【创新设计】2011届高三数学一轮复习 5-5数列的综合应用随堂训练 理 苏教版

合集下载

高三一轮复习北师大版5.5 数列的综合应用

高三一轮复习北师大版5.5 数列的综合应用

[难点正本
疑点清源]
1.用函数的观点理解等差数列、等比数列 (1)对于等差数列,由an=a1+(n-1)d=dn+(a1-d),当 d≠0时,an是关于n的一次函数,对应的点(n,an)是位于直 线上的若干个离散的点.当d>0时,函数是增函数,对应的 数列是递增数列;同理,d=0时,函数是常函数,对应的 数列是常数列;d<0时,函数是减函数,对应的数列是递减 数列. 若等差数列的前n项和为Sn,则Sn=pn2+qn (p、q∈R).当 p=0时,{an}为常数列;当p≠0时,可用二次函数的方法 解决等差数列问题.
要点梳理
1.等比数列与等差数列比较
不同点 (1)强调从第二项起每一 等差 数列 项与前一项的差; (2)a1 和 d 可以为零; (3)等差中项唯一 (1)强调从第二项起每一 等比 数列 项与前一项的比; (2)a1 与 q 均不为零; (3)等比中项有两个值 相同点 (1)都强调从第二项 起每一项与前一项 的关系; (2)结果都必须是同 一个常数; (3)数列都可由 a1, d 或 a1,q 确定
3 2 45 d 5a1 d 50, 3a1 2 2 2 (a1 3d ) a1 (a1 12d ),
a1 3, 解得 d 2,
∴an=a1+(n-1)d=3+2×(n-1)=2n+1,即an=2n+1.
a2 =2×2n+1=2n+1+1, (2)由已知得,bn=
5.5 数列的综合应用
考 1

考纲解读 以数列知识为载体考查数 学建模和运用数列知识解 决实际问题的能力.
运用数列的概念、公式、 性质解决简单的实际问题
数列的综合应用问题既能考查潜能,又具有较强的区分度,创新应用问题选 材也可以用数列为背景,在近几年的高考试题解答题中,有关数列的试题出现的 频率较高,不仅可与函数、方程、不等式相关联,还可与三角、几何、复数等知 识相结合,题目新颖,难度较大,对数学思想方法的运用和各种数学能力的要求较 高. 在复习中要重视紧扣等差、等比数列的性质和定义,做到合理地分析,灵巧

【全套解析】高三数学一轮复习 5-5 数列的综合应用课件 (理) 新人教A版

【全套解析】高三数学一轮复习 5-5 数列的综合应用课件 (理) 新人教A版

即时训练 已知曲线C:y=x2(x>0),过C上的点A1(1,1)作曲线C 的切线l1交x轴于点B1,再过点B1作y轴的平行线交曲线C于点A2,再过 点A2作曲线C的切线l2交x轴于点B2,再过点B2作y轴的平行线交曲线C 于点A3,…,依次作下去,记点An的横坐标为an(n∈N*).
(1)求数列{an}的通项公式; (2)设数列{an}的前n项和为Sn,求证:anSn≤1.
解:(1)∵曲线 C 在点 An(an,an2)处的切线 ln 的斜率是 2an, ∴切线 ln 的方程是 y-an2=2an(x-an), 由于点 B 的横坐标等于点 An+1 的横坐标 an+1, ∴令 y=0,得 an+1=12an, ∴数列{an}是首项为 1,公比为12的等比数列, ∴an=2n1-1.
[例1] 已知数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan- 1(n≥2,q≠0).
(1)设bn=an+1-an(n∈N*),证明{bn}是等比数列; (2)求数列{an}的通项公式; (3)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*, an是an+3与an+6的等差中项.
②乙方案获利: 1+(1+0.5)+(1+2×0.5)+…+(1+9×0.5) =10×1+102×9×0.5=32.50(万元), 银行本息和: 1.05×[1+(1+5%)+(1+5%)2+…+(1+5%)9] =1.05×1.005.1005-1≈13.21(万元) 故乙方案纯利:32.50-13.21=19.29(万元); 综上可知,甲方案更好.
(2)kAnAn+1=aan+n+2-1-aan+n 1,可用作差比较法证明.
[课堂记录] (1)∵an+1=ana+n 1且 a1=1, ∴an1+1=1+a1n,∴an1+1-a1n=1, ∴{a1n}是以 1 为首项,1 为公差的等差数列, ∴a1n=1+(n-1)×1=n,∴an=1n.

届高考数学一轮复习第5章 第5节 数列的综合应用(新人教A版)(山东专用)PPT课件

届高考数学一轮复习第5章 第5节 数列的综合应用(新人教A版)(山东专用)PPT课件
【解析】 f′(x)=mxm-1+a=2x+1,
∴a=1,m=2,
∴f(x)=x(x+1),
f1n=nn1+1=n1-n+1 1,
用裂项法求和得 Sn=n+n 1.
【答案】
n n+1
5.(2012·湖北高考)定义在(-∞,0)∪(0,+∞)上的函数 f(x),
如果对于任意给定的等比数列{an},{f(an)}仍是等比数列,则称 f(x) 为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如
故数列lg
a1n的前 6 项的和最大.
规律方法 1 1.1本题的切入点是求 a1,从而得 an 与 Sn 的关 系,转化成等比数列求通项公式;2递减的等差数列的前 n 项和 有最大值,运用函数思想求解.
2.等差数列与等比数列的联系: 1若数列{an}是等差数列,则数列{aan}是等比数列,公比为 ad,其中 a 是常数,d 是{an}的公差.a>0 且 a≠1. 2若数列{an}是等比数列,且 an>0,则数列{logaan}是等差数 列,公差为 logaq,其中 a 是常数且 a>0,a≠1,q 是{an}的公比.
【解析】 每天植树的棵树构成以 2 为首项,2 为公比的 等比数列,其前 n 项和 Sn=a111--qqn=211--22n=2n+1-2.由 2n+1-2≥100,得 2n+1≥102. 由于 26=64,27=128,则 n+1≥7, 即 n≥6. 【答案】 6
考向一 [096] 等差数列与等比数列的综合应用
(2)当 λ=100 时,令 bn=lg a1n, 由(1)知,bn=lg 120n0=2-nlg 2,
于是数列{bn}是公差为-lg 2 的递减数列.
b1>b2>…>b6=lg

高三数学人教版A版数学(理)高考一轮复习教案:5.5 数列的综合应用 Word版含答案

高三数学人教版A版数学(理)高考一轮复习教案:5.5 数列的综合应用 Word版含答案

第五节数列的综合应用数列的综合应用能在具体的问题情境中,识别数列的等差关系或等比关系,抽象出数列的模型,并能用有关知识解决相应的问题.知识点数列的实际应用问题数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是a n与a n+1的递推关系,还是前n项和S n与S n+1之间的递推关系. 必备方法解答数列应用题的步骤:(1)审题——仔细阅读材料,认真理解题意.(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的结构和特征.(3)求解——求出该问题的数学解.(4)还原——将所求结果还原到原实际问题中.具体解题步骤用框图表示如下:[自测练习]1.有一种细菌和一种病毒,每个细菌在每秒钟杀死一个病毒的同时将自身分裂为2个,现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要() A.6秒钟B.7秒钟C.8秒钟D.9秒钟解析:设至少需要n秒钟,则1+21+22+…+2n-1≥100,∴1-2n 1-2≥100,∴n ≥7. 答案:B2.一个凸多边形的内角成等差数列,其中最小的内角为2π3,公差为π36,则这个多边形的边数为________.解析:由于凸n 边形的内角和为(n -2)π, 故2π3n +n (n -1)2×π36=(n -2)π. 化简得n 2-25n +144=0.解得n =9或n =16(舍去). 答案:93.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于________.解析:每天植树的棵数构成以2为首项,2为公比的等比数列,其前n 项和S n =a 1(1-q n )1-q =2(1-2n )1-2=2n +1-2.由2n +1-2≥100,得2n +1≥102.由于26=64,27=128,则n +1≥7,即n ≥6.答案:6考点一 等差、等比数列的综合应用|在数列{a n }中,a 1=2,a 2=12,a 3=54,数列{a n +1-3a n }是等比数列.(1)求证:数列⎩⎨⎧⎭⎬⎫a n 3n -1是等差数列;(2)求数列{a n }的前n 项和S n .[解] (1)证明:∵a 1=2,a 2=12,a 3=54, ∴a 2-3a 1=6,a 3-3a 2=18. 又∵数列{a n +1-3a n }是等比数列, ∴a n +1-3a n =6×3n -1=2×3n ,∴a n +13n -a n3n -1=2, ∴数列⎩⎨⎧⎭⎬⎫a n 3n -1是等差数列.(2)由(1)知数列⎩⎨⎧⎭⎬⎫a n 3n -1是等差数列,∴a n 3n -1=a 130+(n -1)×2=2n , ∴a n =2n ×3n -1.∵S n =2×1×30+2×2×31+…+2n ×3n -1,∴3S n =2×1×3+2×2×32+…+2n ×3n .∴S n -3S n =2×1×30+2×1×3+…+2×1×3n -1-2n ×3n=2×1-3n1-3-2n ×3n=3n -1-2n ×3n , ∴S n =⎝⎛⎭⎫n -12×3n +12.等差数列、等比数列综合问题的解题策略(1)分析已知条件和求解目标,为最终解决问题设置中间问题,例如求和需要先求出通项、求通项需要先求出首项和公差(公比)等,确定解题的顺序.(2)注意细节:在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等,这些细节对解题的影响也是巨大的.1.(2016·贵州七校联考)已知{a n }是等差数列,{b n }是等比数列,S n 为数列{a n }的前n 项和,a 1=b 1=1,且b 3S 3=36,b 2S 2=8(n ∈N *).(1)求a n 和b n ;(2)若a n <a n +1,求数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和T n .解:(1)由题意得⎩⎪⎨⎪⎧q 2(3+3d )=36,q (2+d )=8,解得⎩⎪⎨⎪⎧d =2q =2或⎩⎪⎨⎪⎧d =-23,q =6,∴⎩⎪⎨⎪⎧a n =2n -1,b n =2n -1,或⎩⎪⎨⎪⎧a n =13(5-2n ),b n =6n -1.(2)若a n <a n +1,由(1)知a n =2n -1,∴1a n a n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,∴T n =12⎝⎛⎭⎫1-13+13-15+…+12n -1-12n +1=n 2n +1.考点二 数列的实际应用问题|为了加强环保建设,提高社会效益和经济效益,长沙市计划用若干时间更换一万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,替换车为电力型和混合动力型车.今年初投入了电力型公交车128辆,混合动力型公交车400辆;计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a 辆.(1)求经过n 年,该市被更换的公交车总数S (n ); (2)若该市计划7年内完成全部更换,求a 的最小值.[解] (1)设a n ,b n 分别为第n 年投入的电力型公交车、混合动力型公交车的数量. 依题意,得{a n }是首项为128,公比为1+50%=32的等比数列,{b n }是首项为400,公差为a 的等差数列.所以{a n }的前n 项和S n =128×⎣⎡⎦⎤1-⎝⎛⎭⎫32n 1-32=256⎣⎡⎦⎤⎝⎛⎭⎫32n -1, {b n }的前n 项和T n =400n +n (n -1)2a . 所以经过n 年,该市被更换的公交车总数为S (n )=S n +T n =256⎣⎡⎦⎤⎝⎛⎭⎫32n -1+400n +n (n -1)2a . (2)若计划7年内完成全部更换,则S (7)≥10 000,所以256⎣⎡⎦⎤⎝⎛⎭⎫327-1+400×7+7×62a ≥10 000, 即21a ≥3 082,所以a ≥1461621.又a ∈N *,所以a 的最小值为147.解决数列应用题一个注意点解决数列应用问题,要明确问题属于哪一种类型,即明确是等差数列问题还是等比数列问题,要求a n 还是S n ,特别是要弄清项数.2.某工业城市按照“十二五”(2011年至2015年)期间本地区主要污染物排放总量控制要求,进行减排治污.现以降低SO 2的年排放量为例,原计划“十二五”期间每年的排放量都比上一年减少0.3万吨,已知该城市2011年SO 2的年排放量约为9.3万吨.(1)按原计划,“十二五”期间该城市共排放SO 2约多少万吨?(2)该城市为响应“十八大”提出的建设“美丽中国”的号召,决定加大减排力度.在2012年刚好按原计划完成减排任务的条件下,自2013年起,SO 2的年排放量每年比上一年减少的百分率为p ,为使2020年这一年SO 2的年排放量控制在6万吨以内,求p 的取值范围.⎝ ⎛⎭⎪⎫参考数据:823≈0.9505,923≈0.955 9解:(1)设“十二五”期间,该城市共排放SO 2约y 万吨,依题意,2011年至2015年SO 2的年排放量构成首项为9.3,公差为-0.3的等差数列, 所以y =5×9.3+5×(5-1)2×(-0.3)=43.5(万吨).所以按原计划“十二五”期间该城市共排放SO 2约43.5万吨. (2)由已知得,2012年的SO 2年排放量为9.3-0.3=9(万吨),所以2012年至2020年SO 2的年排放量构成首项为9,公比为1-p 的等比数列. 由题意得9×(1-p )8<6,由于0<p <1, 所以1-p <823,所以1-p <0.950 5,解得p >4.95%.所以SO 2的年排放量每年减少的百分率p 的取值范围为(4.95%,1).考点三 数列与不等式的综合问题|(2015·高考浙江卷)已知数列{a n }满足a 1=12且a n +1=a n -a 2n (n ∈N *). (1)证明:1≤a na n +1≤2(n ∈N *);(2)设数列{a 2n }的前n 项和为S n ,证明:12(n +2)≤S n n ≤12(n +1)(n ∈N *). [证明] (1)由题意得a n +1-a n =-a 2n ≤0,即a n +1≤a n ,故a n ≤12.由a n =(1-a n -1)a n -1得a n =(1-a n -1)(1-a n -2)…(1-a 1)a 1>0. 由0<a n ≤12得a n a n +1=a n a n -a 2n =11-a n ∈[1,2],即1≤a na n +1≤2. (2)由题意得a 2n =a n -a n +1, 所以S n =a 1-a n +1.① 由1a n +1-1a n =a n a n +1和1≤a n a n +1≤2得1≤1a n +1-1a n ≤2, 所以n ≤1a n +1-1a 1≤2n ,因此12(n +1)≤a n +1≤1n +2(n ∈N *).②由①②得12(n +2)≤S n n ≤12(n +1)(n ∈N *).数列与不等式相结合问题的处理方法解决数列与不等式的综合问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等;如果是解不等式问题要使用不等式的各种不同解法,如列表法、因式分解法等.3.(2016·云南一检)在数列{a n }中,a 1=35,a n +1=2-1a n ,设b n =1a n -1,数列{b n }的前n项和是S n .(1)证明数列{b n }是等差数列,并求S n ; (2)比较a n 与S n +7的大小.解:(1)∵b n =1a n -1,a n +1=2-1a n ,∴b n +1=1a n +1-1=1a n -1+1=b n +1,∴b n +1-b n =1,∴数列{b n }是公差为1的等差数列. 由a 1=35,b n =1a n -1得b 1=-52,∴S n =-5n 2+n (n -1)2=n 22-3n .(2)由(1)知:b n =-52+n -1=n -72.由b n =1a n -1得a n =1+1b n =1+1n -72.∴a n -S n -7=-n 22+3n -6+1n -72.∵当n ≥4时,y =-n 22+3n -6是减函数,y =1n -72也是减函数,∴当n ≥4时,a n -S n -7≤a 4-S 4-7=0.又∵a 1-S 1-7=-3910<0,a 2-S 2-7=-83<0,a 3-S 3-7=-72<0,∴∀n ∈N *,a n -S n -7≤0, ∴a n ≤S n +7.6.数列的综合应用的答题模板【典例】 (12分)(2015·高考四川卷)设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.[思路点拨] 由S n =2a n -a 1,得a 2=2a 1,a 3=4a 1,再通过a 1,a 2+1,a 3成等差数列确定首项a 1=2是解决(1)的切入点;由(1)知⎩⎨⎧⎭⎬⎫1a n 是首项为12,公比为12的等比数列,所以T n =1-12n ,然后解不等式即可. [规范解答] (1)由已知S n =2a n -a 1,有 a n =S n -S n -1=2a n -2a n -1(n ≥2), 即a n =2a n -1(n ≥2).所以a =2. 从而a 2=2a 1,a 3=2a 2=4a 1.(2分)又因为a 1,a 2+1,a 3成等差数列,即a 1+a 3=2(a 2+1). 所以a 1+4a 1=2(2a 1+1),解得a 1=2.所以,数列{a n }是首项为2,公比为2的等比数列. 故a n =2n .(6分) (2)由(1)得1a n =12n .所以T n =12+122+…+12n =12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=1-12n .(8分)由|T n -1|<11 000,得⎪⎪⎪⎪1-12n -1<11000,即2n >1 000. 因为29=512<1 000<1 024=210, 所以n ≥10.(10分) 于是,使|T n -1|<11 000成立的n 的最小值为10.(12分) [模板形成][跟踪练习] (2015·湖北七市联考)数列{a n }是公比为12的等比数列,且1-a 2是a 1与1+a 3的等比中项,前n 项和为S n ;数列{b n }是等差数列,b 1=8,其前n 项和T n 满足T n =nλ·b n+1(λ为常数,且λ≠1).(1)求数列{a n }的通项公式及λ的值; (2)比较1T 1+1T 2+1T 3+…+1T n 与12S n 的大小.解:(1)由题意得(1-a 2)2=a 1(a 3+1), 即⎝⎛⎭⎫1-12a 12=a 1⎝⎛⎭⎫14a 1+1, 解得a 1=12,∴a n =⎝⎛⎭⎫12n . 设{b n }的公差为d ,又⎩⎪⎨⎪⎧ T 1=λb 2,T 2=2λb 3,即⎩⎪⎨⎪⎧8=λ(8+d ),16+d =2λ(8+2d ),解得⎩⎪⎨⎪⎧λ=12,d =8或⎩⎪⎨⎪⎧λ=1,d =0(舍),∴λ=12.(2)由(1)知S n =1-⎝⎛⎭⎫12n, ∴12S n =12-⎝⎛⎭⎫12n +1≥14,① 又T n =4n 2+4n ,1T n =14n (n +1)=14⎝⎛⎭⎫1n -1n +1,∴1T 1+1T 2+…+1T n=14⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 =14⎝⎛⎭⎫1-1n +1<14,② 由①②可知1T 1+1T 2+…+1T n <12S n .A 组 考点能力演练1.(2015·杭州二模)在正项等比数列{a n }中,22为a 4与a 14的等比中项,则2a 7+a 11的最小值为( )A .16B .8C .6D .4解析:因为{a n }是正项等比数列,且22为a 4与a 14的等比中项,所以a 4a 14=8=a 7a 11,则2a 7+a 11=2a 7+8a 7≥22a 7·8a 7=8,当且仅当a 7=2时,等号成立,所以2a 7+a 11的最小值为8,故选择B.答案:B2.(2016·宝鸡质检)《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的17是较小的两份之和,问最小的一份为( )A.53B.103C.56D.116解析:由100个面包分给5个人,每个人所得成等差数列,可知中间一人得20块面包,设较大的两份为20+d,20+2d ,较小的两份为20-d,20-2d ,由已知条件可得17(20+20+d+20+2d )=20-d +20-2d ,解得d =556,∴最小的一份为20-2d =20-2×556=53,故选A.答案:A3.(2016·豫南十校联考)设f (x )是定义在R 上的恒不为零的函数,且对任意的x ,y ∈R ,都有f (x )·f (y )=f (x +y ).若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是( )A.⎣⎡⎭⎫12,2B.⎣⎡⎦⎤12,2 C.⎣⎡⎭⎫12,1D.⎣⎡⎦⎤12,1解析:在f (x )·f (y )=f (x +y )中令x =n ,y =1,得f (n +1)=f (n )f (1),又a 1=12,a n =f (n )(n∈N *),则a n +1=12a n ,所以数列{a n }是首项和公比都是12的等比数列,其前n 项和S n =12×⎝⎛⎭⎫1-12n 1-12=1-12n ∈⎣⎡⎭⎫12,1,故选择C. 答案:C4.已知在等差数列{a n }中,a 1>0,d >0,前n 项和为S n ,等比数列{b n }满足b 1=a 1,b 4=a 4,前n 项和为T n ,则( )A .S 4>T 4B .S 4<T 4C .S 4=T 4D .S 4≤T 4解析:法一:设等比数列{b n }的公比为q ,则由题意可得q >1,数列{b n }单调递增,又S 4-T 4=a 2+a 3-(b 2+b 3)=a 1+a 4-a 1q -a 4q =a 1(1-q )+a 4⎝⎛⎭⎫1-1q =q -1q (a 4-a 1q )=q -1q (b 4-b 2)>0,所以S 4>T 4.法二:不妨取a n =7n -4,则等比数列{b n }的公比q =3a 4a 1=2,所以S 4=54,T 4=b 1(1-q 4)1-q =45,显然S 4>T 4,选A.答案:A5.正项等比数列{a n }满足:a 3=a 2+2a 1,若存在a m ,a n ,使得a m ·a n =16a 21,m ,n ∈N *,则1m +9n的最小值为( ) A .2 B .16 C.114D.32解析:设数列{a n }的公比为q ,a 3=a 2+2a 1⇒q 2=q +2⇒q =2,∴a n =a 1·2n -1,a m ·a n =16a 21⇒a 21·2m+n -2=16a 21⇒m +n =6,∵m ,n ∈N *,∴(m ,n )可取的数值组合为(1,5),(2,4),(3,3),(4,2),(5,1),计算可得,当m =2,n =4时,1m +9n 取最小值114.答案:C6.(2016·兰州双基)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =________.解析:由题意,得(a 1+3×2)2=(a 1+2)(a 1+7×2),解得a 1=2,所以S n =2n +n (n -1)2×2=n 2+n .答案:n 2+n7.(2015·高考湖南卷)设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.解析:由3S 1,2S 2,S 3成等差数列,得4S 2=3S 1+S 3,即3S 2-3S 1=S 3-S 2,则3a 2=a 3,得公比q =3,所以a n =a 1q n -1=3n -1. 答案:3n -1 8.从盛满2升纯酒精的容器里倒出1升纯酒精,然后填满水,再倒出1升混合溶液后又用水填满,以此继续下去,则至少应倒________次后才能使纯酒精体积与总溶液的体积之比低于10%.解析:设倒n 次后纯酒精与总溶液的体积比为a n ,则a n =⎝⎛⎭⎫12n ,由题意知⎝⎛⎭⎫12n <10%, ∴n ≥4.答案:49.已知f (x )=2sin π2x ,集合M ={x ||f (x )|=2,x >0},把M 中的元素从小到大依次排成一列,得到数列{a n },n ∈N *.(1)求数列{a n }的通项公式;(2)记b n =1a 2n +1,设数列{b n }的前n 项和为T n ,求证:T n <14. 解:(1)∵|f (x )|=2,∴π2x =k π+π2,k ∈Z ,x =2k +1,k ∈Z . 又∵x >0,∴a n =2n -1(n ∈N *).(2)∵b n =1a 2n +1=1(2n +1)2=14n 2+4n +1<14n 2+4n =14⎝⎛⎭⎫1n -1n +1, ∴T n =b 1+b 2+…+b n <14⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=14-14(n +1)<14, ∴T n <14得证. 10.已知数列{a n }的前n 项和为S n ,且满足a 1=12,a n =-2S n ·S n -1(n ≥2). (1)求数列{a n }的通项公式a n ;(2)求证:S 21+S 22+…+S 2n ≤12-14n. 解:(1)∵a n =-2S n ·S n -1(n ≥2),∴S n -S n -1=-2S n ·S n -1.两边同除以S n ·S n -1,得1S n -1S n -1=2(n ≥2), ∴数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,以d =2为公差的等差数列, ∴1S n =1S 1+(n -1)·d =2+2(n -1)=2n , ∴S n =12n. 将S n =12n代入a n =-2S n ·S n -1, 得a n=⎩⎨⎧12, (n =1),12n -2n 2, (n ≥2).(2)证明:∵S 2n =14n 2<14n (n -1)=14⎝⎛⎭⎫1n -1-1n (n ≥2), S 21=14, ∴当n ≥2时,S 21+S 22+…+S 2n=14+14×2×2+…+14·n ·n<14+14⎝⎛⎭⎫1-12+…+14⎝⎛⎭⎫1n -1-1n =12-14n; 当n =1时,S 21=14=12-14×1. 综上,S 21+S 22+…+S 2n ≤12-14n. B 组 高考题型专练1.(2015·高考浙江卷)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+ (1)b n =b n +1-1(n ∈N *). (1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .解:(1)由a 1=2,a n +1=2a n ,得a n =2n (n ∈N *).由题意知:当n =1时,b 1=b 2-1,故b 2=2.当n ≥2时,1n b n =b n +1-b n ,整理得b n +1n +1=b n n, 所以b n =n (n ∈N *).(2)由(1)知a n b n =n ·2n ,因此,T n =2+2×22+3×23+…+n ·2n ,2T n =22+2×23+3×24+…+n ·2n +1, 所以T n -2T n =2+22+23+…+2n -n ·2n +1. 故T n =(n -1)2n +1+2(n ∈N *). 2.(2015·高考安徽卷)设n ∈N *,x n 是曲线y =x 2n +2+1在点(1,2)处的切线与x 轴交点的横坐标.(1)求数列{x n }的通项公式;(2)记T n =x 21x 23…x 22n -1,证明:T n ≥14n . 解:(1)y ′=(x 2n +2+1)′=(2n +2)x 2n +1,曲线y =x 2n +2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y -2=(2n +2)(x -1).令y =0,解得切线与x 轴交点的横坐标x n =1-1n +1=n n +1. 所以数列{x n }的通项公式x n =n n +1. (2)证明:由题设和(1)中的计算结果知T n =x 21x 23…x 22n -1=⎝⎛⎭⎫122⎝⎛⎭⎫342…⎝⎛⎭⎫2n -12n 2. 当n =1时,T 1=14. 当n ≥2时,因为x 22n -1=⎝⎛⎭⎫2n -12n 2=(2n -1)2(2n )2>(2n -1)2-1(2n )2=2n -22n =n -1n , 所以T n >⎝⎛⎭⎫122×12×23×…×n -1n =14n. 综上可得对任意的n ∈N *,均有T n ≥14n. 3.(2014·高考新课标全国卷Ⅱ)已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明:⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式; (2)证明:1a 1+1a 2+…+1a n <32. 证明:(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎫a n +12.又a 1+12=32, 所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列. 所以a n +12=3n 2, 因此{a n }的通项公式为a n =3n -12. (2)由(1)知1a n =23n -1. 因为当n ≥1时,3n -1≥2×3n -1, 所以13n -1≤12×3n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1 =32⎝⎛⎭⎫1-13n <32. 所以1a 1+1a 2+…+1a n <32.。

高考数学文优化方案一轮复习第5第五数列的综合应用苏教江苏专用-精品.ppt

高考数学文优化方案一轮复习第5第五数列的综合应用苏教江苏专用-精品.ppt
当 a=1 时,aan+n 2=1,即 an+2=an,同时 a1=a2= 1,所以此时{an}能构成等比数列.
考点二 数列与函数、不等式的综合应用
涉及到函数、方程、不等式知识的综合性试 题,在解题过程中通常用递推思想、函数与 方程、归纳与猜想、等价转化、分类讨论等 数学思想方法,属于中、高档难度的题目.
请说明理由.
【思路分析】 (1)由基本量运算可得结果;
(2)讨论a=1和a≠1两种情况;(3)利用等比数
列的定义判断.
【解】 (1)∵{an}是等差数列,a1=1,a2=a, ∴an=1+(n-1)(a-1). 又∵b3=12,∴a3a4=12, 即(2a-1)(3a-2)=12,解得 a=2 或 a=-56. ∵a>0,∴a=2.∴an=n.
答案:3
3.随着计算机技术的迅猛发展,电脑的价格 不断降低,若每隔4年电脑的价格降低三分之 一,则现在价格为8100元的电脑12年后的价格 可降为________. 答案:2400元 4.已知等比数列{an},a1=3,且4a1、2a2、a3 成等差数列,则a3+a4+a5等于________. 答案:84
第五节 数列的综合应用
第 五
双基研习·面对高考


考点探究·挑战高考


综பைடு நூலகம்
合 应
考向瞭望·把脉高考

双基研习·面对高考
基础梳理
1.数列与其他章节的综合题 数列综合题,包括数列知识和指数函数、对 数函数、不等式的知识综合起来.另外,数 列知识在复数、三角函数、解析几何部分也 有广泛的应用.
(1)对于等差数列:_a_n_=__a_1_+__(_n_-__1_)d_=__d_n_+__(_a_1 _-__d_)_,当d≠0时,an是n的一次函数.对应的 点(n,an)是位于直线上的若干个点.当d>0时, 函数是增函数,对应的数列是递增数列;同 理,d=0时,函数是常数函数,对应的数列 是常数列;d<0时,函数是减函数,对应的数 列是递减数列.

高考数学一轮总复习 5.5数列的综合应用练习-人教版高三全册数学试题

高考数学一轮总复习 5.5数列的综合应用练习-人教版高三全册数学试题

第五节 数列的综合应用时间:45分钟 分值:100分基础必做一、选择题1.各项都是正数的等比数列{a n }中,a 2,12a 3,a 1成等差数列,则a 4+a 5a 3+a 4的值为( )A.5-12 B.5+12C.1-52D.5-12或5+12解析 设{a n }的公比为q (q >0),由a 3=a 2+a 1,得q 2-q -1=0,解得q =1+52.而a 4+a 5a 3+a 4=q =1+52.答案 B2.据科学计算,运载“神舟”的“长征”二号系列火箭在点火后第一秒钟通过的路程为2 km ,以后每秒钟通过的路程增加2 km ,在到达离地面240 km 的高度时,火箭与飞船分离,则这一过程需要的时间是( )A .10秒钟B .13秒钟C .15秒钟D .20秒钟解析 设每一秒钟通过的路程依次为a 1,a 2,a 3,…a n 则数列{a n }是首项a 1=2,公差d =2的等差数列,由求和公式有na 1+n n -1d2=240,即2n +n (n -1)=240,解得n =15.答案 C3.已知各项不为0的等差数列{a n }满足2a 2-a 26+2a 10=0,首项为18的等比数列{b n }的前n 项和为S n ,若b 6=a 6,则S 6=( )A .16 B.318 C.638D.6316解析 由2a 2-a 26+2a 10=0,∴4a 6=a 26. ∵a 6≠0,∴a 6=4.∴b 6=4.又∵{b n }的首项b 1=18,∴q 5=b 6b 1=32.∴q =2. ∴S 6=18-4×21-2=638.答案 C4.(2014·某某八校二联)对于函数y =f (x ),部分x 与y 的对应关系如下表:数列{x n }1n n +1的图象上,则x 1+x 2+x 3+x 4+…+x 2 013+x 2 014的值为( )A .7 549B .7 545C .7 539D .7 535解析 由已知表格列出点(x n ,x n +1),(1,3),(3,5),(5,6),(6,1),(1,3),…,即x 1=1,x 2=3,x 3=5,x 4=6,x 5=1,…,数列{x n }是周期数列,周期为4,2 014=4×503+2,所以x 1+x 2+…+x 2 014=503×(1+3+5+6)+1+3=7 549.答案 A5.已知函数f (x )是定义在(0,+∞)上的单调函数,且对任意的正数x ,y 都有f (x ·y )=f (x )+f (y ),若数列{a n }的前n 项和为S n ,且满足f (S n +2)-f (a n )=f (3)(n ∈N *),则a n 为( )A .2n -1B .nC .2n -1D.⎝ ⎛⎭⎪⎫32n -1解析 由题意知f (S n +2)=f (a n )+f (3)(n ∈N *),∴S n +2=3a n ,S n -1+2=3a n -1(n ≥2), 两式相减得,2a n =3a n -1(n ≥2),又n =1时,S 1+2=3a 1=a 1+2, ∴a 1=1,∴数列{a n }是首项为1,公比为32的等比数列,∴a n =⎝ ⎛⎭⎪⎫32n -1.答案 D6.将石子摆成如图的梯形形状,称数列5,9,14,20,…为梯形数,根据图形的构成,此数列的第2 012项与5的差即a 2 012-5=( )A .2 018×2 012B .2 018×2 011C .1 009×2 012D .1 009×2 011解析 结合图形可知,该数列的第n 项a n =2+3+4+…+n +2.所以a 2 012-5=4+5+…+2 014=4×2 011+2 011×2 0102=2 011×1 009.故选D.答案 D 二、填空题7.已知数列{a n }满足a 1=1,a 2=-2,a n +2=-1a n,则该数列前26项的和为________.解析 由于a 1=1,a 2=-2,a n +2=-1a n,所以a 3=-1,a 4=12,a 5=1,a 6=-2,…,所以{a n }是周期为4的数列,故S 26=6×⎝ ⎛⎭⎪⎫1-2-1+12+1-2=-10. 答案 -108.植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米.开始时需将树苗集中放置在某一树坑旁边.使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为________米.解析 当放在最左侧坑时,路程和为2×(0+10+20+…+190);当放在左侧第2个坑时,路程和为2×(10+0+10+20+…+180)(减少了360米);当放在左侧第3个坑时,路程和为2×(20+10+0+10+20+…+170)(减少了680米);依次进行,显然当放在中间的第10、11个坑时,路程和最小,为2×(90+80+…+0+10+20+…+100)=2 000米.答案 2 0009.(2014·某某六校二模)已知数列{a n }的通项公式为a n =25-n,数列{b n }的通项公式为b n =n +k ,设=⎩⎪⎨⎪⎧b n ,a n ≤b n ,a n ,a n >b n ,若在数列{}中,c 5≤对任意n ∈N *恒成立,则实数k 的取值X围是________.解析 数列是取a n 和b n 中的最大值,据题意c 5是数列{}的最小项,由于函数y =25-n是减函数,函数y =n +k 是增函数,所以b 5≤a 5≤b 6或a 5≤b 5≤a 4,即5+k ≤25-5≤6+k 或25-5≤5+k ≤25-4,解得-5≤k ≤-4或-4≤k ≤-3,所以-5≤k ≤-3.答案 [-5,-3] 三、解答题10.(2014·某某高考模拟考试)数列{a n }的前n 项和为S n ,a 1=1,a n +1=2S n +1(n ∈N *),等差数列{b n }满足b 3=3,b 5=9.(1)分别求数列{a n },{b n }的通项公式; (2)设=b n +2a n +2(n ∈N *),求证:+1<≤13. 解 (1)由a n +1=2S n +1,① 得a n =2S n -1+1(n ≥2,n ∈N *),② ①-②得a n +1-a n =2(S n -S n -1), ∴a n +1=3a n (n ≥2,n ∈N *), 又a 2=2S 1+1=3,∴a 2=3a 1,∴a n =3n -1.∵b 5-b 3=2d =6,∴d =3,∴b n =3n -6. (2)证明:∵a n +2=3n +1,b n +2=3n ,∴=3n 3n +1=n 3n ,∴+1-=1-2n3n +1<0,∴+1<<…<c 1=13,即+1<≤13.11.已知{a n }是等差数列,公差为d ,首项a 1=3,前n 项和为S n .令=(-1)n S n (n ∈N *),{}的前20项和T 20=330.数列{b n }满足b n =2(a -2)dn -2+2n -1,a ∈R .(1)求数列{a n }的通项公式;(2)若b n +1≤b n ,n ∈N *,求a 的取值X 围. 解 (1)设等差数列{a n }的公差为d , 因为=(-1)nS n ,所以T 20=-S 1+S 2-S 3+S 4+…+S 20=330,则a 2+a 4+a 6+…+a 20=330, 即10(3+d )+10×92×2d =330,解得d =3,所以a n =3+3(n -1)=3n . (2)由(1)知b n =2(a -2)3n -2+2n -1,b n +1-b n =2(a -2)3n -1+2n -[2(a -2)3n -2+2n -1]=4(a -2)3n -2+2n -1=4·3n -2⎣⎢⎡⎦⎥⎤a -2+12⎝ ⎛⎭⎪⎫23n -2.由b n +1≤b n ⇔(a -2)+12⎝ ⎛⎭⎪⎫23n -2≤0⇔a ≤2-12⎝ ⎛⎭⎪⎫23n -2,因为2-12⎝ ⎛⎭⎪⎫23n -2随着n 的增大而增大,所以n =1时,2-12⎝ ⎛⎭⎪⎫23n -2取得最小值54.所以a ≤54.培优演练1.已知点(1,13)是函数f (x )=a x(a >0,且a ≠1)的图象上一点,等比数列{a n }的前n项和为f (n )-c ,数列{b n }(b n >0)的首项为c ,且前n 项和S n 满足S n -S n -1=S n +S n -1(n ≥2).(1)求数列{a n }和{b n }的通项公式; (2)若数列{1b n b n +1}的前n 项和为T n ,问满足T n >1 0002 009的最小正整数n 是多少? 解 (1)因为f (1)=a =13,所以f (x )=⎝ ⎛⎭⎪⎫13x.a 1=f (1)-c =13-c ,a 2=[f (2)-c ]-[f (1)-c ]=f (2)-f (1)=⎝ ⎛⎭⎪⎫132-13=-29,a 3=[f (3)-c ]-[f (2)-c ]=f (3)-f (2)=⎝ ⎛⎭⎪⎫133-⎝ ⎛⎭⎪⎫132=-227.又数列{a n }是等比数列,设其公比为q ,所以a 1=a 22a 3=481-227=-23=13-c ,所以c =1.又公比q =a 2a 1=13,所以a n =-23⎝ ⎛⎭⎪⎫13n -1=-2⎝ ⎛⎭⎪⎫13n (n ∈N *).因为S n -S n -1=(S n -S n -1)(S n +S n -1)=S n +S n -1(n ≥2), 又b n >0,S n >0,所以S n -S n -1=1.所以数列{S n }构成一个首项为1,公差为1的等差数列,S n =1+(n -1)×1=n ,故S n =n 2.当n ≥2时,b n =S n -S n -1=n 2-(n -1)2=2n -1,当n =1时,b 1=1也适合此通项公式,所以b n =2n -1(n ∈N *). (2)T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=11×3+13×5+15×7+…+12n -1×2n +1=12⎝ ⎛⎭⎪⎫1-13+12⎝ ⎛⎭⎪⎫13-15+12⎝ ⎛⎭⎪⎫15-17+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1. 由T n =n 2n +1>1 0002 009,得n >1 0009,所以满足T n >1 0002 009的最小正整数n 为112. 2.已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)证明:数列{b n }是等差数列;(2)若S n =(a 1-1)·(a 2-1)+(a 2-1)·(a 3-1)+…+(a n -1)·(a n +1-1),是否存在a ,b ∈Z ,使得a ≤S n ≤b 恒成立?若存在,求出a 的最大值与b 的最小值;若不存在,请说明理由.解 (1)由题意,知当n ≥2时,b n -1=1a n -1-1,b n =1a n -1=12-1a n -1-1=a n -1a n -1-1, 所以b n -b n -1=a n -1a n -1-1-1a n -1-1=1(n ∈N *,n ≥2).所以{b n }是首项为b 1=1a 1-1=-52,公差为1的等差数列. (2)由(1),知b n =n -72.依题意,有S n =(a 1-1)·(a 2-1)+(a 2-1)·(a 3-1)+…+(a n-1)·(a n +1-1)=1b 1·1b 2+1b 2·1b 3+…+1b n ·1b n +1=1b 1-1b n +1=-25-1n +1-72.设函数y =1x -72,当x >72时,y >0,y ′<0,则函数在⎝ ⎛⎭⎪⎫72,+∞上为减函数,故当n =3时,S n =-25-1n +1-72取最小值-125. 而函数y =1x -72在x <72时,y <0,y ′=-1⎝ ⎛⎭⎪⎫x -722<0,函数在⎝ ⎛⎭⎪⎫-∞,72上也为减函数, 故当n =2时,S n 取得最大值85.故a 的最大值为-3,b 的最小值为2.。

高考数学第一轮复习强化训练 5.5《数列的综合应用》新人教版必修5

高考数学第一轮复习强化训练 5.5《数列的综合应用》新人教版必修5

【考纲要求】1.探索并掌握一些基本的数列求前n 项和的方法;2.能在具体的问题情境中,发现数列的数列的通项和递推关系,并能用有关等差、等比数列知识解决相应的实际问题。

【基础知识】一、数列的应用主要是从实际生活中抽象出一个等差、等比的数列问题解答,如果不是等差等比数列的,要转化成等差等比数列的问题来解决。

二、方法总结1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。

2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。

3、单利问题:设本金为p ,期利率为r ,则n 期后本利和)1(nr p S n +=;复利问题:设本金为p ,期利率为r ,则n 期后本利和n n r p S )1(+=。

【例题精讲】例1 某企业进行技术改造,有两种方案,甲方案:一次性贷款10万元,第一年便可获利1万元,以后每年比前一年增加30%的利润;乙方案:每年贷款1万元,第一年可获利1万元,以后每年比前一年增加5千元;两种方案的使用期都是10年,到期一次性归还本息. 若银行两种形式的贷款都按年息5%的复利计算,试比较两种方案中,哪种获利更多?(取665.575.1,786.133.1,629.105.1101010===)解析:甲方案是等比数列,乙方案是等差数列, ①甲方案获利:63.423.013.1%)301(%)301(%)301(11092≈-=+++++++ (万元), 银行贷款本息:29.16%)51(1010≈+(万元),故甲方案纯利:34.2629.1663.42=-(万元), ②乙方案获利:5.02910110)5.091()5.021()5.01(1⨯⨯+⨯=⨯+++⨯++++ 50.32=(万元);银行本息和:]%)51(%)51(%)51(1[05.192+++++++⨯ 21.1305.0105.105.110≈-⨯=(万元) 故乙方案纯利:29.1921.1350.32=-(万元);综上可知,甲方案更好。

【创新设计】高三数学一轮复习 55数列的综合应用随堂训练 文 苏教版

【创新设计】高三数学一轮复习 55数列的综合应用随堂训练 文 苏教版

第5课时 数列的综合应用一、填空题1.一套共7册的书计划每两年出一册,若出完全部各册书,公元年代之和为14 035, 则出齐这套书的年份是________.解析:设出齐这套书的年份是x ,则(x -12)+(x -10)+(x -8)+…+x =14 035,x =2 011.答案:2 0112.数列{a n }前n 项和S n 与通项a n 满足S n =na n +2n 2-2n (n ∈N *),则a 10-a 100的值为 ________.解析:∵S n =na n +2n 2-2n ,①∴当n ≥2时,S n -1=(n -1)a n -1+2(n -1)2-2(n -1).② ①-②得a n =na n -(n -1)a n -1+2(2n -1)-2,整理得a n -a n -1=-4,即{a n }为公差为-4的等差数列,∴a 10-a 100=(100-10)×4=360.答案:3603.数列{x n }满足x 1=1,x 2=23,且1x n -1+1x n +1=2x n (n ≥2),则x n 等于________.解析:由x 1=1,x 2=23,1x n -1+1x n +1=2x n (n ≥2)得:1x n -1x n -1=1x n +1-1x n ,{1x n -1x n -1}组成常数列,首项1x 2-1x 1=12,1x n -1x n -1=12,1x n =1x 1+n -12=1+n -12=n +12,∴x n =2n +1.答案:2n +14.设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1a n =0(n =1,2,3,…),则它的 通项公式是a n =________.解析:(n +1)a 2n +1-na 2n +a n +1a n =0,即为(a n +1+a n )[(n +1)a n +1-na n ]=0, 而a n >0,a n +1>0,∴a n +1+a n ≠0,∴(n +1)a n +1-na n =0,即a n +1a n =n n +1, ∴a n =a 1·a 2a 1·a 3a 2·a 4a 3…a n a n -1=1·12·23·34·…·n -1n =1n.答案: 1n5.(苏州市高三教学调研测试)命题P :“在等比数列{a n }中,若a 42a 10a ( )=64,则数列{a n }的前11项的积T 11为定值”.由于印刷问题,括号处的数模糊不清,已知命题P 是真命 题,则可推得括号处的数为________.解析:由等比数列性质有a 1·a 11=a 2·a 10=…a 26,所以T 11=a 1·a 2·…·a 11=a 116,若命题P 为真命题,则有|a 6|为定值,a 42·a 10·a n =(a 6q -4)4a 6q 4a 6q n -6=a 66qn -18=64,所以当n =18时,|a 6|=2为定值.答案:186.(江苏省高考命题研究专家原创卷)若数列{a n }(n ∈N *)的递推关系式为如下的伪代码所示,则a 2 010=________.解析:由题意,得数列{a n }的递推关系式为a 1=67,a n +1=⎩⎪⎨⎪⎧2a n (0≤a n ≤1),a -1n (a n >1).所以a 2=127,a 3=57,a 4=107,a 5=37,a 6=67.由此,数列{a n }的项的大小具有周期性,且 周期为5.又2 010=402×5,所以a 2 010=a 5=37.答案:377.(江苏省高考命题研究专家原创卷)将给定的25个数排成如图所示的数表,若每行5 个数按从左至右的顺序构成等比数列,每列的5个数按从上到下的顺序也构成等比数列,且表正中间一个数a 33=1,则表中所有数之积为________.解析:特值法处理,不妨令表中各数均为1,显然是符合题设要求的一个数表,这时,表中各数之积为1,所以所求的答案为1.答案:1二、解答题8.一个球从100 m 高处自由落下,每次着地后跳回到原高度的一半再落下,当它第10 次着地时,共经过的路程是多少?(精确到1 m)解:由题意知,球第一次着地时经过的路程是100 m ,从这时到球第二次着地时共经过了⎝⎛⎭⎪⎫2×1002 m ,从这时到球第三次着地时共经过⎝⎛⎭⎪⎫2×10022 m ,…到第10次时应为 ⎝⎛⎭⎪⎫2×10029 m.∴S 10=100+2×1002+2×10022+…+2×10029=100+100⎝ ⎛⎭⎪⎫1+12+…+128=100+100×⎝ ⎛⎭⎪⎫1-1291-12≈300(m).即共经过的路程为300 m.9.假设某市新建住房400万平方米,其中有250万平方米是中低价房.预计在 今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中, 中低价房的面积均比上一年增加50万平方米.那么,到哪一年年底.(1)该市历年所建中低价房的累计面积(以为累计的第一年)将首次不少于4 750万 平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.(1.085≈1.47) 解:(1)设中低价房面积构成数列{a n },由题意可知{a n }是等差数列. 其中a 1=250,d =50,则S n =250n +n (n -1)2×50=25n 2+225n .令25n 2+225n ≥4 750,即n 2+9n -190≥0,而n 是正整数,∴n ≥10. ∴到年底,该市历年所建中低价房的累计面积将首次不少于4 750万平方米.(2)设新建住房面积构成数列{b n },由题意可知{b n }是等比数列.其中b 1=400,q =1.08, 则b n =400×1.08n -1.由题意可知a n >0.85b n ,有250+(n -1)·50>400×1.08n -1×0.85.由1.085≈1.47解得满足上述不等式的最小正整数n =6,∴到年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.10.(江苏省高考命题研究专家原创卷)已知数列{a n }中,a 1=12,点(n,2a n +1-a n )在直线y=x 上,其中n =1,2,3,….(1)令b n =a n +1-a n -1,求证:数列{b n }是等比数列; (2)求数列{a n }的通项;(3)设S n 、T n 分别为数列{a n }、{b n }的前n 项和,是否存在实数λ,使得数列⎩⎨⎧⎭⎬⎫S n +λT n n 为等差数列?若存在,求出λ的值;若不存在,请说明理由.(1)证明:由已知得:a 1=12,2a n +1=a n +n ,∴a 2=34,a 2-a 1-1=34-12-1=-34,又b n =a n +1-a n -1,b n +1=a n +2-a n +1-1,∴b n +1b n =a n +2-a n +1-1a n +1-a n -1=a n +1+n +12-a n +n2-1a n +1-a n -1=a n +1-a n -12a n +1-a n -1=12,∴{b n }是以-34为首项,以12为公比的等比数列.(2)解:由(1)知,b n =-34×⎝ ⎛⎭⎪⎫12n -1=-32×12n ,∴a n +1-a n -1=-32×12n ,∴a n -a n -1-1=-32×12n -1,a n -1-a n -2-1=-32×12n -2,…a 3-a 2-1=-32×122,a 2-a 1-1=-32×12,将以上各式相加得:a n -a 1-(n -1)=-32⎝ ⎛⎭⎪⎫12+122+…+12n -1,∴a n =a 1+n -1-32×12⎝ ⎛⎭⎪⎫1-12n -11-12=12+(n -1)-32⎝ ⎛⎭⎪⎫1-12n -1=32n +n -2,∴a n =32n +n -2.(3)解:存在λ=2,使数列⎩⎨⎧⎭⎬⎫S n +λT n n 是等差数列.由(1)(2)知,S n +λT nn=n (n +1)2-2n -2T n +λT nn=n -32+λ-2nT n ,又T n =b 1+b 2+…+b n =-34⎝ ⎛⎭⎪⎫1-12n 1-12=-32⎝ ⎛⎭⎪⎫1-12n =-32+32n +1,S n +λT n n =n -32+λ-2n ⎝ ⎛⎭⎪⎫-32+32n +1,所以当且仅当λ=2时,数列⎩⎨⎧⎭⎬⎫S n +λT n n 是等差数列.1.已知正数组成的等差数列{a n }的前20项的和为100,那么a 7·a 14的最大值为________.解析:由S 20=100得a 1+a 20=10,∴a 7+a 14=10.又a 7>0,a 14>0, ∴a 7·a 14≤⎝ ⎛⎭⎪⎫a 7+a 1422=25.答案:252.用分期付款的方式购买一批总价为2 300万元的住房,购买当天首付300万元,以后每月的这一天都交100万元,并加付此前欠款的利息,设月利率为1%.若从首付300万元之后的第一个月开始算分期付款的第一个月,问分期付款的第10个月应付多少万元?全部贷款付清后,买这批住房实际支付多少万元?解:购买时付款300万元,则欠款2 000万元,依题意分20次付清,则每次交付欠款的数额顺次构成数列{a n},故a1=100+2 000×0.01=120(万元),a2=100+(2 000-100)×0.01=119(万元),a3=100+(2 000-100×2)×0.01=118(万元),a4=100+(2 000-100×3)×0.01=117(万元),…a n=100+[2 000-100(n-1)]×0.01=120-(n-1)=121-n(万元)(1≤n≤20,n∈N*).因此{a n}是首项为120,公差为-1的等差数列.故a10=121-10=111(万元),a20=121-20=101(万元).20次分期付款的总和为S20=(a1+a20)×202=(120+101)×202=2 210(万元).实际要付300+2 210=2 510(万元).即分期付款第10个月应付111万元;全部贷款付清后,买这批住房实际支付2 510万元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5课时 数列的综合应用一、填空题1.一套共7册的书计划每两年出一册,若出完全部各册书,公元年代之和为14 035, 则出齐这套书的年份是________.解析:设出齐这套书的年份是x ,则(x -12)+(x -10)+(x -8)+…+x =14 035,x =2 011.答案:2 0112.数列{a n }前n 项和S n 与通项a n 满足S n =na n +2n 2-2n (n ∈N *),则a 10-a 100的值为 ________.解析:∵S n =na n +2n 2-2n , ① ∴当n ≥2时,S n -1=(n -1)a n -1+2(n -1)2-2(n -1). ② ①-②得a n =na n -(n -1)a n -1+2(2n -1)-2,整理得a n -a n -1=-4,即{a n }为公差为-4的等差数列,∴a 10-a 100=(100-10)×4=360.答案:3603.数列{x n }满足x 1=1,x 2=23,且1x n -1+1x n +1=2x n (n ≥2),则x n 等于________.解析:由x 1=1,x 2=23,1x n -1+1x n +1=2x n (n ≥2)得:1x n -1x n -1=1x n +1-1x n ,{1x n -1x n -1}组成常数列,首项1x 2-1x 1=12,1x n -1x n -1=12,1x n =1x 1+n -12=1+n -12=n +12,∴x n =2n +1.答案:2n +14.设{a n }是首项为1的正项数列,且(n +1) -na 2n +a n +1a n =0(n =1,2,3,…),则它的通项公式是a n =________. 解析:(n +1)-na 2n +a n +1a n =0,即为(a n +1+a n )[(n +1)a n +1-na n ]=0,而a n >0,a n +1>0,∴a n +1+a n ≠0,∴(n +1)a n +1-na n =0,即a n +1a n =n n +1, ∴a n =a 1·a 2a 1·a 3a 2·a 4a 3…a n a n -1=1·12·23·34·…·n -1n =1n.答案: 1n5.(苏州市高三教学调研测试)命题P :“在等比数列{a n }中,若a 42a 10a ( )=64,则数列{a n } 的前11项的积T 11为定值”.由于印刷问题,括号处的数模糊不清,已知命题P 是真命题,则可推得括号处的数为________.解析:由等比数列性质有a 1·a 11=a 2·a 10=…a 26,所以T 11=a 1·a 2·…·a 11=a 116,若命题P 为真命题,则有|a 6|为定值,a 42·a 10·a n =(a 6q -4)4a 6q 4a 6q n -6=a 66qn -18=64,所以当n =18时,|a 6|=2为定值.答案:186.(江苏省高考命题研究专家原创卷)若数列{a n }(n ∈N *)的递推关系式为如下的伪代码所示,则a 2 010=________.解析:由题意,得数列{a n }的递推关系式为a 1=67,a n +1=⎩⎪⎨⎪⎧2a n (0≤a n ≤1),a -1n (a n >1).所以a 2=127,a 3=57,a 4=107,a 5=37,a 6=67.由此,数列{a n }的项的大小具有周期性,且 周期为5.又2 010=402×5,所以a 2 010=a 5=37.答案:377.(江苏省高考命题研究专家原创卷)将给定的25个数排成如图所示的数表,若每行5 个数按从左至右的顺序构成等比数列,每列的5个数按从上到下的顺序也构成等比数列,且表正中间一个数a 33=1,则表中所有数之积为________.解析:特值法处理,不妨令表中各数均为1,显然是符合题设要求的一个数表,这时, 表中各数之积为1,所以所求的答案为1.答案:1二、解答题8.一个球从100 m 高处自由落下,每次着地后跳回到原高度的一半再落下,当它第10 次着地时,共经过的路程是多少?(精确到1 m)解:由题意知,球第一次着地时经过的路程是100 m ,从这时到球第二次着地时共经过了⎝⎛⎭⎪⎫2×1002 m ,从这时到球第三次着地时共经过⎝⎛⎭⎪⎫2×10022 m ,…到第10次时应为 ⎝⎛⎭⎪⎫2×10029 m.∴S 10=100+2×1002+2×10022+…+2×10029=100+100⎝ ⎛⎭⎪⎫1+12+…+128=100+100×⎝ ⎛⎭⎪⎫1-1291-12≈300(m).即共经过的路程为300 m.9.假设某市2008年新建住房400万平方米,其中有250万平方米是中低价房.预计在 今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中, 中低价房的面积均比上一年增加50万平方米.那么,到哪一年年底.(1)该市历年所建中低价房的累计面积(以2008年为累计的第一年)将首次不少于4 750万 平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.(1.085≈1.47) 解:(1)设中低价房面积构成数列{a n },由题意可知{a n }是等差数列. 其中a 1=250,d =50,则S n =250n +n (n -1)2×50=25n 2+225n .令25n 2+225n ≥4 750,即n 2+9n -190≥0,而n 是正整数,∴n ≥10.∴到2017年年底,该市历年所建中低价房的累计面积将首次不少于4 750万平方米. (2)设新建住房面积构成数列{b n },由题意可知{b n }是等比数列.其中b 1=400,q =1.08, 则b n =400×1.08n -1.由题意可知a n >0.85b n ,有250+(n -1)·50>400×1.08n -1×0.85.由1.085≈1.47解得满足上述不等式的最小正整数n =6,∴到2013年年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.10.(江苏省高考命题研究专家原创卷)已知数列{a n }中,a 1=12,点(n,2a n +1-a n )在直线y =x 上,其中n =1,2,3,….(1)令b n =a n +1-a n -1,求证:数列{b n }是等比数列;(2)求数列{a n }的通项;(3)设S n 、T n 分别为数列{a n }、{b n }的前n 项和,是否存在实数λ,使得数列⎩⎨⎧⎭⎬⎫S n +λT n n为 等差数列?若存在,求出λ的值;若不存在,请说明理由.(1)证明:由已知得:a 1=12,2a n +1=a n +n ,∴a 2=34,a 2-a 1-1=34-12-1=-34,又b n =a n +1-a n -1,b n +1=a n +2-a n +1-1,∴b n +1b n =a n +2-a n +1-1a n +1-a n -1=a n +1+n +12-a n +n2-1a n +1-a n -1=a n +1-a n -12a n +1-a n -1=12,∴{b n }是以-34为首项,以12为公比的等比数列.(2)解:由(1)知,b n =-34×⎝ ⎛⎭⎪⎫12n -1=-32×12n ,∴a n +1-a n -1=-32×12n ,∴a n -a n -1-1=-32×12n -1,a n -1-a n -2-1=-32×12n -2,…a 3-a 2-1=-32×122,a 2-a 1-1=-32×12,将以上各式相加得:a n -a 1-(n -1)=-32⎝ ⎛⎭⎪⎫12+122+…+12n -1,∴a n =a 1+n -1-32×12⎝⎛⎭⎪⎫1-12n -11-12=12+(n -1)-32⎝ ⎛⎭⎪⎫1-12n -1=32n +n -2,∴a n =32n +n -2.(3)存在λ=2,使数列⎩⎨⎧⎭⎬⎫S n +λT n n 是等差数列.由(1)(2)知,S n +λT nn=n (n +1)2-2n -2T n +λT nn=n -32+λ-2nT n ,又T n =b 1+b 2+…+b n =-34⎝ ⎛⎭⎪⎫1-12n 1-12=-32⎝ ⎛⎭⎪⎫1-12n =-32+32,S n +λT n n =n -32+λ-2n ⎝ ⎛⎭⎪⎫-32+32n +1,所以当且仅当λ=2时,数列⎩⎨⎧⎭⎬⎫S n +λT n n 是等差数列.1.已知正数组成的等差数列{a n }的前20项的和为100,那么a 7·a 14的最大值为________.解析:由S 20=100得a 1+a 20=10,∴a 7+a 14=10.又a 7>0,a 14>0,∴a 7·a 14≤⎝ ⎛⎭⎪⎫a 7+a 1422=25.答案:252.用分期付款的方式购买一批总价为2 300万元的住房,购买当天首付300万元,以后 每月的这一天都交100万元,并加付此前欠款的利息,设月利率为1%.若从首付300万 元之后的第一个月开始算分期付款的第一个月,问分期付款的第10个月应付多少万元? 全部贷款付清后,买这批住房实际支付多少万元?解:购买时付款300万元,则欠款2 000万元,依题意分20次付清,则每次交付欠款的 数额顺次构成数列{a n },故a 1=100+2 000×0.01=120(万元),a 2=100+(2 000-100)×0.01=119(万元), a 3=100+(2 000-100×2)×0.01=118(万元),a 4=100+(2 000-100×3)×0.01=117(万元),…a n =100+[2 000-100(n -1)]×0.01=120-(n -1)=121-n (万元)(1≤n ≤20,n ∈N *).因此{a n }是首项为120,公差为-1的等差数列.故a 10=121-10=111(万元),a 20=121-20=101(万元). 20次分期付款的总和为S 20=(a 1+a 20)×202=(120+101)×202=2 210(万元).实际要付300+2 210=2 510(万元).即分期付款第10个月应付111万元;全部贷款付清后,买这批住房实际支付2 510万元.。

相关文档
最新文档