人教版七年级下学期期末数学试题(有答案)
人教版数学七年级下册期末考试试卷及答案

人教版数学七年级下册期末考试试题一、单选题(共10小题,每题3分,共30分).1.在实数﹣,0.21,,,,0.20202中,无理数的个数为()A.1 B.2 C.3 D.42.第七次全国人口普查结果显示,全国人口共141178万人,与2010年第六次全国人口普查数据相比,增加7206万人.将数据7206万用科学记数法表示为()A.7206×104B.72.06×106C.7.206×107D.0.7206×108 3.已知∠1与∠2是对顶角,∠1与∠3是邻补角,则∠2+∠3的度数为()A.90°B.180°C.270°D.360°4.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.已知点A(4,﹣3)到y轴的距离为()A.4 B.﹣4 C.3 D.﹣36.长沙市今年有8万名学生参加初中毕业会考,要想了解这8万名学生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.1000名考生是样本容量C.8万名考生是总体D.每位学生的数学成绩是个体7.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.三角形的稳定性8.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.9.我国古代著名著作《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一直五十里,驽马先行一十二日,问良马几何追及之.”题意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,则快马追上慢马需()A.20天B.21天C.22天D.23天10.如图,△ABC中,∠1=∠2,点G为AD中点,延长BG交AC于点E,F为AB上一点,且CF⊥AD于点H,下列判断中,①线段BG是△ABD边AD上的中线;②线段CH 是△ACH中AH边上的高;③△ABG与△BDG面积相等;④AB﹣AC=BF;⑤∠2+∠FBC+∠FCB=90°,其中正确的结论有()A.5个B.4个C.3个D.2个二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系内,把点P(﹣5,﹣2)向右平移2个单位长度得到的点的坐标是.12.不等式组的解集为.13.已知:如图,在△ABC中,∠BAC=50°,∠ABC=60°,则∠ACE=.14.如果一个多边形的每个外角都等于60°,则这个多边形的边数是.15.一个正数x的平方根是2a﹣3与5﹣a,则a=.16.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是.三、解答题(本大题共9个小题,第17、18、19题每题6分,第20、21题每题8分,第22、23题每随9分,第24、25题每题10分,共72分)17.计算:+|﹣4|+(﹣1)2021﹣.18.先化简,再求值:﹣3a2b+(4ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣1.19.求满足不等式:+2>的所有正整数解.20.人教版八年级上册第36﹣37页如何作一个角等于已知角的方法.已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.请你根据以上材料完成下面问题.(1)这种作一个角等于已知角的方法的依据是.(填序号)①SSS ②SAS ③AAS ④ASA(2)请你证明:∠A′O′B′=∠AOB.21.湖南广益实验中学在暑假期间开展“心怀感恩,孝敬父母”的实践活动,倡导学生在假期中帮助父母干家务,开学以后,校学生会随机抽取了部分学生,就暑假“平均每天帮助父母干家务所用时长”进行了调查,如图是根据相关数据绘制的统计图的一部分.根据上述信息,回答下列问题:(1)在本次随机抽取的样本中,调查的学生人数是人,m=,n =;(2)补全数分布直方图;(3)如果该校共有学生4000人,请你估计“平均每天帮助父母干家务的时长不少于30分钟”的学生大约有多少人?22.在国家精准扶贫政策下,某乡村大力发展乡村旅游,为了满足游客的需求,某商户决定购进A,B两种特产来进行销售.(1)若购进A种特产8件,B种特产3件,需要950元;购进A种特产5件,B种特产6件,需要800元.求购进A,B两种特产每件分别需要多少元?(2)若该商户决定购进A,B两种特产共100件,虑市场需求和资金周转,A种特产至少需购进50件,用于购买这100件特产的总资金不能超过7650元,请问该商户最多可购进A种特产多少件?23.已知:如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,4),点C在第四象限,AC⊥AB,AC=AB.(1)求点C的坐标及∠COA的度数;(2)若直线BC与x轴的交点为M,点P在经过点C与x轴平行的直线上,求出S△POM+S△BOM的值.24.对于实数x,y我们定义一种新运算L(x,y)=ax+by(其中a,b均为非零常数),由这种运算得到的数我们称之为广益数,记为L(x,y),其中(x,y)叫做广益数对.若实数x,y都取正整数,此时的(x,y)叫做广益正格数对.(1)若L(x,y)=x+3y,则L(,)=,L(﹣2,m)=;(用含m 的式子表示)(2)已知L(x,y)=ax+by(其中a,b互为相反数)L(2,3)=n﹣3,L(1,﹣2)=2n+1,求n的值.(3)已知L(x,y)=3x+cy,其中L(,)=2.若L(x,kx)=18(其中k为整数),问是否存在满足这样条件的广益正格数对?若存在,请求出这样的广益正格数对;若不存在,请说明理由.25.如图①,AB=9,AC⊥AB,BD⊥AB,AC=BD=7,点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t秒.(1)若点Q运动的速度与点P运动的速度相等,当t=1时,求证:△ACP≌△BPQ;(2)在(1)的条件下,求∠PCQ的度数;(3)如图②,若∠CAB=∠DBA=70°,AB=9,AC=BD=7,点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上以每秒x个单位的速度由点B向点D运动,若存在△ACP与△BPQ全等,请求出相应的x和t的值.参考答案一、单选题(共10小题,每题3分,共30分).1.在实数﹣,0.21,,,,0.20202中,无理数的个数为()A.1 B.2 C.3 D.4解:0.21,0.20202有限小数,属于有理数;是分数,属于有理数;无理数有﹣,,,共3个.故选:C.2.2021年5月11日,第七次全国人口普查结果显示,全国人口共141178万人,与2010年第六次全国人口普查数据相比,增加7206万人.将数据7206万用科学记数法表示为()A.7206×104B.72.06×106C.7.206×107D.0.7206×108解:7206万=72060000=7.206×107,故选:C.3.已知∠1与∠2是对顶角,∠1与∠3是邻补角,则∠2+∠3的度数为()A.90°B.180°C.270°D.360°解:∵∠1与∠2是对顶角,∴∠1=∠2,∵∠1与∠3是邻补角,∴∠1+∠3=180°,∴∠2+∠3=180°.故选:B.4.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间解:∵16<21<25,∴4<<5,则的值在4和5之间,故选:C.5.已知点A(4,﹣3)到y轴的距离为()A.4 B.﹣4 C.3 D.﹣3解:点A(4,﹣3)到y轴的距离为|4|=4.故选:A.6.长沙市今年有8万名学生参加初中毕业会考,要想了解这8万名学生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.1000名考生是样本容量C.8万名考生是总体D.每位学生的数学成绩是个体解:A.这1000名考生的数学成绩是总体的一个样本,故本选项不合题意;B.1000是样本容量,故本选项不合题意;C.8万名考生的数学成绩是总体,故本选项不合题意;D.每位学生的数学成绩是个体,故本选项符合题意.故选:D.7.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.三角形的稳定性解:一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是三角形的稳定性,故选:D.8.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.解:A、∵AB∥CD,∴∠1+∠2=180°,∠1与∠2不一定相等,故A错误,不符合题意;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确,符合题意;C、若梯形ABCD是等腰梯形,可得∠1=∠2,故C错误,不符合题意;D、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2,故D错误,不符合题意;故选:B.9.我国古代著名著作《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一直五十里,驽马先行一十二日,问良马几何追及之.”题意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,则快马追上慢马需()A.20天B.21天C.22天D.23天解:设快马x天可以追上慢马,由题意,得240x﹣150x=150×12,解得:x=20.答:快马20天可以追上慢马.故选:A.10.如图,△ABC中,∠1=∠2,点G为AD中点,延长BG交AC于点E,F为AB上一点,且CF⊥AD于点H,下列判断中,①线段BG是△ABD边AD上的中线;②线段CH 是△ACH中AH边上的高;③△ABG与△BDG面积相等;④AB﹣AC=BF;⑤∠2+∠FBC+∠FCB=90°,其中正确的结论有()A.5个B.4个C.3个D.2个解:①因为G为AD中点,所以BG是△ABD边AD上的中线,故正确;②因为CF⊥AD于H,所以CH是△ACH中AH边上的高,故正确;③因为G为AD中点,根据等底等高的三角形面积相等,故正确;④因为∠1=∠2,CF⊥AD,可知∠AFC=∠ACF,根据等角对等边得AF=AC,故AB﹣AC=BF正确,⑤因为∠1=∠2,CF⊥AD于H,根据直角三角形的两锐角互余及三角形外角的性质得到,∠1+∠AFH=∠1+∠FBC+∠FCB=90°,所以∠2+∠FBC+∠FCB=90°,故正确.所以正确的个数是5个.故选:A.二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系内,把点P(﹣5,﹣2)向右平移2个单位长度得到的点的坐标是(﹣3,﹣2).解:把点P(﹣5,﹣2)向右平移2个单位长度得到的点的坐标是(﹣3,﹣2).故答案为:(﹣3,﹣2).12.不等式组的解集为x>3.解:根据同大取大,即可得到不等式组的解集为:x>3,故答案为:x>3.13.已知:如图,在△ABC中,∠BAC=50°,∠ABC=60°,则∠ACE=110°.解:∵∠ACE是△ABC的一个外角,∴∠ACE=∠BAC+∠ABC,∵∠BAC=50°,∠ABC=60°,∴∠ACE=50°+60°=110°.14.如果一个多边形的每个外角都等于60°,则这个多边形的边数是6.解:360°÷60°=6.故这个多边形是六边形.故答案为:6.15.一个正数x的平方根是2a﹣3与5﹣a,则a=﹣2.解:∵正数x的平方根是2a﹣3与5﹣a,∴2a﹣3+5﹣a=0,解得a=﹣2.故答案为:﹣2.16.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是108°.解:∵被调查的总户数为9÷15%=60(户),∴B类别户数为60﹣(9+21+12)=18(户),则扇形统计图B部分所对应的圆心角的度数是360°×=108°,故答案为:108°.三、解答题(本大题共9个小题,第17、18、19题每题6分,第20、21题每题8分,第22、23题每随9分,第24、25题每题10分,共72分)17.计算:+|﹣4|+(﹣1)2021﹣.解:原式=3+4﹣1﹣3=3.18.先化简,再求值:﹣3a2b+(4ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣1.解:﹣3a2b+(4ab2﹣a2b)﹣2(2ab2﹣a2b)=﹣3a2b+4ab2﹣a2b﹣4ab2+2a2b=﹣2a2b,当a=1,b=﹣1时,原式=﹣2×1×(﹣1)=2.19.求满足不等式:+2>的所有正整数解.解:去分母得:2(x﹣4)+12>3x,去括号得:2x﹣8+12>3x,解得:x<4,则不等式的正整数解为1,2,3.20.人教版八年级上册第36﹣37页如何作一个角等于已知角的方法.已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.请你根据以上材料完成下面问题.(1)这种作一个角等于已知角的方法的依据是①.(填序号)①SSS②SAS③AAS④ASA(2)请你证明:∠A′O′B′=∠AOB.解:(1)根据作图过程可知:这种作一个角等于已知角的方法的依据是①;①SSS②SAS③AAS④ASA故答案为:①;(2)证明:在△C′O′D′和△COD中,,∴△C′O′D′≌△COD(SSS),∴∠A′O′B′=∠AOB.21.湖南广益实验中学在暑假期间开展“心怀感恩,孝敬父母”的实践活动,倡导学生在假期中帮助父母干家务,开学以后,校学生会随机抽取了部分学生,就暑假“平均每天帮助父母干家务所用时长”进行了调查,如图是根据相关数据绘制的统计图的一部分.根据上述信息,回答下列问题:(1)在本次随机抽取的样本中,调查的学生人数是200人,m=20,n=25;(2)补全数分布直方图;(3)如果该校共有学生4000人,请你估计“平均每天帮助父母干家务的时长不少于30分钟”的学生大约有多少人?解:(1)在本次随机抽取的样本中,调查的学生人数是:60÷30%=200(人),m%=(200﹣60﹣40﹣50﹣10)÷200×100%=20%,n%=50÷200×100%=25%,即m=20,n=25,故答案为:200,20,25;(2)20~30分钟的频数为:200﹣60﹣40﹣50﹣10=40,补全的频数分布直方图如图所示;(3)4000×=1200(人),答:估计“平均每天帮助父母干家务的时长不少于30分钟”的学生大约有1200人.22.在国家精准扶贫政策下,某乡村大力发展乡村旅游,为了满足游客的需求,某商户决定购进A,B两种特产来进行销售.(1)若购进A种特产8件,B种特产3件,需要950元;购进A种特产5件,B种特产6件,需要800元.求购进A,B两种特产每件分别需要多少元?(2)若该商户决定购进A,B两种特产共100件,虑市场需求和资金周转,A种特产至少需购进50件,用于购买这100件特产的总资金不能超过7650元,请问该商户最多可购进A种特产多少件?解:(1)设购进A种特产每件需要x元,购进B种特产每件需要y元,依题意得:,解得:.答:购进A种特产每件需要100元,购进B种特产每件需要50元.(2)设该商户购进A种特产m件,则购进B种特产(100﹣m)件,依题意得:,解得:50≤m≤53.答:该商户最多可购进A种特产53件.23.已知:如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,4),点C在第四象限,AC⊥AB,AC=AB.(1)求点C的坐标及∠COA的度数;(2)若直线BC与x轴的交点为M,点P在经过点C与x轴平行的直线上,求出S△POM+S△BOM的值.解:(1)作CD⊥x轴于点D,∴∠CDA=90°.∵∠AOB=90°,∴∠AOB=∠CDA.∴∠DAC+∠DCA=90°.∵AC⊥AB,∴∠BAC=∠BAD+∠CAD=90°,∴∠BAD=∠ACD.在△AOB和△CDA中,∴△AOB≌△CDA(AAS),∴AO=CD,OB=DA.∵A(﹣2,0),B(0,4),∴OA=2,OB=4,∴CD=2,DA=4,∴OD=2,∴OD=CD.∵点C在第四象限,∴C(2,﹣2).∵∠CDO=90°,∴∠COD=45°.∴∠COA=180°﹣45°=135°.(2)∵PC∥x轴,∴点P到x轴的距离相等,∴S△POM=S△COM.∴S△POM+S△BOM=S△COM+S△BOM=S△BOC.∴S△POM+S△BOM=S△BOC==4.24.对于实数x,y我们定义一种新运算L(x,y)=ax+by(其中a,b均为非零常数),由这种运算得到的数我们称之为广益数,记为L(x,y),其中(x,y)叫做广益数对.若实数x,y都取正整数,此时的(x,y)叫做广益正格数对.(1)若L(x,y)=x+3y,则L(,)=3,L(﹣2,m)=﹣2+3m;(用含m的式子表示)(2)已知L(x,y)=ax+by(其中a,b互为相反数)L(2,3)=n﹣3,L(1,﹣2)=2n+1,求n的值.(3)已知L(x,y)=3x+cy,其中L(,)=2.若L(x,kx)=18(其中k为整数),问是否存在满足这样条件的广益正格数对?若存在,请求出这样的广益正格数对;若不存在,请说明理由.解:(1)根据题中的新定义得:L(,)=+3×=3;L(﹣2,m)=﹣2+3m,故答案为:3,﹣2+3m;(2)根据题中的新定义得:L(2,3)=2a+3b=n﹣3;L(1,﹣2)=a﹣2b=2n+1;∵a,b互为相反数,∴a=﹣b,∴,解得:n=;(3)存在,(2,6),理由如下:根据题中的新定义化简L(,)=2,得:3×+c=2,解得:c=2,化简L(x,kx)=18,得:3x+2kx=18,依题意,x,y都为正整数,k是整数,∴3+2k是奇数,∴3+2k=1,3,9,解得:k=−1,0,3,当k=−1时,x=18,kx=−18,舍去;当k=0时,x=6,kx=0,舍去;当k=3时,x=2,kx=6,综上,k=3时,存在正格数对x=2,y=6满足条件.25.如图①,AB=9,AC⊥AB,BD⊥AB,AC=BD=7,点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t秒.(1)若点Q运动的速度与点P运动的速度相等,当t=1时,求证:△ACP≌△BPQ;(2)在(1)的条件下,求∠PCQ的度数;(3)如图②,若∠CAB=∠DBA=70°,AB=9,AC=BD=7,点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上以每秒x个单位的速度由点B向点D运动,若存在△ACP与△BPQ全等,请求出相应的x和t的值.【解答】(1)证明:当t=1时,AP=BQ=2,则BP=9﹣2=7,∴BP=AC,又∵∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).(2)解:如图①中,连接CQ.∵△ACP≌△BPQ,∴∠ACP=∠BPQ,PC=PQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,∴∠PCQ=45°.(3)解:①若△ACP≌△BPQ,则AC=BP,AP=BQ,∴9﹣2t=7,解得,t=1(s),则x=2(cm/s);②若△ACP≌△BQP,则AC=BQ,AP=BP,则2t=×9,解得,t=(s),则x=7÷=(cm/s),故当t=1s,x=2cm/s或t=s,x=cm/s时,△ACP与△BPQ全等.。
人教版七年级数学下册期末测试题+答案解析(共四套)

⼈教版七年级数学下册期末测试题+答案解析(共四套)B ′C ′D ′O ′A ′O DC BA(第8题图)⼀、选择题(每⼩题3分,计24分,请把各⼩题答案填到表格内)题号 1 2 3 4 5 6 78 总分答案1.如图所⽰,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业⽣的中考数学成绩,从中抽取500名学⽣的数学成绩进⾏统计分析,那么样本是 A .某市5万名初中毕业⽣的中考数学成绩 B .被抽取500名学⽣(第1题图)C .被抽取500名学⽣的数学成绩D .5万名初中毕业⽣ 5.有⼀个两位数,它的⼗位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个D .⽆数个 7.下列事件属于不确定事件的是A .太阳从东⽅升起B .2010年世博会在上海举⾏C .在标准⼤⽓压下,温度低于0摄⽒度时冰会融化D .某班级⾥有2⼈⽣⽇相同 8.请仔细观察⽤直尺和圆规.....作⼀个⾓∠A ′O ′B ′等于已知⾓∠AOB 的⽰意图,请你根据所学的图形的全等这⼀章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SAS B .ASA C .AASD .SSS⼆、填空题(每⼩题3分,计24分)9.⽣物具有遗传多样性,遗传信息⼤多储存在DNA 分⼦上.⼀个DNA 分⼦的直径约为0.0000002cm .这个数量⽤科学记数法可表⽰为 cm . 10.将⽅程2x+y=25写成⽤含x 的代数式表⽰y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的⼤⼩是 °. 12.三⾓形的三个内⾓的⽐是1:2:3,则其中最⼤⼀个内⾓的度数是 °.13.掷⼀枚硬币30次,有12次正⾯朝上,则正⾯朝上的频率为 .14.不透明的袋⼦中装有4个红球、3个黄球和5个蓝球,每个球除颜⾊不同外其它都相同,从中任意摸出⼀个球,则摸出球的可能性最⼩. 15.下表是⾃18世纪以来⼀些统计学家进⾏抛硬币试验所得的数据:试验者试验次数n 正⾯朝上的次数m正⾯朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正⾯朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某⼀个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出⼀个正确结果的序号:.三、解答题(计72分)17.(本题共8分)如图,⽅格纸中的△ABC 的三个顶点分别在⼩正⽅形的顶点(格点)上,称为格点三⾓形.请在⽅格纸上按下列要求画图.在图①中画出与△ABC 全等且有⼀个公共顶点的格点△C B A ''';在图②中画出与△ABC 全等且有⼀条公共边的格点△C B A ''''''.20.解⽅程组:(每⼩题5分,本题共10分)(1)=+-=300342150y x yx (2)=+=+300%25%53%5300y x y x 21.(本题共8分)已知关于x 、y 的⽅程组=+=+73ay bx by ax 的解是==12y x ,求a b +的值.OAC P P′(第16题图)(第16题图)22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)⼩王某⽉⼿机话费中的各项费⽤统计情况见下列图表,请你根据图表信息完成下列各题:(2)请将条形统计图补充完整. (3)扇形统计图中,表⽰短信费的扇形的圆⼼⾓是多少度?24.(本题4+8=12分)上海世博会会期为2010年5⽉1⽇⾄2010年10⽉31⽇。
【人教版】数学七年级下册《期末检测试题》有答案解析

2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共12小题,共36.0分)1. 下列实数中,最小的数是( )A .B . 0C . 1D . 2. 为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指( )A . 400B . 被抽取的400名考生C . 被抽取的400名考生的中考数学成绩D . 内江市2018年中考数学成绩3. 在平面直角坐标系内,点P (A ,A +3)的位置一定不在( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限 4. 若a b >,则下列式子一定成立的是( )A . 0a b +>B . 0a b ->C . 0ab >D . 0a b> 5. 下列长度的三条线段,能组成三角形的是( )A . 4C m ,5C m ,9C mB . 8C m ,8C m ,15C m C . 5C m ,5C m ,10C mD . 6C m ,7C m ,14C m 6. 规定以下两种变换::①f(m ,n)=(m,−n),如f(2,1)=(2,−1);②(,)(,)=--g m n m n ,如(2,1)(2,1)=--g .按照以上变换有:()()()3,43,43,4f g f =--=-⎡⎤⎣⎦,那么()2,3g f -⎡⎤⎣⎦等于( ) A . (2-,3-) B . (2,3-) C . (2-,3) D . (2,3) 7. 《九章算术》是中国古代第一部数学专著,它的出现标志着中国古代数学形成了完整的体系,在其方程章中有一道题:今有甲乙二人,不知其钱包里有多少钱,若乙把其钱的一半给甲,则甲的钱数为50;若甲把其钱的23给乙,则乙的钱数也能为50,问甲、乙各有多少钱?若设甲持钱为x ,乙持钱为y ,则可列方程组( )A .25031502x y y x⎧+=⎪⎪⎨⎪+=⎪⎩B . 15022503x y y x⎧+=⎪⎪⎨⎪+=⎪⎩C . 15022503x y y x⎧-=⎪⎪⎨⎪-=⎪⎩D . 25031502x y y x⎧-=⎪⎪⎨⎪-=⎪⎩8. 如图所示,如果将一副三角板按如图方式叠放,那么∠1 等于( ) A . 120︒ B . 105︒ C . 60︒ D . 45︒9. 如图,,A B的坐标为()()1,0,0,2,若将线段AB平移至11A B,则-a b的值为()A . 1- B . 0 C . 1 D . 210. 已知关于x的方程2x-A =x-1的解是非负数,则A 的取值范围为()A . 1a≥ B . 1a> C . 1a≤ D . 1a<11. 某超市销售一批节能台灯,先以55元/个价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( ) A . 44个 B . 45个 C . 104个 D . 105个12. 如图,动点P从()0,3出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()A . ()1,4B . ()5,0C . ()7,4D . ()8,3二、填空题(本大题共6小题,共18.0分)13. 若将三个数3-、7、11表示在数轴上,则其中被墨迹覆盖的数是_______.14. 在平面直角坐标系中,若点P (2x +6,5x )在第四象限,则x 的取值范围是_________;15. 如图所示:在AEC 中,A E 边上的高是______.16. 若关于x 的一元一次不等式组{202x m x m ->+<无解,则m 的取值范围为______.17. 如图,在ABC ∆中,AD 是BC 边上的高,AE 平分BAC ∠,若130∠=,220∠=,则B ∠=__________.18. 对于实数A ,B ,定义运算”◆”:A ◆B =22a b a b ab a b⎧⎪+≥⎨⎪⎩,,<,例如4◆3,因为4>3.所以4◆2243+.若x ,y 满足方程组48229x y x y -=⎧⎨+=⎩,则x ◆y=_____________. 三、解答题(本大题共7小题,共56.0分)19. (1)求x 的值:4x 2-9=0;(2)计算:36-327+2(2)-.20. 为了了解学生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:.A 只愿意就读普通高中;.B 只愿意就读中等职业技术学校;.C 就读普通高中或中等职业技术学校都愿意.学校教务处将调查数据进行了整理,并绘制了尚不完整的统计图如下,请根据相关信息,解答下列问题:()1本次活动一共调查的学生数为______名;()2补全图一,并求出图二中A 区域的圆心角的度数;()3若该校八、九年级学生共有2800名,请估计该校八、九年级学生只愿意就读中等职业技术学校的人数.21. 如图,在ABC 内,AD 是BC 边上的高,BE 平分ABC ∠交AC 边于E ,60BAC ∠=︒,25ABE ∠=︒,求DAC ∠的度数.22. 已知在平面直角坐标系中有 A (-2,1), B (3, 1),C (2, 3)三点,请回答下列问题:(1)在坐标系内描出点A , B , C 位置.(2)画出ABC 关于直线x=-1对称的111A B C ∆,并写出111A B C ∆各点坐标.(3)在y 轴上是否存在点P ,使以A ,B , P 三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标:若不存在,请说明理由.23. 先阅读下列一段文字,再回答问题.已知平面内两点P 1(x 1,y 1),P 2(x 2,y 2),这两点间的距离P 1P 2=222121()()x x y y -+-.同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可简化为|x 2-x 1|或|y 2-y 1|.(1)已知点A (2,4),B (-3,-8),试求A ,B 两点间的距离;(2)已知点A ,B 所在的直线平行于y 轴,点A 的纵坐标为5,点B 的纵坐标为-1,试求A ,B 两点间的距离;(3)已知一个三角形各顶点的坐标分别为A (0,6),B (-3,2),C (3,2),你能判断三角形A B C 的形状吗?说明理由.24. 某电器经营业主两次购进一批同种型号的挂式空调和电风扇,第一次购进8台空调和20台电风扇;第二次购进10台空调和30台电风扇.()1若第一次用资金17400元,第二次用资金22500元,求挂式空调和电风扇每台的采购价各是多少元? ()2在()1的条件下,若该业主计划再购进这两种电器70台,而可用于购买这两种电器的资金不超过30000元,问该经营业主最多可再购进空调多少台?25. 已知在四边形A B C D 中,A x ∠=,C y ∠=,(0180,0180)x y <<<<.()1ABC ADC ∠+∠=______(用含x 、y 的代数式直接填空);()2如图1,若90.x y DE ==平分ADC ∠,B F 平分CBM ∠,请写出D E 与B F 的位置关系,并说明理由;()3如图2,DFB ∠为四边形A B C D 的ABC ∠、ADC ∠相邻的外角平分线所在直线构成的锐角. ①若120x y +=,20DFB ∠=,试求x 、y .②小明在作图时,发现DFB ∠不一定存在,请直接指出x 、y 满足什么条件时,DFB ∠不存在.答案与解析选择题(本大题共12小题,共36.0分)1. 下列实数中,最小的数是()A .B . 0C . 1D .【答案】A【解析】【分析】根据各项数字的大小排列顺序,找出最小的数即可.【详解】由题意得:01<<<:故选A .【点睛】本题考查了实数大小的比较,解题的关键是理解正数大于0,0大于负数的知识.2. 为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指()A . 400B . 被抽取的400名考生C . 被抽取的400名考生的中考数学成绩D . 内江市2018年中考数学成绩【答案】C【解析】【详解】分析:直接利用样本的定义,从总体中取出的一部分个体叫做这个总体的一个样本,进而进行分析得出答案.详解:为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指被抽取的400名考生的中考数学成绩.故选C .点睛:此题主要考查了样本的定义,正确把握定义是解题的关键.3. 在平面直角坐标系内,点P(A ,A +3)的位置一定不在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限【答案】D【解析】【分析】判断出P的横纵坐标的符号,即可判断出点P所在的相应象限.【详解】当A 为正数的时候,A +3一定为正数,所以点P可能在第一象限,一定不在第四象限, 当A 为负数的时候,A +3可能为正数,也可能为负数,所以点P 可能在第二象限,也可能在第三象限,故选D .【点睛】本题考查了点的坐标的知识点,解题的关键是由A 的取值判断出相应的象限.4. 若a b >,则下列式子一定成立的是( )A . 0a b +>B . 0a b ->C . 0ab >D . 0a b> 【答案】B【解析】【分析】根据不等式的基本性质进行解答即可.【详解】A 、若0>A >B 时,A +B <0.故A 选项错误;B 、在A >B 的两边同时减去B ,不等式仍成立,即A -B >0.故B 选项正确;C 、若A >0>B 时,A B <0.故C 选项错误;D 、若B =0时,该不等式不成立.故D 选项错误.故选B .【点睛】本题考查了不等式的基本性质: (1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5. 下列长度的三条线段,能组成三角形的是( )A . 4C m ,5C m ,9C mB . 8C m ,8C m ,15C m C . 5C m ,5C m ,10C mD . 6C m ,7C m ,14C m 【答案】B【解析】【详解】分析:结合”三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论. 详解:A 、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B 、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C 、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D 、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选B .点睛:本题考查了三角形的三边关系,解题的关键是:用较短的两边长相交于第三边作比较.本题属于基础题,难度不大,解决该题型题目时,结合三角形三边关系,代入数据来验证即可.6. 规定以下两种变换::①f(m,n)=(m,−n),如f(2,1)=(2,−1);②(,)(,)=--g m n m n ,如(2,1)(2,1)=--g .按照以上变换有:()()()3,43,43,4f g f =--=-⎡⎤⎣⎦,那么()2,3g f -⎡⎤⎣⎦等于( ) A . (2-,3-)B . (2,3-)C . (2-,3)D . (2,3) 【答案】D【解析】【分析】根据f (m ,n )=(m ,-n ),g (2,1)=(-2,-1),可得答案.【详解】g[f(−2,3)]=g[−2,−3]=(2,3),故D 正确,故选D .【点睛】此题考查点的坐标,解题关键在于掌握其变化规律.7. 《九章算术》是中国古代第一部数学专著,它的出现标志着中国古代数学形成了完整的体系,在其方程章中有一道题:今有甲乙二人,不知其钱包里有多少钱,若乙把其钱的一半给甲,则甲的钱数为50;若甲把其钱的23给乙,则乙的钱数也能为50,问甲、乙各有多少钱?若设甲持钱为x ,乙持钱为y ,则可列方程组( )A . 25031502x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩B . 15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩C . 15022503x y y x ⎧-=⎪⎪⎨⎪-=⎪⎩D . 25031502x y y x ⎧-=⎪⎪⎨⎪-=⎪⎩【答案】B【解析】 【分析】由乙把其钱的一半给甲,则甲的钱数为50;若甲把其钱的23给乙,则乙的钱数也能为50,列出方程组求解即可.【详解】解:由题意得:15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩, 故选B .【点睛】本题考查了二元一次方程组的应用,解答本题的关键是理解题意列出方程组.8. 如图所示,如果将一副三角板按如图方式叠放,那么 ∠1 等于( )A . 120︒B . 105︒C . 60︒D . 45︒【答案】B【解析】 【详解】解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°=45°+60°=105°.故选B .点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键. 9. 如图, ,A B 的坐标为()()1,0,0,2,若将线段AB 平移至11A B ,则-a b 的值为( )A . 1-B . 0C . 1D . 2【答案】B【解析】【分析】直接利用平移中点的变化规律求解即可.【详解】解:由B 点平移前后的纵坐标分别为2、4,可得B 点向上平移了2个单位,由A 点平移前后的横坐标分别是为1、3,可得A 点向右平移了2个单位,由此得线段A B 的平移的过程是:向上平移2个单位,再向右平移2个单位,所以点A 、B 均按此规律平移,由此可得A =0+2=2,B =0+2=2,∴A -B =2-2=0,故选:B .【点睛】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10. 已知关于x 的方程2x-A =x-1的解是非负数,则A 的取值范围为( )A . 1a ≥B . 1a >C . 1a ≤D . 1a <【答案】A【解析】【分析】本题首先要解这个关于x 的方程,然后根据解是非负数,就可以得到一个关于A 的不等式,最后求出A 的取值范围.【详解】解:原方程可整理为:(2-1)x=A -1,解得:x=A -1,∵方程x 的方程2x-A =x-1的解是非负数,∴A -1≥0,解得:A ≥1.故选A .点睛:本题综合考查了一元一次方程的解与解一元一次不等式.解关于x 的不等式是本题的一个难点. 11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A . 44个B . 45个C . 104个D . 105个 【答案】D【解析】【分析】根据题意设出未知数,找出不等关系列出相应的不等式即可.【详解】设这批闹钟至少有x 个,根据题意得5500×60+5000(x -60)>550000∴5000(x -60)>5500×40x-60>44∴x>104答:这批闹钟最少有105个.故选D .【点睛】本题考查了实际问题与一元一次不等式,解题的关键是理解题意,根据不等关系列出相应的不等式. 12. 如图,动点P 从()0,3出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P 第2018次碰到矩形的边时,点P 的坐标为( )A . ()1,4B . ()5,0C . ()7,4D . ()8,3【答案】C【解析】 【分析】理解题意,由反射角与入射角的定义作出图形,观察出反弹6次为一个循环的规律,解答即可.【详解】如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P 第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P 的坐标为(7,4).故选C .【点睛】本题考查了平面直角坐标系中点的坐标规律,首先作图,然后观察出每6次反弹为一个循环,据此解答即可.二、填空题(本大题共6小题,共18.0分)13. 若将三个数3-、7、11表示在数轴上,则其中被墨迹覆盖的数是_______.【答案】7【解析】【分析】首先利用估算的方法分别得到3-、7、11前后的整数(即它们分别在哪两个整数之间),从而可判断出被覆盖的数.【详解】解:∵-2<3-<-1,2<7<3,3<11<4,且墨迹覆盖的范围是1-3,∴能被墨迹覆盖的数是7.故答案为:7.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,难度不大.14. 在平面直角坐标系中,若点P(2x+6,5x)在第四象限,则x的取值范围是_________;【答案】﹣3<x<0【解析】【分析】根据第四象限内横坐标为正,纵坐标为负可得出答案.【详解】∵点P(2x-6,x-5)在第四象限,∴2+6050xx⎧⎨⎩><解得-3<x<0.故答案为-3<x<0.【点睛】本题考查了点的坐标、一元一次不等式组,解题的关键是知道平面直角坐标系中第四象限横、纵坐标的符号.15. 如图所示:在AEC中,A E边上的高是______.【答案】C D .【分析】根据三角形中高线的概念即可作答.【详解】由题意可得:△A EC 中,A E 边上的高是C D ,故答案为C D .【点睛】本题考查了三角形高线的概念,三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.16. 若关于x 的一元一次不等式组{202x m x m ->+<无解,则m 的取值范围为______.【答案】2m ≥-【解析】 【分析】根据一元一次方程组的解法结合题意可求出m 的取值范围作答即可.【详解】202x m x m -⎧⎨+⎩<①>② ,解不等式①得,x <2m ,解不等式②得,x >m-2,∵不等式组无解,∴2m≥m -2,∴m≥-2,故答案为m≥-2. 【点睛】本题考查了解一元一次不等式组,解题的关键是熟知:同大取大;同小取小;大小小大中间找;大大小小不用找的原则. 17. 如图,在ABC ∆中,AD 是BC 边上的高,AE 平分BAC ∠,若130∠=,220∠=,则B ∠=__________.【答案】50°【分析】由角平分线定义和已知可求出∠B A C ,由AD 是BC 边上的高和已知条件可以求出∠C ,然后运用三角形内角和定理,即可完成解答.【详解】解:∵AE 平分BAC ∠,若130∠=∴BAC ∠=2160∠=;又∵AD 是BC 边上的高,220∠=∴C ∠=90°-270∠= 又∵BAC ∠+∠B +∠C =180°∴∠B =180°-60°-70°=50° 故答案为50°.【点睛】本题考查了角平分线、高的定义以及三角形内角和的知识,考查知识点较多,灵活运用所学知识是解答本题的关键.18. 对于实数A ,B ,定义运算”◆”:A ◆B =a b ab a b≥⎪⎩,<,例如4◆3,因为4>3.所以4◆.若x ,y 满足方程组48229x y x y -=⎧⎨+=⎩,则x ◆y=_____________. 【答案】60【解析】 【详解】分析:根据二元一次方程组的解法以及新定义运算法则即可求出答案. 详解:由题意可知:48229x y x y -=⎧⎨+=⎩, 解得:512x y =⎧⎨=⎩. ∵x <y ,∴原式=5×12=60. 故答案为60. 点睛:本题考查了二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型. 三、解答题(本大题共7小题,共56.0分) 19. (1)求x 的值:4x 2-9=0;(2)计算:36-327+2(2)-.【答案】(1)32±;(2)5. 【解析】【分析】(1)方程变形后,开方即可求出解;(2) 首先化简每个二次根式,然后合并同类项即可【详解】()21490x -=, 249x =,294x = 32x =±; ()2原式6325=-+=.【点睛】本题考查了实数的运算和二次根式的混合运算,熟练掌握运算法则是解本题的关键.20. 为了了解学生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:.A 只愿意就读普通高中;.B 只愿意就读中等职业技术学校;.C 就读普通高中或中等职业技术学校都愿意.学校教务处将调查数据进行了整理,并绘制了尚不完整的统计图如下,请根据相关信息,解答下列问题:()1本次活动一共调查的学生数为______名;()2补全图一,并求出图二中A 区域的圆心角的度数;()3若该校八、九年级学生共有2800名,请估计该校八、九年级学生只愿意就读中等职业技术学校的人数.【答案】(1)800;(2)216°;(3) 840人. 【解析】【分析】(1)根据C 的人数除以其所占的百分比,求出调查的学生总数即可;(2)用总数减去A 、C 区域的人数得到B 区域的学生数,从而补全图一;再根据百分比=频数总数计算可得A 所占百分比,再乘以,从而求出A 区域的圆心角的度数;(3)求出B 占的百分比,乘以2800即可得到结果.【详解】(1)根据题意得:80÷36360=800(名), 则调查的学生总数为800名.故答案为800;(2)B 的人数为:800-(480+80)=240(名),A 区域的圆心角的度数为480800×360°=216°, 补全统计图,如图所示:(3)根据题意得:240800240800×2800=840人.所以估计该校八、九年级学生只愿意就读中等职业技术学校的有840人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.21. 如图,在ABC 内,AD 是BC 边上的高,BE 平分ABC ∠交AC 边于E ,60BAC ∠=︒,25ABE ∠=︒,求DAC ∠的度数.【答案】20°.【解析】【分析】先根据角平分线的定义求出∠A B C 的度数,再根据直角三角形的性质求出∠B A D 的度数,然后根据角的和差计算即可.【详解】解:BE 平分ABC ∠,12ABE CBE ABC ∴∠=∠=∠, 25ABE ∠=︒,50ABC =∴∠︒,AD 是BC 边上的高,90ADB ∴∠=︒,则在ABD △中,90BAD ABD ∠=︒-∠9050=︒-︒40=︒,DAC BAC BAD ∠=∠-∠,60BAC ∠=︒,604020DAC ∴∠=︒-︒=︒.【点睛】本题考查了角平分线的定义、直角三角形两锐角互余的性质等知识,属于基础题型,熟练掌握基本知识是解题关键.22. 已知在平面直角坐标系中有 A (-2,1), B (3, 1),C (2, 3)三点,请回答下列问题:(1)在坐标系内描出点A , B , C 的位置.(2)画出ABC 关于直线x=-1对称的111A B C ∆,并写出111A B C ∆各点坐标.(3)在y 轴上是否存在点P ,使以A ,B , P 三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标:若不存在,请说明理由.【答案】(1)画图见解析;(2)画图见解析;(3)存在,P 点为(0,5)或(0,-3);【解析】【分析】(1)首先在坐标系中确定A 、B 、C 三点位置,然后再连接即可;(2)首先确定A 、B 、C 三点关于x=-1的对称点位置,然后再连接即可;(3)详细见解析;【详解】解:(1)如图:△A B C 即为所求;(2)如图:111A B C ∆即为所求;各点坐标分别为:1A (0,1),1B (-51),,1C (43)-,; (3)解:设P (0,y ),∵A (-2,1),B (3,1),∴A B =5, ∴151=122ABP S AB y y ∆=⨯--, ∵ABP S ∆=10, ∴51=102y -, ∴1=4y -,∴y=5或y=-3;∴P (0,5)或(0,-3);【点睛】本题主要考查了作图-轴对称变换,掌握作图-轴对称变换是解题的关键.23. 先阅读下列一段文字,再回答问题.已知平面内两点P 1(x 1,y 1),P 2(x 2,y 2),这两点间的距离P 1P 2222121()()x x y y -+-同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可简化为|x 2-x 1|或|y 2-y 1|.(1)已知点A (2,4),B (-3,-8),试求A ,B 两点间的距离;(2)已知点A ,B 所在的直线平行于y轴,点A 的纵坐标为5,点B 的纵坐标为-1,试求A ,B 两点间的距离;(3)已知一个三角形各顶点的坐标分别为A (0,6),B (-3,2),C (3,2),你能判断三角形A B C 的形状吗?说明理由.【答案】(1) A ,B 两点间的距离是13;(2) A ,B 两点间的距离是6;(3)三角形A B C 是等腰三角形.理由见解析.【解析】【分析】(1)根据两点间的距离公式P1P2来求A 、B 两点间的距离;(2)根据两点间的距离公式|y2-y1|来求A 、B 两点间的距离;(3)先将A 、B 、C 三点置于平面直角坐标系中,然后根据两点间的距离公式分别求得A B 、B C 、A C 的长度;最后根据三角形的三条边长来判断该三角形的形状.【详解】(1)∵A (2,4),B (-3,-8),∴A B ,∵132=169,=13,即A ,B 两点间的距离是13;(2)∵点A ,B 所在的直线平行于y轴,点A 的纵坐标为5,点B 的纵坐标为-1,∴A B =|-1-5|=6,即A ,B 两点间的距离是6;(3)三角形A B C 是等腰三角形,理由:∵一个三角形各顶点的坐标分别为A (0,6),B (-3,2),C (3,2),∴A B ,B C ,A C =5,∴A B =A C ,∴三角形A B C 是等腰三角形.【点睛】本题考查了两点间的距离公式.解答该题时,先弄清两点在平面直角坐标系中的位置,然后选取合适的公式来求两点间的距离.24. 某电器经营业主两次购进一批同种型号的挂式空调和电风扇,第一次购进8台空调和20台电风扇;第二次购进10台空调和30台电风扇.()1若第一次用资金17400元,第二次用资金22500元,求挂式空调和电风扇每台的采购价各是多少元?()2在()1的条件下,若该业主计划再购进这两种电器70台,而可用于购买这两种电器的资金不超过30000元,问该经营业主最多可再购进空调多少台?【答案】()1挂式空调每台的采购价是1800元,电风扇每台的采购价是150元;()2该经营业主最多可再购进空调11台.【解析】【分析】(1)设挂式空调每台的采购价是x 元,电风扇每台的采购价是y 元,根据采购价格=单价×数量,可列出关于x 、y 的二元一次方程组,解方程组即可得出结论;(2)设再购进空调A 台,则购进风扇(70﹣A )台,根据采购价格=单价×数量,可列出关于A 的一元一次不等式,解不等式即可求解.【详解】()1设挂式空调每台的采购价是x 元,电风扇每台的采购价是y 元,根据题意,得82017400103022500x y x y +=⎧+=⎨⎩, 解{1800150x y ==. 答:挂式空调每台的采购价是1800元,电风扇每台的采购价是150元.()2设再购进空调A 台,则购进风扇()70a -台,由已知,得()18001507030000a a +-≤,解得:91111a ≤, 故该经营业主最多可再购进空调11台.【点睛】本题考查了二元一次方程组的应用以及解一元一次不等式,根据数量关系列出方程(方程组或不等式)是关键.25. 已知在四边形A B C D 中,A x ∠=,C y ∠=,(0180,0180)x y <<<<.()1ABC ADC ∠+∠=______(用含x 、y 的代数式直接填空); ()2如图1,若90.x y DE ==平分ADC ∠,B F 平分CBM ∠,请写出D E 与B F 的位置关系,并说明理由; ()3如图2,DFB ∠为四边形A B C D 的ABC ∠、ADC ∠相邻的外角平分线所在直线构成的锐角. ①若120x y +=,20DFB ∠=,试求x 、y . ②小明在作图时,发现DFB ∠不一定存在,请直接指出x 、y 满足什么条件时,DFB ∠不存在.【答案】(1)360x y --; (2)DE BF ⊥,理由见解析;(3) ①x=40°,y=80°;②∠D FB 不存在,理由见解析.【解析】【分析】(1)利用四边形的内角和进行计算即可;(2)由三角形外角的性质及角的平分线性质得出B F 和D E 的位置关系,进而作答;(3)①利用角平分线的定义以及三角形内角和定理,得出113022DFB y x ∠=-=︒ ,进而得出x ,y 的值;②当x=y 时,D C ∥B F ,即∠D FB =0,进而得出答案. 【详解】()1360A ABC C ADC ∠+∠+∠+∠=,A x ∠=,C y ∠=, 360ABC ADC x y ∴∠+∠=--.故答案为360x y --.()2DE BF ⊥.理由:如图1,DE 平分ADC ∠,B F 平分MBC ∠,12CDE ADC ∴∠=∠,12CBF CBM ∠=∠, 又()180180180CBM ABC ADC ADC ∠=-∠=--∠=∠, CDE CBF ∴∠=∠,又DGC BGE ∠=∠,90BEG C ∴∠=∠=,DE BF ∴⊥;()3①由()1得:()360360CDN CBM x y x y ∠+∠=---=+, BF 、D F 分别平分CBM ∠、CDN ∠,()12CDF CBF x y ∴∠+∠=+, 如图2,连接D B ,则180CBD CDB y ∠+∠=-, ()111180180222FBD FDB y x y y x ∴∠+∠=-++=-+, 112022DFB y x ∴∠=-=, 解方程组:120112022x y y x ⎧+=⎪⎨-=⎪⎩, 可得:4080x y ⎧=⎨=⎩; ②当x y =时,1118018022FBD FDB y x ∠+∠=-+=, ABC ∴∠、ADC ∠相邻的外角平分线所在直线互相平行,此时,DFB ∠不存在.【点睛】本题主要考查了多边形的内角和角平分线的定义以及三角形内角和定理等知识,正确应用角平分线的定义是解题关键.。
最新人教版七年级下册数学《期末检测试卷》(附答案)

人教版七年级下学期期末测试数学试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题4分,共40分)1.如果一个角等于它的余角的2倍,那么这个角是它补角的()A. 2倍B. 0.5倍C. 5倍D. 0.2倍2.如图所示,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,小明走下面()线路不能到达学校.A. (0,4)→(0,0)→(4,0)B. (0,4)→(4,4)→(4,0)C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0)D. (0,4)→(3,4)→(4,2)→(4,0)3.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A. (-2a,2b)B. (-2a,-2b)C. (-2b,-2a)D. (-2a,-b)4.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A. 300名学生是总体B. 每名学生是个体C. 50名学生是所抽取的一个样本D. 这个样本容量是505. 如图所示,AB∥CD,AD,BC交于O,∠A=35°,∠BOD=76°,则∠C的度数是()A. 31°B. 35°C. 41°D. 76°6.方程组23x yx y+=⎧⎨+=⎩●的解为2xy=⎧⎨=⎩▲,则被●和▲遮盖的两个数分别为( )A. 5,1B. 1,3C. 2,3D. 2,47.为了改善住房条件,小亮的父母考察了某小区的A B、两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A套楼房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息列出了下列方程组.其中正确的是().A. B.1.10.9 {24x y x y=-=C.0.9 1.1{24x yx y=-=D.1.10.9{24x yy x=-=8.小明的作业本上有以下四题①42164a a=;②51052a a a⋅=;③211a a aa a=⋅=;④32a a a-=.其中做错误的是()A. ①B. ②C. ③D. ④9. 如图,在△ABC中,三边a、b、c的大小关系是( )A. a<b<cB. c<a<bC. c<b<aD. b<a<c10.如图,天平右盘中每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A. B. C. D. 二、填空题(每题4分,共40分) 11.如图,a∥b,则∠A=______.12.在平面直角坐标系中,点A是y轴上一点,若它的坐标为(a-1,a+1),另一点B的坐标为(a+3,a-5),则点B的坐标是___________.13.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第 20 个正方形(实线)四条边上的整点个数共有____个.14.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_____.15.如图,将一副直角三角扳叠在一起,使直角顶点重合于O点,则∠AOB+∠DOC=_____16.若一个二元一次方程的解为2{1xy==-,则这个方程可以是______(只要求写出一个).17.如图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k=_____.18.已知△ABC 的三边长分别为a 、b 、c ,且a 、b 、c 满足:23410250a b c c -+-+-+=请你判断△ABC 的形状是_______________19.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有__________人.20.若关于x 的不等式组0321xa x -≥⎧⎨->-⎩的整数解恰有5个,求a 的范围. 三、解答题(每题10分,共70分)21.如图,MN ,EF 是两面互相平行的镜面,一束光线AB 照射到镜面MN 上,反射光线为BC ,则∠1=∠2. (1)用尺规作图作出镜面BC 经镜面EF 反射后的反射光线CD ;(2)试判断AB 与CD 的位置关系;(3)你是如何思考的?22.下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE 对称的图案(只画图,不写作法);(3)以G 为原点,GE 所在直线为x 轴,GB 所在直线为y 轴,小正方形边长为单位长度建立直角坐标系,可得点A 的坐标是(_______,_______).23. 夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?24.织里某童装加工企业今年五月份工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分二部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元. (1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?25. 情系灾区.5月12日我国四川汶川县发生里氏8.0级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套,一辆乙货车可装床架10个和课桌凳10套.(1)学校如何安排甲、乙两种货车可一次性把这些物资运到灾区?有几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少?最少运费是多少?答案与解析一、选择题(每题4分,共40分)1.如果一个角等于它的余角的2倍,那么这个角是它补角的()A. 2倍B. 0.5倍C. 5倍D. 0.2倍【答案】B【解析】分析:两角互余和为90°,互补和为180°,根据一个角等于它余角的2倍,建立方程,即可求出这个角,进而求出它的补角即可.详解:设这个角为α,则它的余角为90°-α,∵这个角等于它余角的2倍,∴α=2(90°-α),解得,α=60°,∴这个角的补角为180°-60°=120°,∴这个角是它的补角的60120︒︒=12.故选B.点睛:本题考查了余角和补角的概念.利用题中的数量关系:一个角等于它余角的2倍,建立方程是解题的关键.2.如图所示,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,小明走下面()线路不能到达学校.A. (0,4)→(0,0)→(4,0)B. (0,4)→(4,4)→(4,0)C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0)D. (0,4)→(3,4)→(4,2)→(4,0)【答案】D【解析】【分析】根据题意,在给出的图形中画一下四个选项的行走路线即可得出小明不能到达学校的路线.【详解】A. (0,4)→(0,0)→(4,0),能到达学校,故不符合题意;B. (0,4)→(4,4)→(4,0),能到达学校,故不符合题意;C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0),能到达学校,故不符合题意;D. (0,4)→(3,4)→(4,2)→(4,0),不能到达学校,故符合题意,故选D.【点睛】本题考查了利用坐标确定位置,也考查了数学在生活中的应用,结合题意,自己动手操作一下即可更准确地得到结论.3. 某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A.(-2a,2b)B. (-2a,-2b)C. (-2b,-2a)D. (-2a,-b)【答案】B【解析】根据图形易得,小鱼与大鱼的位似比是1︰2,所以点(a,b)的对应点是(-2a,-2b).故选B.4.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A. 300名学生是总体B. 每名学生是个体C. 50名学生是所抽取的一个样本D. 这个样本容量是50【答案】D【解析】【详解】A、300名学生的视力情况是总体,故此选项错误;B、每个学生的视力情况是个体,故此选项错误;C、50名学生的视力情况是抽取的一个样本,故此选项错误;D、这组数据的样本容量是50,故此选项正确.故选D.5. 如图所示,AB∥CD,AD,BC交于O,∠A=35°,∠BOD=76°,则∠C的度数是()A. 31°B. 35°C. 41°D. 76°【答案】C【解析】本题主要考查了三角形的外角性质和平行线的性质∵AB∥CD,∴∠D=∠A=35°. ∠DOC=180°-∠BOD=180°-76°=104°,在△COD中,∠C=180°-∠D-∠DOC=180°-35°-104°=41°6.方程组23x yx y+=⎧⎨+=⎩●的解为2xy=⎧⎨=⎩▲,则被●和▲遮盖的两个数分别为( )A. 5,1B. 1,3C. 2,3D. 2,4【答案】A【解析】分析:把x代入方程组中的第2个方程即可求出y,把x、y同时代入第一个方程即可求出被遮盖的数.详解:23x yx y+=⎧⎨+=⎩口①②,把x=2代入②,得2+y=3,∴y=1.把x=2,y=1代入①,得方程2x+y=5.故选A.点睛:本题考查了二元一次方程组的解.先把x的值代入方程组中的第二个方程是解题的关键.7.为了改善住房条件,小亮的父母考察了某小区的A B、两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A套楼房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息列出了下列方程组.其中正确的是().A. B. 1.10.9{24x y x y =-= C. 0.9 1.1{24x y x y =-= D. 1.10.9{24x y y x =-= 【答案】D【解析】【分析】可设平均价为1.关键描述语是:B 套楼房的面积比A 套楼房的面积大24平方米;两套楼房的房价相同,即为平均价1.等量关系为:B 套楼房的面积-A 套楼房的面积=24;0.9×1×B 套楼房的面积=1.1×1×A 套楼房的面积,设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,可列方程组为1.10.9{24x y y x =-=.故选D . 【详解】解:设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,可列方程组为1.10.9{24x y y x =-=. 故选D .8.小明的作业本上有以下四题42164a a =;51052a a a =③211a a a a =⋅=32a a a =) A. ①B. ②C. ③D. ④【答案】D【解析】【分析】分别利用二次根式的性质及其运算法则计算即可判定.【详解】①和②是正确;在③中,由式子可判断a >0,从而③正确;在④中,左边两个不是同类二次根式,不能合并,故错误.故选D . 2a =|a |.同时二次根式的加减运算实质上是合并同类二次根式.9. 如图,在△ABC 中,三边a 、b 、c 的大小关系是( )A. a<b<cB. c<a<bC. c<b<aD. b<a<c【答案】D【解析】试题分析:先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.根据勾股定理,得,,,,,故选D.考点:本题考查的是勾股定理点评:解答本题的关键是认真分析格点的特征,熟练运用勾股定理进行计算.10.如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A. B.C. D.【答案】A【解析】∵由图可知,1g<m<2g,∴在数轴上表示为:.故选A..二、填空题(每题4分,共40分)11.如图,a∥b,则∠A=______.【答案】22°【解析】分析:如下图,过点A作AD∥b,则由已知可得AD∥a∥b,由此可得∠DAC=∠ACE=50°,∠DAB=∠ABF=28°,从而由∠BAC=∠DAC-∠DAB即可求得∠BAC的度数.详解:如下图,过点A作AD∥b,∵a//b,∴AD∥a∥b,∴∠DAC=∠ACE=50°,∠DAB=∠ABF=28°,∴∠BAC=∠DAC-∠DAB=50°-28°=22°.故答案为:22°.点睛:作出如图所示的辅助线,熟悉“平行线的性质:两直线平行,内错角相等”是正确解答本题的关键.12.在平面直角坐标系中,点A是y轴上一点,若它的坐标为(a-1,a+1),另一点B的坐标为(a+3,a-5),则点B的坐标是___________.【答案】(4,-4)【解析】分析:根据点在y轴上,则其横坐标是0,可求出a的值,进而即可求出B点坐标.详解:∵点A(a−1,a+1)是y轴上一点,∴a−1=0,解得a=1,∴a+3=1+3=4,a−5=1−5=−4,∴点B的坐标是(4,−4).故答案为(4,−4).点睛:本题考查了平面直角坐标系中点的坐标特征.熟练掌握y轴上的点的横坐标为0是解题的关键.13.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第 20 个正方形(实线)四条边上的整点个数共有____个.【答案】80【解析】从内到外的正方形依次编号为1,2,3,……,n,则有:正方形的序号正方形四边上的整点的个数1 2×4-4=4;2 3×4-4=8;3 4×4-4=12;…………n 4(n+1)-4=4n.由里向外第 20 个正方形(实线)四条边上的整点个数共有4×20=80.故答案为80.14.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_____.【答案】2【解析】分析:根据“在三角形中任意两边之和大于第三边,任意两边之差小于第三边”,以及各边都是整数进行一一分析即可.详解:根据周长为7,以及三角形的三边关系,只有两种不同的三角形,边长为2,2,3或3,3,1.其它的组合都不能满足三角形中三边的关系.故答案为2.点睛:本题考查了三角形三边间的关系. 利用三角形三边间的关系来判断组合是否成立是解题的关键. 15.如图,将一副直角三角扳叠在一起,使直角顶点重合于O 点,则∠AOB+∠DOC=_____【答案】180°【解析】∵∠AOD+∠COD=90°,∠COD+∠BOC=90°,∠BOD=∠COD+∠BOC ,∠AOD+∠BOD=∠AOB ,∴∠AOD+∠COD+∠COD+∠BOC=180°,∴∠AOD+2∠COD+∠BOC=180°,∴∠AOB+∠COD=180°16.若一个二元一次方程的解为2{1x y ==-,则这个方程可以是______(只要求写出一个). 【答案】1x y +=【解析】分析: 根据二元一次方程的解的定义,比如把x 与y 的值相加得1,即x+y=1是一个符合条件的方程. 详解:一个二元一次方程的解为21x y =⎧⎨=-⎩, 这个方程可以是 1.x y +=故答案 1.x y +=点睛:本题是一道有关二元一次方程的解的题目,关键是掌握二元一次方程的解的定义.17.如图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k=_____.【答案】8【解析】分析:通过理解题意及看图可知本题存在等量关系,即矩形长的2倍=矩形宽的2倍+矩形的长,矩形长的2倍=(中间竖的矩形-4)宽的和,根据这两个等量关系,可列出方程组,再求解即可.详解:设矩形的长为x ,矩形的宽为y ,中间竖的矩形为(k −4)个,即(k −4)个矩形的宽正好等于2个矩形的长, ∵由图形可知:x +2y =2x ,2x =(k −4)y ,则可列方程组()2224x y x x k y +=⎧⎨=-⎩, 解得k =8.故答案为8.点睛:本题考查了二元一次方程组的应用.分析图形并得出对应的相等关系是解题的关键.18.已知△ABC 的三边长分别为a 、b 、c ,且a 、b 、c2410250b c c -+-+=请你判断△ABC 的形状是_______________【答案】直角三角形【解析】分析:根据非负数的性质解得各边的长,再根据勾股定理的逆定理判定是否直角三角形即可.24(5)0b c -+-=,根据非负数的性质知,a =3,b =4,c =5,∵32+42=52,∴以为a 、b 、c 为三边的△ABC 是直角三角形.故答案为直角三角形.点睛:本题考查了非负数的性质和勾股定理的逆定理.将题中的21025c c -+转化为完全平方式2(5)c -是解题的关键. 19.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有__________人.【答案】28或29【解析】分析:根据有空客房10间,每个房间住3人时,只有一个房间不空也不满,即:9间客房住满了,而最后一个房间不空也不满即这间客房住了1个人或2个人,分两种情况列出算式即可求出旅客的总人数.详解:由题可知,前9个房间住的人数是9×3=27人; 最后1间客房(不空也不满的房间)的人数有两种情况:(1)当有1个人时:游客总数为:27+1=28人;(2)当有2个人时:游客总数为:27+2=29人,所以旅游团共有28或29人.故答案为28或29.点睛:本题考查了一元一次不等式的应用.根据题中的不等关系确定不空也不满的房间人数是解题的关键.20.若关于x 的不等式组0321x a x -≥⎧⎨->-⎩的整数解恰有5个,求a 的范围. 【答案】43a -<≤-【解析】试题分析:先分别解两个不等式得到不等式组的解集为a≤x<2,则可确定不等式组的5个整数解为1,0,-1,-2,-3,于是可得到a 的取值范围.0321x a x -≥⎧⎨->-⎩①②解①得,x a ≥;解②得,2x <;∴不等式组的5个整数解为1,0,-1,-2,-3,∴43a -<≤-.点睛:本题考查了一元一次不等式组的整数解,已知解集(整数解)求字母的取值.一般思路为:先把题目中除未知数外的字母当做常数看待求出不等式组的解集,然后再根据题目中对结果的限制的条件得到有关字母的值.三、解答题(每题10分,共70分)21.如图,MN ,EF 是两面互相平行的镜面,一束光线AB 照射到镜面MN 上,反射光线为BC ,则∠1=∠2. (1)用尺规作图作出镜面BC 经镜面EF 反射后的反射光线CD ;(2)试判断AB 与CD 的位置关系;(3)你是如何思考的?【答案】(1)只要作出∠5=∠6;(2)CD∥AB;(3)见解析【解析】分析:(1)掌握尺规作图的基本方法,作入射角等于反射角即∠5=∠6即可;(2)AB与CD平行;(3)由平行线的性质和反射的性质可得∠1=∠2=∠3=∠4,利用平角的定义可得∠ABC=∠BCD,由平行线的判定可得AB与CD平行.详解:(1)只要作出的光线BC经镜面EF反射后的反射角等于入射角即∠5=∠6即可.(2)CD∥AB.(3)如图,作图可知∠5=∠6,∠3+∠5=90°,∠4+∠6=90°,∴∠3=∠4;∵EF∥MN,∴∠2=∠3,∵∠1=∠2,∴∠1=∠2=∠3=∠4;∵∠ABC=180°﹣2∠2,∠BCD=180°﹣2∠3,∴∠ABC=∠BCD,∴CD∥AB.点睛:本题考查了平行线的性质和判定. 结合图形并利用平行线的性质和判定进行证明是解题的关键.22.下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE对称的图案(只画图,不写作法);(3)以G为原点,GE所在直线为x轴,GB所在直线为y轴,小正方形的边长为单位长度建立直角坐标系,可得点A的坐标是(_______,_______).【答案】(1). -4 (2). 1【解析】分析:(1)将“小猪”所占的面积转化为三角形和四边形面积的和来解答;(2)根据直线DE在网格中作出小猪的轴对称图形即可;(3)按要求建立平面直角坐标系即可得出A点坐标.详解:(1)4×4×12+8×3×12+1×1×12=32.5;(2)画图如下,(3)(-4,1).点睛:本题考查了网格中的面积、轴对称、平面直角坐标系等知识.求面积时合理地进行图形的移动和变换是解题的关键.23. 夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?【答案】只将温度调高1℃后,甲种空调每天节电207度,乙种空调每天节电180度.【解析】根据题目给出的条件,找出合适的等量关系,列出方程组,再求解24.织里某童装加工企业今年五月份工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分二部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元.(1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?【答案】(1)该企业每套至少应奖励2.78元;(2)小张在六月份应至少加工200套.【解析】分析:(1)最低工资应考虑最不熟练地工人的工资.关系式为:基本工资200+150×60%×每件奖励钱≥最低工资标准450元,列不等式,解之即可;(2)根据关系式:基本工资200+5×小张加工童装套数≥1200,列不等式,解之即可.详解:(1)设企业每套奖励x元,由题意得:200+60%·150x≥450 ,解得:x≥2.78 ,因此,该企业每套至少应奖励2.78元.(2)设小张在六月份加工y套,由题意得:200+5y≥1200 ,解得:y≥200.答:小张在六月份应至少加工200套.点睛:本题考查了一元一次不等式的应用.找出题中的不等关系并建立不等式是解题的关键.25.情系灾区.5月12日我国四川汶川县发生里氏8.0级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套,一辆乙货车可装床架10个和课桌凳10套.(1)学校如何安排甲、乙两种货车可一次性把这些物资运到灾区?有几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少?最少运费是多少?【答案】(1)可安排甲种货车2辆,乙种货车6辆或甲种货车3辆,乙种货车5辆或甲种货车4辆,乙种货车4辆共3种方案;(2)甲种货车2辆,乙种货车6辆运费最少,最少运费是8400元.【解析】试题分析:(1)关系式为:甲种货车可装的床架数+乙种货车可装的床架数≥60;甲种货车可装的课桌凳数+乙种货车可装的课桌凳数≥100,把相关数值代入求得整数解的个数即可;(2)算出每种方案的总运费,比较即可.解:(1)设安排甲种货车x辆,则安排乙种货车(8﹣x)辆.,解得2≤x≤4,∴x可取2,3,4,∴可安排甲种货车2辆,乙种货车6辆或甲种货车3辆,乙种货车5辆或甲种货车4辆,乙种货车4辆共3种方案;(2)甲种货车2辆,乙种货车6辆运费为:2×1200+6×1000=8400元;甲种货车3辆,乙种货车5辆运费为3×1200+5×1000=8600元;甲种货车4辆,乙种货车4辆运费为4×1200+4×1000=8800元;∴甲种货车2辆,乙种货车6辆运费最少,最少运费是8400元.。
最新人教版数学七年级下册《期末测试卷》含答案解析

2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一.选择题(本大题共10个小题,每小题2分,共20分)下列各题给出的四个选项中,只有一个符合要求,请将正确答案的字母代号填入相应位置.1. 计算A 2•A 3的结果是( )A . 5AB . A 5C . A 6D . A 82. 已知∠A =30°,则∠A 的余角的度数为( )A . 60°B . 90°C . 150°D . 180°3. 下列图形是四个银行的标志,其中是轴对称图形的共有( )A . 1个B . 2个C . 3个D . 4个4. 下列每组数分别是三根小木棒的长度,用这三根小木棒能摆成三角形的是( )A . 3,3,5cm cm cmB . 1,2,3cm cm cmC . 2,3,5cm cm cmD . 3,5,9cm cm cm5. 下列事件中的必然事件是( )A . 车辆随机经过一个有交通信号灯的路口,遇到红灯B . 购买100张中奖率为1%的彩票一定中奖C . 400人中有两人的生日在同一天D . 掷一枚质地均匀的骰子,掷出的点数是质数6. 如图一个三角形有三条对称轴,那么这个三角形一定是( )A . 直角三角形B . 等腰直角三角形C . 钝角三角形D . 等边三角形7. 肥料的施用量与产量之间有一定的关系.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:氮肥施用量0 34 67 101 135 202 259 336 404 471/kg土豆产量/t 15.18 21.36 25.72 32.29 34.03 39.45 43.15 43.46 40.83 30.75根据表格可知,下列说法正确的是()A . 氮肥施用量越大,土豆产量越高B . 氮肥施用量是110kg时,土豆产量为34tC . 当氮肥施用量低于336kg时,土豆产量随施肥量的增加而增加D . 土豆产量为39.45t时,氮肥的施用量一定是202kg8. 用三角板作ABC的边B C 上的高,下列三角板的摆放位置正确的是()A .B .C .D .9. 如图,测量河两岸相对的两点A ,B 的距离时,先在A B 的垂线B F上取两点C ,D ,使C D =B C ,再过点D 画出B F的垂线D E,当点A ,C ,E在同一直线上时,可证明△ED C ≌△A B C ,从而得到ED =A B ,则测得ED 的长就是两点A ,B 的距离.判定△ED C ≌△A B C 的依据是()A . “边边边”B . “角边角”C . “全等三角形定义”D . “边角边”10. 如图,在3×3的正方形网格的格点上摆放了两枚棋子,第三枚棋子随机摆放在格点上(每个格点处最多摆放一枚),这三枚棋子所在格点恰好是直角三角形顶点的概率为()A . 16B .17C .37D .1211. 如图,在3×3的正方形网格的格点上摆放了两枚棋子,第三枚棋子随机摆放在其他格点上(每个格点处最多摆放一枚),这三枚棋子所在格点恰好是等腰三角形顶点的概率为()A . 27B .13C .47D .23二.填空题(本大题含5个小题,每小题3分,共15分)把结果直接填在横线上.12. 两个锐角分别相等的直角三角形_____全等.(填”一定”或”不一定”或”一定不”)13. 今年在全世界爆发了新型冠状病毒肺炎,该病毒有包膜,颗粒呈圆形或椭圆形,常为多形性,该病毒的直径约为110nm(1nm=10﹣9m).110nm用科学记数法表示为______m.14. 从某玉米种子中抽取6批,同一条件下进行发芽试验,有关数据如下:种子粒数100 400 800 1000 2000 5000发芽种子粒数85 298 652 793 1604 4005 发芽频率0.850 0.745 0.815 0.793 0.802 0.801 根据以上数据可以估计,该玉米种子发芽的概率约为___(精确到0.1).15. 如图,在△A B C 中,∠A C B =90°,A D 平分∠B A C 交B C 于点D ,C D =3,D B =5,点E 在边A B 上运动,连接D E,则线段D E长度的最小值为_____.16. 已知,在△A B C 中,A B =A C ,A B 的垂直平分线交直线B C 于点D .当∠B A C =40°时,则∠CA D 的度数为_____.17. 已知,在△A B C 中,A B =A C ,A B 的垂直平分线交直线B C 于点D .当∠B A C =α(90°<α<180°)时,则∠C A D 的度数为_____.(用含α的代数式表示)三、简答题(本大题含8个小题,共65分)解答时应写出必要的文字说明、演算步骤或推理过程.18. 计算:(1)(x+2y)(x﹣2y)+y(x+y);(2)[(3A +B )2﹣B 2]÷3A ;(3)2÷(﹣2)﹣2+20.19. 如图,∠1=70°,∠2=70°,∠3=105°,求∠4的度数.20. 小明与小颖用一副去掉大王、小王的扑克牌作摸牌游戏:小明从中任意抽取一张牌(不放回),小颖从剩余的牌中任意抽取一张,谁摸到的牌面大,谁就获胜(规定牌面从小到大的顺序为:2,3,4,5,6,7,8,9,10,J,Q,K,A ).然后两人把摸到的牌都放回,重新开始游戏.(1)若小明已经摸到的牌面为4,然后小颖摸牌,那么小明获胜的概率是多少?小颖获胜的概率又是多少? (2)若小明已经摸到的牌面为2,直接写出小颖获胜的概率;若小明已经摸到的牌面为A ,两人获胜的概率又如何呢?21. 如图1,在边长为1的9×9正方形网格中,老师请同学们过点C 画线段A B 的垂线.如图2,小明在多媒体展台上展示了他画出的图形.请你利用所学知识判断并说明直线C D 是否为线段A B 的垂线.(点A ,B ,C ,D ,E,F都是小正方形的顶点)22. (1)某居民住房的结构如图所示,房子的主人打算把卧室以外的地面都铺上地砖,至少需要多少平方米的地砖?如果所用地砖的价格是B 元/m2,那么购买地砖至少需要多少元?(2)房屋的高度为hm,现需要在客厅和卧室的墙壁上贴壁纸,那么至少需要多少平方米的壁纸?如果所用壁纸的价格是A 元/m2,贴1m2壁纸的人工费用为5元,求贴完壁纸的总费用是多少元?(计算时不扣除门、窗所占面积)23. 如图,在△A B C 中,∠B =30°,∠C =40°.(1)尺规作图:①作边A B 的垂直平分线交B C 于点D ;②连接A D ,作∠C A D 的平分线交B C 于点E;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求∠D A E的度数.24. 新能源纯电动汽车的不断普及让很多人感受到了它的好处,其中最重要的一点就是对环境的保护.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)与已行驶路程x (千米)之间关系的图象.(1)图中点A 表示的实际意义是什么?当0≤x ≤150时,行驶1千米的平均耗电量是多少;当150≤x ≤200时,行驶1千米的平均耗电量是多少?(2)当行驶了120千米时,求蓄电池的剩余电量;行驶多少千米时,剩余电量降至20千瓦.25. 综合与探究在数学综合实践课上,老师让同学用两张全等的等腰三角形纸片进行拼摆,并探究摆放后所构成的图形之间的关系.如图1,△A B C ≌△D EF ,A B =A C ,D E =D F .[探究一](1)勤奋小组的同学把这两张纸片按如图2的方式摆放,点A 与点D 重合,连接B E 和C F .他们发现B E 与C F 之间存在着一定的数量关系,这个关系是 . [探究二](2)创新小组同学在勤奋小组的启发下,把这两张纸片按如图3的方式摆放,点F ,A ,D ,C 在同一直线上,连接B F 和C E ,他们发现了B F 和C E 之间的数量和位置关系,请写出这些关系并说明理由; [探究三](3)从A ,B 两题中任选一题作答.解答时用尺规作△D EF ,不写作法,保留作图痕迹. A .如图4,利用△A B C 纸片拼摆出一种与图2和图3都不相同的图形,并根据图形写出一个数学结论. B .如图4,利用△A B C 纸片拼摆出一种与图2和图3都不相同的图形,并根据图形提出一个数学问题并解答.参考答案一.选择题(本大题共10个小题,每小题2分,共20分)下列各题给出的四个选项中,只有一个符合要求,请将正确答案的字母代号填入相应位置.1. 计算A 2•A 3的结果是()A . 5AB . A 5C . A 6D . A 8【答案】B【解析】【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即A m•A n=A m+n.【详解】解:A 2•A 3=A 5.故选:B .【点睛】本题考察的是底数幂的乘法运算,掌握同底数幂乘法法则是解题的关键.2. 已知∠A =30°,则∠A 的余角的度数为()A . 60°B . 90°C . 150°D . 180°【答案】A【解析】【分析】根据余角定义直接解答.【详解】解:∠A 的度数是90°﹣∠A =90°﹣30°=60°.故选:A .【点睛】本题比较容易,考查互余角的数量关系.互余的两个角的和等于90°.3. 下列图形是四个银行的标志,其中是轴对称图形的共有()A . 1个B . 2个C . 3个D . 4个【答案】C【解析】【分析】根据轴对称图形的概念对各图形分析判断即可得解.【详解】第一个图形不是轴对称图形,第二个图形是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,所以,轴对称图形有3个.故选:C .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 4. 下列每组数分别是三根小木棒的长度,用这三根小木棒能摆成三角形的是( )A . 3,3,5cm cm cmB . 1,2,3cm cm cmC . 2,3,5cm cm cmD . 3,5,9cm cm cm【答案】A【解析】【分析】根据三角形的三边关系”任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A 、3+3=6>5,能摆成三角形;B 、1+2=3,不能摆成三角形;C 、2+3=5,不能摆成三角形;D 、3+5<9,不能摆成三角形.故选:A .【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.5. 下列事件中的必然事件是( )A . 车辆随机经过一个有交通信号灯的路口,遇到红灯B . 购买100张中奖率为1%的彩票一定中奖C . 400人中有两人的生日在同一天D . 掷一枚质地均匀的骰子,掷出的点数是质数【答案】C【解析】【分析】根据必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,对每一项进行分析即可.【详解】A 、是随机事件,故此选项不符合题意;B 、是随机事件,故此选项不符合题意;C 、是必然事件,故此选项符合题意;D 、是随机事件,故此选项不符合题意,故选:C .【点睛】本题考查的是事件的分类,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.6. 如图一个三角形有三条对称轴,那么这个三角形一定是()A . 直角三角形B . 等腰直角三角形C . 钝角三角形D . 等边三角形【答案】D【解析】【分析】直接利用直角三角形、等腰直角三角形、钝角三角形、等边三角形的特点分析得出答案.【详解】解:A 、一般直角三角形,没有对称轴,不合题意;B 、等腰直角三角形,有1条对称轴,不合题意;C 、一般钝角三角形,没有对称轴,不合题意;D 、等边三角形,有3条对称轴,符合题意.故选:D .【点睛】本题考查了轴对称的性质,解题的关键是了解各类三角形的特征.7. 肥料的施用量与产量之间有一定的关系.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:根据表格可知,下列说法正确的是()A . 氮肥施用量越大,土豆产量越高B . 氮肥施用量是110kg时,土豆产量为34tC . 当氮肥施用量低于336kg时,土豆产量随施肥量的增加而增加D . 土豆产量为39.45t时,氮肥的施用量一定是202kg【答案】C【解析】【分析】A 、表格反映的是土豆的产量与氮肥的施用量的关系;B 、直接从表格中找出施用氮肥时对应的土豆产量;C 、根据表格中土豆产量的增长和减少数量来说明氮肥的施用量对土豆产量的影响;D 、从表格中找出土豆的产量为39.45t时,氮肥对应的施用量.【详解】解:A 、氮肥施用量大于336时,土豆产量逐渐减少,故选项不符合题意;B 、当氮肥的施用量是110kg时,土豆产量为32.29t~34.03t,故选项不符合题意;C 、当氮肥的施用量低于336kg时,土豆产量随施肥量的增加而增加,故选项符合题意;D 、土豆产量为39.45t时,氮肥的施用量可能是202kg,故选项不符合题意.故选:C .【点睛】本题考查函数的定义和结合实际土豆产量和施用氮肥量确定函数关系,解题的关键是掌握函数的定义.8. 用三角板作ABC的边B C 上的高,下列三角板的摆放位置正确的是()A .B .C .D .【答案】A【解析】【分析】根据高线的定义即可得出结论.的边BC上的高,【详解】B,C,D都不是ABC故选:A.【点睛】本题考查的是作图-基本作图,熟知三角形高线的定义是解答此题的关键.9. 如图,测量河两岸相对的两点A ,B 的距离时,先在A B 的垂线B F上取两点C ,D ,使C D =B C ,再过点D 画出B F的垂线D E,当点A ,C ,E在同一直线上时,可证明△ED C ≌△A B C ,从而得到ED=A B ,则测得ED 的长就是两点A ,B 的距离.判定△ED C ≌△A B C 的依据是()A . “边边边”B . “角边角”C . “全等三角形定义”D . “边角边”【答案】B【解析】【分析】由”A SA ”可证△ED C ≌△A B C .【详解】解:由题意可得∠A B C =∠C D E=90°,在△ED C 和△A B C 中ACB DCE CD BCABC CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ED C ≌△A B C (A SA ),故选:B .【点睛】本题考查三角形全等的判定,掌握判定方法正确推理论证是解题关键.10. 如图,在3×3的正方形网格的格点上摆放了两枚棋子,第三枚棋子随机摆放在格点上(每个格点处最多摆放一枚),这三枚棋子所在格点恰好是直角三角形顶点的概率为()A . 16B .17C .37D .12【答案】C【解析】【分析】直接利用直角三角形的定义结合概率求法得出答案.【详解】解:如图所示:第三枚棋子所在格点恰好是直角三角形顶点有6个,故这三枚棋子所在格点恰好是直角三角形顶点的概率为:614=37.故选:C .【点睛】此题主要考查了概率公式以及直角三角形的定义,正确得出符合题意的点是解题关键.11. 如图,在3×3的正方形网格的格点上摆放了两枚棋子,第三枚棋子随机摆放在其他格点上(每个格点处最多摆放一枚),这三枚棋子所在格点恰好是等腰三角形顶点的概率为()A . 27B .13C .47D .23【答案】C【解析】【分析】利用概率公式求解可得.【详解】解:由图知第三枚棋子可摆放的位置共有14种,其中这三枚棋子所在格点恰好是等腰三角形顶点的有8种,∴这三枚棋子所在格点恰好是等腰三角形顶点的概率为814=47,故选:C .【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A 的概率P(A )=事件A 可能出现的结果数÷所有可能出现的结果数.二.填空题(本大题含5个小题,每小题3分,共15分)把结果直接填在横线上.12. 两个锐角分别相等的直角三角形_____全等.(填”一定”或”不一定”或”一定不”) 【答案】不一定 【解析】【分析】根据直角三角形全等的判定定理判断即可. 【详解】解:当还有一条边对应相等时,两直角三角形全等, 当三角形的边不相等时,两直角三角形不全等, 即两个锐角分别相等的直角三角形不一定全等, 故答案为:不一定.【点睛】本题考查全等三角形的判定定理,掌握全等三角形的判定定理是解题的关键.13. 今年在全世界爆发了新型冠状病毒肺炎,该病毒有包膜,颗粒呈圆形或椭圆形,常为多形性,该病毒的直径约为110nm (1nm =10﹣9m ).110nm 用科学记数法表示为______m .【答案】1.1×10﹣7 【解析】【分析】绝对值小于1正数也可以利用科学记数法表示,一般形式为A ×10-n ,与较大数的科学记数法不同的是其所使用的是负整指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:110nm=110×10-9m=1.1×10-7m , 故答案为:1.1×10-7. 【点睛】本题考查用科学记数法表示较小的数,一般形式为A ×10-n ,其中1≤|A |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14. 从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:根据以上数据可以估计,该玉米种子发芽的概率约为___(精确到0.1). 【答案】0.8 【解析】【分析】6批次种子粒数从100粒增加到5000粒时,种子发芽的频率趋近于0.801,所以估计种子发芽的概率为0.801,再精确到0.1,即可得出答案.【详解】根据题干知:当种子粒数5000粒时,种子发芽的频率趋近于0.801,故可以估计种子发芽的概率为0.801,精确到0.1,即为0.8,故本题答案为:0.8.【点睛】本题比较容易,考查利用频率估计概率,大量反复试验下频率稳定值即概率.15. 如图,在△A B C 中,∠A C B =90°,A D 平分∠B A C 交B C 于点D ,C D =3,D B =5,点E 在边A B 上运动,连接D E,则线段D E长度的最小值为_____.【答案】3【解析】【分析】当D E⊥A B 时,线段D E的长度最小,根据角平分线的性质得出C D =D E,代入求出即可.【详解】解:当D E⊥A B 时,线段D E的长度最小(根据垂线段最短),∵A D 平分∠C A B ,∠C =90°,D E⊥A B ,∴D E=C D ,∵C D =3,∴D E=3,即线段D E的长度的最小值是3,故答案为:3.【点睛】本题考查了角平分线的性质和垂线段最短,能灵活运用性质进行推理是解此题的关键.16. 已知,在△A B C 中,A B =A C ,A B 的垂直平分线交直线B C 于点D .当∠B A C =40°时,则∠CA D 的度数为_____.【答案】30°【解析】【分析】根据已知可求得两底角的度数,再根据垂直平分线的性质求得∠B A D 的度数,再根据角的和差关系即可得到结论.【详解】解:∵A B =A C ,∠B A C =40°,∴∠B =12(180°﹣40°)=70°,∵A B 的垂直平分线交直线B C 于点D ,∴D B =A D ,∴∠B A D =∠B =70°,∴∠C A D =∠B A D ﹣∠B A C =70°﹣40°=30°.故答案为:30°.【点睛】本题主要考查等腰三角形的性质和垂直平分线的性质,解答本题的关键是会综合运用等腰三角形的性质和和垂直平分线的性质进行答题,此题难度一般.17. 已知,在△A B C 中,A B =A C ,A B 的垂直平分线交直线B C 于点D .当∠B A C =α(90°<α<180°)时,则∠C A D 的度数为_____.(用含α的代数式表示)【答案】32α﹣90°【解析】【分析】【详解】根据已知可求得两底角的度数,再根据垂直平分线的性质求得∠B A D 的度数,再根据角的和差关系即可得到结论.【解答】解:∵A B =A C ,∠B A C =α,∴∠B =12(180°﹣α)=90°﹣12α,∵A B 的垂直平分线交直线B C 于点D ,∴∠B A D =90°﹣12α,∴∠C A D =∠B A C ﹣∠B A D =α﹣(90°﹣12α)=32α﹣90°.故答案为:32α﹣90°.【点睛】本题考查了线段垂直平分线的性质和等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题.三、简答题(本大题含8个小题,共65分)解答时应写出必要的文字说明、演算步骤或推理过程.18. 计算:(1)(x+2y)(x﹣2y)+y(x+y);(2)[(3A +B )2﹣B 2]÷3A ;(3)2÷(﹣2)﹣2+20.【答案】(1)x2﹣3y2+xy;(2)3A +2B ;(3)9【解析】【分析】(1)根据平方差公式和单项式乘以多项式的运算法则展开括号,再合并即可求出答案.(2)原式先去小括号合并后再根据多项式除以单项式的运算法则进行计算即可求出答案.(3)原式先计算负整数指数幂和零次幂,然后再计算除法,最后计算加法即可得到答案.【详解】解:(1)(x+2y)(x﹣2y)+y(x+y)=x2﹣4y2+xy+y2=x2﹣3y2+xy;(2)[(3A +B )2﹣B 2]÷3A=(9A 2+6A B +B 2﹣B 2)÷3A=(9A 2+6A B )÷3A=3A +2B .(3)2÷(﹣2)﹣2+20=2÷14+1=24+1=8+1=9.【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.19. 如图,∠1=70°,∠2=70°,∠3=105°,求∠4的度数.【答案】105°【解析】【分析】由同位角相等,两直线平行判定A ∥B ,然后根据两直线平行,同位角相等,对顶角相等的性质求解【详解】∵∠1=70°,∠2=70°,∴∠1=∠2,∴A ∥B ,∴∠3=∠5.又∠3=105°,∴∠5=105°,∴∠4=∠5=105°.【点睛】本题考查平行线的判定和性质以及对顶角相等,理解相关性质正确推理是解题关键.20. 小明与小颖用一副去掉大王、小王的扑克牌作摸牌游戏:小明从中任意抽取一张牌(不放回),小颖从剩余的牌中任意抽取一张,谁摸到的牌面大,谁就获胜(规定牌面从小到大的顺序为:2,3,4,5,6,7,8,9,10,J,Q,K,A ).然后两人把摸到的牌都放回,重新开始游戏.(1)若小明已经摸到的牌面为4,然后小颖摸牌,那么小明获胜的概率是多少?小颖获胜的概率又是多少? (2)若小明已经摸到的牌面为2,直接写出小颖获胜的概率;若小明已经摸到的牌面为A ,两人获胜的概率又如何呢?【答案】(1)小明获胜概率851,小颖获胜概率4051;(2)小颖获胜的概率是0,小明获胜的概率是1617【解析】【分析】(1)小明已经摸到的牌面为4,而小4的结果为4×2,大于4的结果数为4×10,然后根据概率公式求解;(2)小明已经摸到的牌面为2,而小于2的结果为0,大于2的结果数为4×12,然后根据概率公式求解;小明已经摸到的牌面为A ,而小于A 的结果为4×12,大于2的结果数为0,然后根据概率公式求解.【详解】解:(1)由题意知,去掉大王、小王的扑克牌共有52张,其中比4小的牌有2,3,所以,小明获胜的概率是2451=851;小明与小颖摸到的相同的牌面的概率为3 51,所以,小颖获胜的概率是1﹣851﹣351=4051;(2)若小明已经摸到的牌面为2,比2小的牌没有,所以小明获胜的概率是0,小颖获胜的概率是1﹣351=1617;若小明已经摸到的牌面为A ,没有比A 更大的牌,所以小颖获胜的概率是0,小明获胜的概率是1﹣351=1617.【点睛】本题考查了概率公式:某随机事件的概率=这个随机事件发生的情况数除以总情况数.21. 如图1,在边长为1的9×9正方形网格中,老师请同学们过点C 画线段A B 的垂线.如图2,小明在多媒体展台上展示了他画出的图形.请你利用所学知识判断并说明直线C D 是否为线段A B 的垂线.(点A ,B ,C ,D ,E,F都是小正方形的顶点)【答案】见解析【解析】【分析】根据全等三角形的判定和性质解答即可.【详解】证明:如图所示:通过图可知:D F=B E=2,C F=EA =5,∠D FC =∠B EA =90°,∴△D FC ≌△B EA (SA S),∴∠A =∠C ,∵∠A GH=∠C GP,∴∠A HG=∠A PC =90°,∴直线C D 为线段A B 的垂线.【点睛】本题考查全等三角形的判定与性质,解题的关键是掌握全等三角形的判定与性质.22. (1)某居民住房的结构如图所示,房子的主人打算把卧室以外的地面都铺上地砖,至少需要多少平方米的地砖?如果所用地砖的价格是B 元/m2,那么购买地砖至少需要多少元?(2)房屋的高度为hm,现需要在客厅和卧室的墙壁上贴壁纸,那么至少需要多少平方米的壁纸?如果所用壁纸的价格是A 元/m2,贴1m2壁纸的人工费用为5元,求贴完壁纸的总费用是多少元?(计算时不扣除门、窗所占面积)【答案】(1)至少需要11xy平方米的地砖,购买地砖至少需要11B xy元;(2)至少需要(12hx+8hy)平方米的壁纸,贴完壁纸的总费用是(12A hx+8A hy+60hx+40hy)元【解析】【分析】(1)求出卫生间,厨房及客厅的面积之和即可得到需要地砖的面积;用地砖的面积乘以地砖的价格即可得出需要的费用;(2)求出客厅与卧室的面积,乘以高hm,即可得到需要的壁纸数;用需要的壁纸数乘以壁纸的价格即可得出贴完壁纸的总费用.【详解】解:(1)由题意得:xy+y×2x+2y×4x=xy+2xy+8xy=11xy(m2).11xy•B =11B xy(元).答:至少需要11xy平方米的地砖,购买地砖至少需要11B xy元;(2)由题意得:2y•h×2+4x•h×2+2x•h×2+2y•h×2=4hy+8hx+4hx+4hy=(12hx+8hy)m2.(12hx+8hy)×A +(12hx+8hy)×5=(12A hx+8A hy+60hx+40hy)元;答:至少需要(12hx+8hy)平方米的壁纸,贴完壁纸的总费用是(12A hx+8A hy+60hx+40hy)元.【点睛】本题考查了整式的混合运算应用,根据图形列出代数式并熟练根据法则进行计算是解题的关键.23. 如图,在△A B C 中,∠B =30°,∠C =40°.(1)尺规作图:①作边A B 的垂直平分线交B C 于点D ;②连接A D ,作∠C A D 的平分线交B C 于点E;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求∠D A E的度数.【答案】(1)①见解析;②见解析;(2)∠D A E12∠D A C =40°【解析】【分析】(1)根据垂直平分线与角平分线的尺规作图方法即可求解;(2)根据垂直平分线的性质得到D B =D A ,求出∠C A D =80°,再利用角平分线的性质即可求解.【详解】解:(1)如图,点D ,射线A E即为所求.(2)∵D F垂直平分线段A B ,∴D B =D A ,∴∠D A B =∠B =30°,∵∠C =40°,∴∠B A C =180°﹣30°﹣40°=110°,∴∠C A D =110°﹣30°=80°,∵A E平分∠D A C ,∴∠D A E12∠D A C =40°.【点睛】此题主要考查垂直平分线与角平分线,解题的关键是熟知尺规作图的方法.24. 新能源纯电动汽车的不断普及让很多人感受到了它的好处,其中最重要的一点就是对环境的保护.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)与已行驶路程x(千米)之间关系的图象.(1)图中点A 表示的实际意义是什么?当0≤x≤150时,行驶1千米的平均耗电量是多少;当150≤x≤200时,行驶1千米的平均耗电量是多少?(2)当行驶了120千米时,求蓄电池的剩余电量;行驶多少千米时,剩余电量降至20千瓦.【答案】(1)当0≤x≤150时,行驶1千米的平均耗电量是16千瓦时;当150≤x≤200时,行驶1千米的平均耗电量是12千瓦时;(2)当汽车已行驶120千米时,蓄电池的剩余电量为40千瓦时.汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.【解析】【分析】(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,进而解答即可;(2)把x=120代入即可求出当汽车已行驶180千米时,蓄电池的剩余电量.【详解】解:(1)由图象可知,A 点表示充满电后行驶150千米时,剩余电量为35千瓦时;当0≤x≤150时,行驶1千米的平均耗电量是1 (6035)1506-÷=千瓦时;当150≤x≤200时,行驶1千米的平均耗电量是1 (3510)(200150)2-÷-=千瓦时;(2)6011206-⨯=40(千瓦时),35203012-=(千米),150+30=180(千米)答:当汽车已行驶120千米时,蓄电池的剩余电量为40千瓦时.汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.【点睛】此题主要考查了函数的图象,利用图象得出正确信息是解题关键.25. 综合与探究在数学综合实践课上,老师让同学用两张全等的等腰三角形纸片进行拼摆,并探究摆放后所构成的图形之间的关系.如图1,△A B C ≌△D EF,A B =A C ,D E=D F.[探究一](1)勤奋小组的同学把这两张纸片按如图2的方式摆放,点A 与点D 重合,连接B E和C F.他们发现B E与C F之间存在着一定的数量关系,这个关系是.[探究二](2)创新小组的同学在勤奋小组的启发下,把这两张纸片按如图3的方式摆放,点F,A ,D ,C 在同一直线上,连接B F和C E,他们发现了B F和C E之间的数量和位置关系,请写出这些关系并说明理由;[探究三](3)从A ,B 两题中任选一题作答.解答时用尺规作△D EF,不写作法,保留作图痕迹.A .如图4,利用△ABC 纸片拼摆出一种与图2和图3都不相同的图形,并根据图形写出一个数学结论.B .如图4,利用△A BC 纸片拼摆出一种与图2和图3都不相同的图形,并根据图形提出一个数学问题并解答.。
人教版七年级数学下册期末测试题及答案(共五套)

七下期期末(共六套)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )±4 B.3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( ) A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .120PCBA(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
【人教版】七年级下册数学《期末考试卷》含答案解析

人教版数学七年级下学期期 末 测 试 卷(时间:120分钟 总分:120分) 学校________ 班级________ 姓名________ 座号________一.选择题1.下列命题不成立的是( )A. 等角的补角相等B. 两直线平行,内错角相等C. 同位角相等D. 对顶角相等 2.已知12x y =-⎧⎨=⎩是关于x 、y 的二元一次方程mx ﹣y =3的一个解,则m 的值是( ) A. ﹣1B. 1C. ﹣5D. 5 3.下列各式由左边到右边的变形中,属于分解因式的是( )A. ()a x y ax ay -=-B. 22()()a b a b a b -=+-C. 243(4)3x x x x -+=-+D. 211()a a a a+=+ 4.不等式组42x x ≤⎧⎨>⎩的解集在数轴上表示正确的是( ) A.B. C. D.5.下列运算正确的是( )A. 236x x x ⋅=B. 2242x x x +=C. 358(3)(5)15a a a -⋅-=D. 22(2)4x x -=- 6.下列多项式不能使用平方差公式的分解因式是( )A. 22m n --B. 2216x y -+C. 22b a -D. 22449a n - 7.已知a ,b ,c 是△ABC 的三条边长,化简|a +b ﹣c |+|b ﹣a ﹣c |的结果为( )A. 2a +2bB. 2a +2b ﹣2cC. 2b ﹣2cD. 2a 8.一副三角板按如图所示方式叠放在一起,则图中∠α等于( )A. 105oB. 115oC. 120oD. 135o 9.若m n >,下列不等式不一定成立的是( )A. 33m n ++>B. 33m n ﹣<﹣C. 33m n >D. 22m n > 10.若3x =15,3y =5,则3x-y 等于( )A. 5B. 3C. 15D. 1011.如果不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,m 的取值范围为( ) A .m <4B. m ≥4C. m ≤4D. 无法确定 12.计算(-2)2019+(-2)2018的值是( )A -2 B. 20182 C. 2 D. -2018213. 如图,将周长为8的△ABC 沿BC 方向平移1个单位得到△DEF ,则四边形ABFD 的周长为( )A. 6B. 8C. 10D. 1214.甲是乙现在的年龄时,乙8岁,乙是甲现在的年龄时,甲26岁,那么( )A. 甲20岁,乙14岁B. 甲22岁,乙16岁C. 乙比甲大18岁D. 乙比甲大34岁 15.如图,AB//EF ,C 90∠=o ,则α、β、γ的关系为( )A. βαγ=+B. αβγ180++=oC. βγα90+-=oD. αβγ90+-=o16.如图,D 是△ABC 的边BC 上任意一点,E 、F 分别是线段AD .CE 的中点,且△ABC 的面积为20cm 2,则△BEF 的面积是( )A. 10B. 9C. 6D. 5二.填空题17.(13)0=______. 18.如果a-b=3,ab=7,那么a 2b-ab 2=______.19.一根长为1的绳子恰好围成一个三角形,则这个三角形的最长边x 的取值范围是_________.20.如图,将△ABC 沿着平行于BC 的直线DE 折叠,点A 落到点A′,若∠C=125°,∠A=20°,则∠BDA′的度数为______.21.已知:如图,∠1=∠2,∠3=∠E ,试说明:∠A=∠EBC ,(请按图填空,并补理由,)证明:∵∠1=∠2(已知),∴______∥______,________∴∠E=∠______,________又∵∠E=∠3(已知),∴∠3=∠______(等量代换),∴______∥______(内错角相等,两直线平行),∴∠A=∠EBC ,________三.解答题22.按要求解下列问题(1)计算-a3(b3)2+(2ab2)3;(2)解不等式组()2x13x1 x523⎧+≥-⎪⎨+⎪⎩<.23.解下列各题:(1)分解因式:9a2(x﹣y)+4b2(y﹣x);(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.24.请认真观察图形,解答下列问题:(1)根据图1中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:______;方法2:______.(2)从中你能发现什么结论?请用等式表示出来:______;(3)利用(2)中结论解决下面的问题:如图2,两个正方形边长分别为a、b,如果a+b=ab=4,求阴影部分的面积.25.某商店从厂家选购甲、乙两种商品,乙商品每件进价比甲商品每件进价少20元,若购进甲商品5件和乙商品4件共需要1000元;(1)求甲、乙两种商品每件的进价分别是多少元?(2)若甲种商品的售价为每件145元,乙种商品的售价为每件120元,该商店准备购进甲、乙两种商品共40件,且这两种商品全部售出后总利润不少于870元,则甲种商品至少可购进多少件?26.如图,在△ABC中,AD⊥BC,AE平分∠BAC(1)若∠B=70°,∠C=30°,求;①∠BAE的度数.②∠DAE度数.(2)探究:如果只知道∠B=∠C+40°,那么能求岀∠DAE度数吗?若能,请你写出求解过程;若不能,请说明理由.答案与解析一.选择题1.下列命题不成立的是()A. 等角的补角相等B. 两直线平行,内错角相等C. 同位角相等D. 对顶角相等【答案】C【解析】分析:对各个命题一一判断即可.详解:A. 等角的补角相等,正确.B. 两直线平行,内错角相等,正确.C.两直线平行,同位角相等.这是平行线的性质,没有两直线平行的前提,同位角相等,错误.D.对顶角相等,正确.故选C.点睛:考查命题真假的判断.比较简单.注意平行线的性质.2.已知12xy=-⎧⎨=⎩是关于x、y的二元一次方程mx﹣y=3的一个解,则m的值是()A. ﹣1B. 1C. ﹣5D. 5 【答案】C【解析】分析】把x与y值代入方程计算即可求出m的值.【详解】把12xy=-⎧⎨=⎩代入方程得:﹣m﹣2=3,解得:m =﹣5,故选:C .【点睛】考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.下列各式由左边到右边的变形中,属于分解因式的是( )A. ()a x y ax ay -=-B. 22()()a b a b a b -=+-C. 243(4)3x x x x -+=-+D. 211()a a a a+=+ 【答案】B【解析】【分析】根据分解因式的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解,逐一判定即可.【详解】A 选项,不属于分解因式,错误;B 选项,属于分解因式,正确;C 选项,不属于分解因式,错误;D 选项,不能确定a 是否为0,错误;故选:B.【点睛】此题主要考查对分解因式的理解,熟练掌握,即可解题. 4.不等式组42x x ≤⎧⎨>⎩的解集在数轴上表示正确的是( ) A.B. C.D.【答案】C【解析】【分析】写出不等式解集,然后在数轴上表示出来.【详解】不等式组的解集为24x <≤ ∴答案选D.【点睛】本题主要考查了不等式在数轴上的表示,要注意实心与空心圆点的区别.5.下列运算正确的是( )A. 236x x x ⋅=B. 2242x x x +=C. 358(3)(5)15a a a -⋅-=D. 22(2)4x x -=-【答案】C【解析】【分析】 直接利用同底数幂的乘法运算法则.积的乘方运算法则以及单项式乘以单项式运算法则,即可得出答案.【详解】解:A .x 2•x 3=x 5,故此选项错误;B .x 2+x 2=2x 2,故此选项错误;C .(-3a 3)•(-5a 5)=15a 8,故此选项正确;D .(-2x )2=4x 2,故此选项错误;故选:C .【点睛】此题考查用同底数幂的乘法运算,积的乘方运算和单项式乘以单项式运算,正确掌握相关运算法则是解题关键.6.下列多项式不能使用平方差公式的分解因式是( )A. 22m n --B. 2216x y -+C. 22b a -D. 22449a n -【答案】A【解析】【分析】原式各项利用平方差公式的结构特征即可做出判断.【详解】下列多项式不能运用平方差公式分解因式的是22m n --.故选A .【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.7.已知a ,b ,c 是△ABC 的三条边长,化简|a +b ﹣c |+|b ﹣a ﹣c |的结果为( )A. 2a +2bB. 2a +2b ﹣2cC. 2b ﹣2cD. 2a 【答案】D【解析】【分析】先根据三角形三条边的关系判断a+b-c 和b-a-c 的正负,然后根据绝对值的定义化简即可.【详解】解:∵a 、b 、c 为△ABC 的三条边长,∴a +b ﹣c >0,b ﹣a ﹣c <0,∴原式=a +b ﹣c ﹣(b ﹣a ﹣c )=a +b ﹣c +c +a ﹣b =2a .故选:D .【点睛】本题考查了三角形三条边的关系,以及绝对值的定义,熟练掌握三角形三条边的关系是解答本题的关键. 三角形任意两边之和大于第三边,任意两边之差小于第三边.8.一副三角板按如图所示方式叠放在一起,则图中∠α等于( )A. 105oB. 115oC. 120oD. 135o【答案】A【解析】【分析】 利用三角形内角和定理计算即可.【详解】解:由三角形的内角和定理可知:α=180°﹣30°﹣45°=105°,故选A .【点睛】本题考查三角形内角和定理,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考基础题.9.若m n >,下列不等式不一定成立的是( )A. 33m n ++>B. 33m n ﹣<﹣C. 33m n >D. 22m n >【答案】D【解析】【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,即可得到答案.【详解】解:A 、不等式的两边都加3,不等号的方向不变,故A 错误;B 、不等式的两边都乘以﹣3,不等号的方向改变,故B 错误;C 、不等式的两边都除以3,不等号的方向不变,故C 错误;D 、如2223m n m n m n =,=﹣,>,<;故D 正确;故选D .【点睛】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.10.若3x=15,3y=5,则3x-y等于()A. 5B. 3C. 15D. 10【答案】B【解析】试题分析:3x-y=3x÷3y=15÷5=3;故选B.考点:同底数幂的除法.11.如果不等式组26x xx m-+<-⎧⎨>⎩的解集为x>4,m的取值范围为()A. m<4B. m≥4C. m≤4D. 无法确定【答案】C【解析】【分析】表示出不等式组中第一个不等式的解集,根据不等式组的解集确定出m的范围即可.【详解】解不等式﹣x+2<x﹣6得:x>4,由不等式组26x xx m-+<-⎧⎨>⎩的解集为x>4,得到m≤4,故选C.【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.12.计算(-2)2019+(-2)2018的值是()A.-2B. 20182C. 2D. -20182【答案】D 【解析】【分析】直接利用提取公因式法分解因式进而计算得出答案.【详解】解:(-2)2019+(-2)2018=(-2)2018×(-2+1)=-22018.故选:D.【点睛】此题考查提取公因式法分解因式,正确找出公因式是解题关键.13. 如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A. 6B. 8C. 10D. 12【答案】C【解析】解:根据题意,将周长为8个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选C.14.甲是乙现在的年龄时,乙8岁,乙是甲现在的年龄时,甲26岁,那么()A. 甲20岁,乙14岁B. 甲22岁,乙16岁C. 乙比甲大18岁D. 乙比甲大34岁【答案】A【解析】【分析】设甲现在的年龄为x岁,乙现在的年龄为y岁,根据题意列出二元一次方程组即可求解.【详解】设甲现在的年龄为x岁,乙现在的年龄为y岁.依题意得()8()26y x yx x y--=⎧⎨+-=⎩,解2014xy=⎧⎨=⎩.故选A【点睛】此题主要考查二元一次方程组的应用,解题的关键根据题意找到等量关系列方程求解.15.如图,AB//EF,C90∠=o,则α、β、γ的关系为()A. βαγ=+B. αβγ180++=oC. βγα90+-=oD. αβγ90+-=o【答案】D【解析】解:方法一:延长DC 交AB 于G ,延长CD 交EF 于H .直角BGC V 中,190α∠=︒-;EHD △中,2βγ∠=-.因为AB EF P ,所以12∠=∠,于是90αβγ︒-=-,故90αβγ+-=︒.故选D .方法二:过点C 作CM AB ∥,过点D 作DN AB ∥,则由平行线的性质可得:BCM α∠=∠,NDE γ∠=,MCD CDN ∠=∠,∴90αβγ︒-∠=∠-∠,故90αβγ∠+∠-∠=︒,故选D 项.点睛:本题考查通过构造辅助线,同时利用三角形外角的性质以及平行线的性质建立角之间的关系. 16.如图,D 是△ABC 的边BC 上任意一点,E 、F 分别是线段AD .CE 的中点,且△ABC 的面积为20cm 2,则△BEF 的面积是( )A. 10B. 9C. 6D. 5 【答案】D【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】解:∵点E是AD的中点,∴S△ABE=12S△ABD,S△ACE=12S△ADC,∴S△ABE+S△ACE=12S△ABC=12×20=10cm2,∴S△BCE=12S△ABC=12×20=10cm2,∵点F是CE的中点,∴S△BEF=12S△BCE=12×10=5cm2.故选:D.【点睛】此题考查三角形的面积,解题关键在于利用三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.二.填空题17.(13)0=______.【答案】1【解析】【分析】根据零指数幂的性质计算.【详解】解:原式=1故答案为:1【点睛】此题考查零指数幂,解题关键在于掌握运算法则.18.如果a-b=3,ab=7,那么a2b-ab2=______.【答案】21【解析】【分析】直接将原式提取公因式ab,进而将已知代入数据求出答案.【详解】解:∵a-b=3,ab=7,∴a2b-ab2=ab(a-b)=3×7=21.故答案为:21.【点睛】此题考查提取公因式分解因式,正确分解因式是解题关键.19.一根长为1的绳子恰好围成一个三角形,则这个三角形的最长边x的取值范围是_________.【答案】11 32x≤<【解析】【分析】设其他两边的边长分别为y、z,然后根据三角形三边关系和x为最长边,列出不等式可得出结论. 【详解】设其他两边的边长分别为y、z,∵三角形周长为1,∴x+y+z=1,由三角形三边关系可得y+z>x,即1-x>x,解得12x<,又∵x为最长边,∴x≥y,x≥z,∴2x≥y+z,即2x≥1-x,解得13 x≥,综上可得11 32x≤<.【点睛】本题考查三角形的三边关系,掌握两较短边之和大于最长边是本题的关键.20.如图,将△ABC沿着平行于BC的直线DE折叠,点A落到点A′,若∠C=125°,∠A=20°,则∠BDA′的度数为______.【答案】110°【解析】【分析】根据三角形的内角和等于180°求出∠B,根据两直线平行,同位角相等可得∠ADE=∠B,再根据翻折变换的性质可得∠A′DE=∠ADE,然后根据平角等于180°列式计算即可得解.【详解】解:∵∠C=125°,∠A=20°,∴∠B=180°-∠A-∠C=180°-20°-125°=35°,∵△ABC沿着平行于BC的直线折叠,点A落到点A′,∴∠ADE=∠B=35°,∴∠A′DE=∠ADE=35°,∴∠A′DB=180°-35°-35°=110°.故答案为:110°.【点睛】此题考查平行线的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.21.已知:如图,∠1=∠2,∠3=∠E,试说明:∠A=∠EBC,(请按图填空,并补理由,)证明:∵∠1=∠2(已知),∴______∥______,________∴∠E=∠______,________又∵∠E=∠3(已知),∴∠3=∠______(等量代换),∴______∥______(内错角相等,两直线平行),∴∠A=∠EBC,________【答案】 (1). DB (2). EC (3). 内错角相等,两直线平行 (4). 4 (5). 两直线平行,内错角相等 (6). 4 (7). AD (8). BE (9). 两直线平行,同位角相等【解析】【分析】根据平行线的判定得出DB ∥EC ,根据平行线的性质得出∠E=∠4,求出∠3=∠4,根据平行线的判定得出AD ∥BE 即可.【详解】证明:∵∠1=∠2(已知),∴DB ∥EC (内错角相等,两直线平行),∴∠E=∠4(两直线平行,内错角相等),又∵∠E=∠3(已知),∴∠3=∠4( 等量代换),∴AD ∥BE (内错角相等,两直线平行),∴∠A=∠EBC (两直线平行,同位角相等),故答案为:DB ,EC ,内错角相等,两直线平行,4,两直线平行,内错角相等,4,AD ,BE ,两直线平行,同位角相等.【点睛】此题考查平行线的性质和判定定理,能灵活运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.三.解答题22.按要求解下列问题(1)计算-a 3(b 3)2+(2ab 2)3;(2)解不等式组()2x 13x 1x 523⎧+≥-⎪⎨+⎪⎩<. 【答案】(1)7a 3b 6;(2)x <1.【解析】【分析】(1)根据整式的运算法则即可求出答案;(2)根据不等式组的解法即可求出答案.【详解】解:(1)原式=-a 3b 6+8a 3b 6=7a 3b 6(2)()2x13x1x523⎧+≥-⎪⎨+⎪⎩①<②,由①得:x≤3,由②得:x<1,∴不等式组的解集为:x<1.【点睛】此题考查整式的加减运算,解一元一次不等式组,解题的关键是熟练运用运算法则,本题属于基础题型.23.解下列各题:(1)分解因式:9a2(x﹣y)+4b2(y﹣x);(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.【答案】(1)(x﹣y)(3a+2b)(3a﹣2b);(2)m=6,n=9,(x+3)2.【解析】【分析】(1)用提取公因式和平方差公式进行因式分解即可解答;(2)根据已知条件分别求出m和n的值,然后进行因式分解即可解答.【详解】解:(1)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(2)∵(x+2)(x+4)=x2+6x+8,甲看错了n,∴m=6.∵(x+1)(x+9)=x2+10x+9,乙看错了m,∴n=9,∴x2+mx+n=x2+6x+9=(x+3)2.【点睛】本题考查了用提取公因式和平方差公式进行因式分解,熟练掌握解题的关键.24.请认真观察图形,解答下列问题:(1)根据图1中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:______;方法2:______.(2)从中你能发现什么结论?请用等式表示出来:______;(3)利用(2)中结论解决下面的问题:如图2,两个正方形边长分别为a、b,如果a+b=ab=4,求阴影部分的面积.【答案】(1)a2+b2,(a+b)2-2ab;(2)a2+b2=(a+b)2-2ab;(3)阴影部分的面积=2.【解析】【分析】(1)方法1:两个正方形面积和,方法2:大正方形面积-两个小长方形面积;(2)由题意可直接得到;(3)由阴影部分面积=正方形ABCD的面积+正方形CGFE的面积-三角形ABD的面积-三角形BGF的面积,可求阴影部分的面积.【详解】解:(1)由题意可得:方法1:a2+b2方法2:(a+b)2-2ab,故答案为:a2+b2,(a+b)2-2ab;(2)a2+b2=(a+b)2-2ab,故答案为:a2+b2=(a+b)2-2ab;(3)∵阴影部分的面积=S正方形ABCD+S正方形CGFE-S△ABD-S△BGF=a2+b2-12a2-12(a+b)b∴阴影部分的面积=12a2+12b2-12ab=12[(a+b)2-2ab]-12ab,∵a+b=ab=4,∴阴影部分的面积=12[(a+b)2-2ab]-12ab=2.【点睛】此题考查完全平方公式的几何背景,用代数式表示图形的面积是解题的关键.25.某商店从厂家选购甲、乙两种商品,乙商品每件进价比甲商品每件进价少20元,若购进甲商品5件和乙商品4件共需要1000元;(1)求甲、乙两种商品每件的进价分别是多少元?(2)若甲种商品的售价为每件145元,乙种商品的售价为每件120元,该商店准备购进甲、乙两种商品共40件,且这两种商品全部售出后总利润不少于870元,则甲种商品至少可购进多少件?【答案】(1)甲120元,乙100元;(2)14件【分析】1)设甲种商品每件进价是x 元,乙种商品每件进价是y 元,根据“乙商品每件进价比甲商品每件进价多20元,若购进甲商品5件和乙商品4件共需要1000元”列出方程组解答即可;(2)设购进甲种商品a 件,则乙种商品(40﹣a )件,根据“全部售出后总利润(利润=售价﹣进价)不少于870元”列出不等式解答即可.【详解】(1)设甲商品进价每件x 元,乙商品进价每件y 元,根据题意得:20541000y x x y -=⎧⎨+=⎩解得:120100x y =⎧⎨=⎩. 答:甲商品进价每件120元,乙商品进价每件100元.(2)设甲商品购进a 件,则乙商品购进(40﹣a )件(145-120)a +(120-100)(40-a )≥870∴a ≥14.∵a 为整数,∴a 至少为14.答:甲商品至少购进14件.【点睛】本题主要考查了二元一次方程组的应用以及一元一次不等式的应用,解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式.26.如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC(1)若∠B=70°,∠C=30°,求;①∠BAE 的度数.②∠DAE 的度数.(2)探究:如果只知道∠B=∠C+40°,那么能求岀∠DAE 的度数吗?若能,请你写出求解过程;若不能,请说明理由.【答案】(1)①∠BAE=40°;②∠DAE=20°;(2)∠DAE=20°.【解析】(1)①利用三角形的内角和定理求出∠BAC,再利用角平分线定义求∠BAE.②先求出∠BAD,就可知道∠DAE的度数.(2)用∠B,∠C表示∠DAE,即可求岀∠DAE的度数.【详解】解:(1)①∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵AE平分∠BAC,∴∠BAE=40°;②∵AD⊥BC,∠B=70°,∴∠BAD=90°-∠B=90°-70°=20°,而∠BAE=40°,∴∠DAE=20°;(2)∵AE为角平分线,∴∠BAE=12(180°-∠B-∠C),∵∠BAD=90°-∠B,∴∠DAE=∠BAE-∠BAD=12(180°-∠B-∠C)-(90°-∠B)=12(∠B-∠C),又∵∠B=∠C+40°,∴∠B-∠C=40°,∴∠DAE=20°.【点睛】此题考查了三角形内角和定理,熟练运用角平分线定义和三角形的内角和定理是解题的关键。
新人教版七年级数学(下册)期末试题及答案

新人教版七年级数学(下册)期末试题及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-2.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .645.已知x 是整数,当30x 取最小值时,x 的值是( )A .5B .6C .7D .86.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A.70°B.180°C.110°D.80°7.把1aa-根号外的因式移入根号内的结果是()A.a-B.a--C.a D.a-8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对10.如图,在菱形ABCD中,2,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.有理数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣a|+|b﹣c|的结果是________.2.绝对值不大于4.5的所有整数的和为________.3.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_____cm(杯壁厚度不计).5.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a∥b的是________(填序号)6.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程组:25 342 x yx y-=⎧⎨+=⎩2.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求a bm cdm+++的值.3.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.4.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;∆≅∆求证:(1)DBC ECB=(2)OB OC5.为丰富学生的课余生活,陶冶学生的情趣,促进学生全面发展,其中七年级开展了学生社团活动.学校为了解学生参加情况,进行了抽样调查,制作如下的统计图:请根据上述统计图,完成以下问题:(1)这次共调查了______名学生;扇形统计图中,表示“书法类”所在扇形的圆心角是______度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名,请估算有多少名学生参加文学类社团?6.请根据图中提供的信息,回答下列问题.(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、D5、A6、C7、B8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-2a2、03、70.4、205、①③④⑤.6、5三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=-⎩2、(1)a+b=0,cd=1,m=±2;(2)3或-13、4.4、(1)略;(2)略.5、(1)50;72;(2)详见解析;(3)330.6、(1)一个暖瓶30元,一个水杯8元;(2)到乙家商场购买更合算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下数学期末试题题号一二三四五六七八总分得分一、选择题(本大题共10小题,每小题4分,共计40分,请将下列各题中 A、B、C、D选项中唯一正确的答案代号填到本题前的表格内)题号 1 2 3 4 5 6 7 8 9 10答案1.下列各数中是无理数的是A. 3.14B.C.D.2. 9的算术平方根是A. ±B.3C.-3D. ±33.下列调查中,适合采用全面调查(普查)方式的是A.对觅湖水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.节能灯厂家对一批节能灯管使用寿命的调查D.对某班50名学生视力情况的调查4.平面直角坐标系中点(-2, 3)所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限5.通过估算,估计的值应在A. 2〜3之间B. 3〜4之间C. 4〜5之间D. 5〜6之间6.数学课上,小明同学在练习本的相互平行的横隔线上先画了直线a,度量出∠1=112°,接着他准备在A点处画直线b.若要b//a,则∠2的度数A. 112°B. 88°C. 78。
D. 68°7.不等式组的解集在数轴上表示为8.已知是二元一次方程组的解,则m-n的值是A.1B.2C.3D.49.如图,小明把一块含有60°锐角的直角三角板的三个顶点分别放在一组平行线上如果∠1=20°,那么∠2 的度数是A.25°B.30°C.40°D.45°10.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中“一”方向排列,如: P1 (O,0), P2 (O,1),P3(1,1),P4(1,一1),P5(-1,-1),P6(-1,2),.. 根据这个规律,点P2017 的坐标为A. (-504,-504)B.(-505,一504)C. (504, -504 )D. (-504,505 )二、填空题(本题共4小题,每小题5分,共20分)11.计算|-|+2=________;12.如图,在3X3的方格内,填写了一些单项式.已知图中各行、各列及对角线上三个单项式之和都相等,则x 的值应为______;13.在平面直角坐标系中,当M(x,y)不是坐标轴上点时,定义M的“影子点”为M’(,-),点P(-3,2)的“影子点”是点P’,则点P’的“影子点”P"的坐标为______;14.高斯符号[x]首次出现是在数学家高斯(CF.Gauss)的数学著作《算术研究》一书中.对于任意实数x,通常用[x]表示不超过x的最大整数,如[2.9] =2.给出如下结论:①[-3] =-3,②[-2.9] =-2,③[0.9] =0, ④[x] + [―x]=0.得分评卷人得分评卷人以上结论中,你认为正确的有____.(填序号)三、本大题共两小题,每小题8分,满分16分)15.解方程组16.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”位依次程序操作,如果程序操作进行了二次便停止,求x的取值范围。
四、(本大题共两小题。
每小题8分,满分16分)17.已知实数a+9的平方根是±5,2b-a的立方根是-2,求式子-的值。
18.如图,AB//CD//EF, ∠ABE=70°,∠DCE=144°,求∠BEC的度数。
五、(本大题共2个小题,每小题10分,满分20分)19. 如图,在平面直角坐标系中,∆ABC的三个顶点坐标分别为 A (1, -4), B (3, -3), C (1, -1).(1)将∆ABC先向上平移5个单位,再向左平移3个单位,平移后得到的△A1B1C1;(2)写出△A1B1C1各顶点的坐标;(3)若△ABC内有一点P (a, 6),请写出平移后得到的对应点P1的坐标.20.某学校为了庆祝国庆节,准备购买一批盆花布置校园,已知1盆A种花和2盆B种花共需13 元;2盆A 种花和1盆B种花共需11元.(1)求1盆A种花和1盆B种花的售价各是多少元?(2)学校准备购进这两种盆花共100盆,并且A种盆花的数量不超过B种盆花数量的2倍,请求出A种盆花的数量最多是多少?得分评卷人得分评卷人得分评卷人六、(本题满分12分)21.2017年3月27是第22个全由中小学生安全教育日,某校为增强学生的安全意识,组织全校学生参加安全知识测试,并对测试成绩做了详细统计,将测试成绩(成绩都是整数,试卷满分30 分)绘制成了如下“频数分布直方图”请回答:(1)参加全校安全知识测试的学生共有__人:(2)小亮想根据此直方图绘制一个扇形统计图,请你帮他算出分数为15.5~20.5这一组所对应的扇形的圆心角的度数:(3)若学生测试分数超过20分记为优良,请计算出本次测试全校的优良率约是多少?(精确到1%):七、(本题满分12分)22.如图,∠CDH+∠EBG=180°, ∠DAE=∠BCF,DA平分∠BDF.(1)AE与FC会平行吗?说明理由。
(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?、八、(本题满分14分)23.【数学活动回顾】:七年级下册教材中我们曾探究过“以方程x-y=0的解为坐标(x的值为横坐标、y的值为纵坐标)的点的特性”,了解二元一次方程的解与其图像上点的坐标的关系。
规定:以方程x-y=0的解为坐标的所有点的全体叫做方程x-y=0的图像;结论:一般的,任何一个二元一次方程的图像都是一条直线。
示例:如图1,我们在画方程x-y=0的图像时,可以取点A(-1,-1)和B(2,2)做出直线AB。
【解决问题】:1、请你在图2所给的平面直角坐标系中画出二元一次方程组中的两个二元一次方程的图像(提示:依据“两点确定一条直线”,画出图像即可,无需写出过程)2、观察图像,两条直线的交点坐标为___________,由此你得出这个二元一次方程组的解是:________________.【拓展延伸】:3、已知二元一次方程ax+by=6的图像经过两点A(1,-3)和B(2,0),试求a、b的值。
得分评卷人得分评卷人第22题图参考答案及评分标准一、1-5 DBDBC ;6-10 DCADCA 二、11、32+;12、-1; 13、94(,)49-; 14、①③.(填出一个正确序号得2分,填了错误序号的一律不得分)三、15、-=⎧⎨+=⎩25,4315.x y x y ①② ;解:方程①×3+②得:x =3,……….4分 把x =3代入方程①得:12+3y =15,y =1,所以,原方程组的解是31x y =⎧⎨=⎩………….8分16、解:由题意得,…………………………………………4分由①得 x ≤47 由②得 4x ﹢3﹥95 4x ﹥92 x ﹥23∴ 23 ﹤x ≤47 …………………………………………8分 四、17、由题意可知,a +9=25,a =16,2b -a =-8,b =4……………….4分所以a b -=164422-=-=………….8分 18、解:∵AB ∥EF ,∴∠BEF =∠ABE =70° ∵CD ∥EF ,∴∠DCE +∠CEF =180°,∴∠CEF =180°-144°=36° ∴∠BEC =∠BEF -∠CEF =34°五、19、(1)如图,△ A 1B 1C 1即为所求……………………4分 (2)△ A 1B 1C 1各顶点的坐标分别为:A 1(-2,1),B 1(0, 2),C 1(-2, 4)…………7分 (3)P 1(a -3, b +5)……………………10分20、解:(1)设一盆A 种花的售价是x 元,一盆B 种花的售价是y 元.依题意得213211+=⎧⎨+=⎩x y x y ,解得35=⎧⎨=⎩x y ,答:一盆A 种花的售价是是3元,一盆B 种花的售价是5元;………………………(5分)(2)设购进A 种花m 盆依题意 ∵ m ≤2(100-m ),∴ m ≤2663,而m 为正整数, ∴ m 最多=66答:A 种盆花最多购进66盆.……(10分)21、解:(1)学生总人数为(0.1+0.7+1.3+2.8+3.1+4.0)1001200⨯=人 ……………4分 (2)分数为15.5~20.5这一组所对应的扇形的圆心角的度数为4003601201200⨯︒=︒………8分 (3)全校的优良率约为0028070291200+≈………………………12分22、解:(1)AE 与FC 平行; 证明:∵∠ CDH +∠ EBG =180° 又∠ CDH +∠CDB =180°, ∴∠ CDB =∠EBG ,∴AE ∥FC . ……………….4分 (2)AD 与BC 平行,证明:∵AE ∥FC , ∴∠C DA +∠DA E =180°,∵∠ DAE =∠BCF ,∴∠CDA +∠BCF =180°,∴ AD ∥BC . ……………….8分 (3)BC 平分∠DBE ,证明:∵AE ∥FC , ∴∠ EBC =∠ BCF ,∵AD∥BC,∴∠ BCF=∠ FDA,∠ DBC=∠ BDA , 又∵DA 平分∠ BDF,即∠ FDA=∠ BDA, ∴∠ EBC=∠ DBC,∴ BC 平分∠ DBE. ……………….12分23、解:(1)如图.(每画出一条直线得3分)………….6分(2)由图象可知,两条直线的交点坐标为(1,2),所以,此方程组的解为12x y =⎧⎨=⎩; (每空2分)……………….10分(3)由题意得,3626a b a -=⎧⎨=⎩,解得31a b =⎧⎨=-⎩.……………….14分2x +1≤95 ①2(2x +1)+1>95 ②。