
5
3.5
6
3
7
3.5
8
5
9
-3
x
o B -3
x
o C -3
x
o D -3
x
A
B
C
D
函数y=ax² +bx+c的图象和性质:
1)用配方法把它化为顶点式y=a(x-h)2+k ,从而得出它的 对称轴与顶点坐标 2)根据顶点坐标公式
2
b 4ac b 2 y a x . 2a 4a
2
b y ax bx c的对称轴是:x 2a b 4ac b 2 顶点坐标是:( , ) 2a 4a
3)抛物线y=ax² +bx+c位置与系数a,b,c的关系:
作业: 同步练习P102
4—12
C.a+b+c=0
6.若一次函数 y=ax+b 的图象经过第二、三、四 象限,则二次函数 y=ax2+bx-3 的大致图象是 y y y (C ) y
o
A 7.在同一直角坐标系中,二次函数 y=ax2+bx+c 与 一次函数y=ax+c的大致图象可能是 ( C)
y o x o y x o y x o y x
二次函数y=ax2+bx+c图象和性质
南宁市良庆区南晓中学 y 滕少英
o
x
1 2 如何画出 y x 6 x 21的图象呢? 2 我们知道,像y=a(x-h)2+k这样的函数,
容易确定相应抛物线的顶点为(h,k), 对称 1 2 轴为x=h,二次函数 y x 6 x 21是否 2 也能化成这样的形式吗?如果能,怎么化?
y 3x 4 x 1 y 2 x x 3
2 2
请你画出它们的草图
方法归纳
确定二次函数形如y=ax2+bx+c(a≠0)的 对称轴、顶点坐标方法:
1)配方法
2)顶点坐标公式法
知识点归纳
抛物线位置与系数a,b,c的关系: ⑴a决定抛物线的开口方向、开口大小、最高点或 最低点(或者说函数的最值) (2)c决定抛物线与y轴的交点位置: 当c>0 交于y轴的正半轴, 当c=0 抛物线经过原点, 当c<0 交于y轴的负半轴。
4.若二次函数 y=ax2 + b x + c 的图象如下,与x 轴的一个交点为(1,0),则下列各式中不成立 的是( B ) y 2-4ac>0 - b <0 A.b B. 2a
1 o x D. 4ac-b2 >0-1 4a 5.若把抛物线y = x2 - 2x+1向右平移2个单位,再向 下平移3个单位,得抛物线y=x2+bx+c,则( B ) A.b=2 c= 6 B.b=-6 , c=6 C.b=-8 c= 6 D.b=-8 , c=18
7.5
… …
y
请你根据图象说 出函数的增减性
直线X=6
10
5
O
5
10
x
归纳
1 2-6x +21图象的 二次函数 y= —x
画法:
2
(1)“化” :化成顶点式 ; (2)“定”:确定对称轴、顶点坐标、开口方向;
(3)“画”:列表、描点、连线。
用配方法求出下列函数图象的对称轴与顶点坐标。 1) y=-2x2+8x -8 2) y=2x2+8x-6
y ax bx c c 2 b a x x a c
2
提取二次项系数
b 4ac b 2 a x . 2a 4a
2
化简:去掉中括号
2
这个结果通常称为 顶点坐标公式.
b 4ac b 2 y a x . 2a 4a
函数y=ax²+bx+c的顶点是
求次函数y=ax² +bx+c的对称轴和顶点坐标.
配方:
配方:加上再减去 2 b b 2 b 2 c a x x 一次项系数一半 a 2a 2a a 的平方 2 b 4ac b 2 整理:前三项化为平方形 a x 2 式,后两项合并同类项 2a 4a
相关文档
最新文档