E19-20-F-G-A-A-A-A-1中文资料
09- 脂类代谢(答案)

一、单项选择题
1.A2.B3.C4.D5.D6.D7.B8.A9.E10.D
11.C12.D13.D14.B15.B16.B17.E18.E19.A20.E
21.B22.E23.E24.D25.C26.D27.E28.D29.E30.A
31.C32.D33.B34.C
二、多项选择题
16.存在于毛细血管内皮细胞表面,主要水解脂蛋白(CM和VLDL)颗粒中甘油三酯的酶。
17.由肝脏合成后分泌入血,在血浆中催化磷脂酰胆碱和胆固醇反应,使胆固醇酯化的酶。
18.空腹血脂浓度持续高于正常称为高脂血症。临床上的高脂血症主要是指血浆胆固醇或三酰甘油的含量单独超过正常上限,或者二者同时超过正常上限的异常状态。
9.在脂肪动员中,脂库中三酰甘油脂肪酶起决定性作用,是脂肪分解的限速酶。由于三酰甘油脂肪酶的活性受多种激素的调控,故又称为激素敏感性三酰甘油脂肪酶
10.能增加三酰甘油脂肪酶的活性,促进脂肪动员的激素称为脂解激素
11.此类激素能抑制三酰甘油脂肪酶的活性,对抗脂解激素的作用,称为抗脂解激素。
12.脂肪酸的氧化主要发生在β-碳原子上,故称为β-氧化,包括脱氢、加水、再脱氢、硫解四步连续反应。
1.A、C2.C、D3.B、C4.A、B、C
5.B、D6.A、C7.A、D8.A、C
9.A、C10.C、E11.C、E12.A、C、D
13.A、B、C、D、E14.A、B、C15.A、B、C、E16.A、B、D、E
17.A、B、D、E18.A、B、C、E19.A、B、C20.A、B、C、D、E
21.A、B、D、E22. B、C 23. C、D
CM:从小肠转运外源性三酰甘油至体内各组织;VLDL:从肝转运内源性三酰甘油至肝外组织;LDL:从肝转运胆固醇至体内各组织;HDL:将胆固醇从肝外逆向转运至肝内。
eja120a[1]中文说明书
![eja120a[1]中文说明书](https://img.taocdn.com/s3/m/14114ec7aa00b52acfc7cada.png)
膜盒垫圈 PTFE特氟龙
排液/排气塞 SUS316
过程接头垫圈 PTFE特氟龙 当选择代码N2和N3时是氟橡胶
非接液部分材质
螺栓 SCM435,SUS630或SUH660
外壳 聚氨酯烤漆低铜铸铝合金 (Munsell 0.6GY3.1/2.0)
密封等级 IP67,NEMA4X,JIS C0920 防水等级
用下述公式确定电缆长度
6
6 5×1 0 L=
(C +10,000) f
( R×C )
C
L = 长度( m 或 ft)
R = 阻抗(Ω,包括电源阻抗)
C= 电缆电容( pF /m或pF/ft)
Cf= 最 大 并 联 电 容(pF/m或pF/ft)
物理规格
接液部分材质 膜片
哈 氏 合 金C-276
容室法兰 SCS14A
显示表头
D ...................................... E ...................................... ※ N ......................................
※ 2-inch 管安装支架
A ................................... B ................................... J ................................... C ................................... D ................................... K ................................... N ...................................
C1419中文资料

Vectron International · v.2005-02-10 · page 1 of 3Vectron International Headquarters Vectron International LLC. 100 Watts StreetVectron international GmbH & Co. KG LandstrasseVectron Asia Pacific Sales OfficeUnit 3119 31st Floor, Jin Mao Tower, 88Typical ApplicationsFeaturesTelecommunication Standard 4-Pin DIP Package Universal Clock Enable FunctionPrevious Vectron Model NumbersMCO1XXX; AA;Frequency range1 MHz – 100 MHzFrequency stabilities 1ParameterMin Typ Max. Units Operating temprange Ordering Code 5Overall (vs. Initial, vs. operatingtemperature range vs. supply voltage change vs. load change vs. aging /1. Yea)r-100.0 -50.0 -25.0 -100.0 -50.0 -32.0+100.0 +50.0 +25.0 +100.0 +50.0 +32.0ppm ppm ppm ppm ppm ppm-0 … +70°C -0 … +70°C -0 … +70°C -40 … +85°C -40 … +85°C -40 … +85°CC104 C505 C255 F104 F505 F325Supply voltageParameterMin Typ Max. Units ConditionOrdering Code 5Supply voltage (Vs)4.755.0 5.25 VDCSV050Current consumption40 50 55 70 mA@ HCMOS fo < 24.0 MHz @ HCMOS fo < 50.0 MHz @ HCMOS fo < 70.0 MHz @ HCMOS fo < 100.0 MHz Supply voltage (Vs) 3.135 3.3 3.465 VDC SV033 Current consumption30 35 40 50mA@ HCMOS fo < 24.0 MHz @ HCMOS fo < 50.0 MHz @ HCMOS fo < 70.0 MHz @ HCMOS fo < 100.0 MHzRF outputParameter Min Typ Max.Units ConditionOrdering Code 5SignalHCMOSRFHLoad15.0 pFRise and Fall time 10 ns @ 15 pF 10 to 90 %Duty cycle4060%@ Vs/2Vectron International · v.2005-02-10 · page 2 of 3Vectron International Headquarters Vectron International LLC.100 Watts StreetVectron international GmbH & Co. KGLandstrasseVectron Asia Pacific Sales OfficeUnit 3119 31st Floor, Jin Mao Tower, 88EnclosuresAbsolute Maximum RatingsParameter Min Typ Max. Units Condition Supply voltage (Vs) 7 VOperable temperature range -30 +80 °CStorage temperature range -40 +90 °CVectron International · v.2005-02-10 · page 3 of 3Vectron International Headquarters Vectron International LLC.100 Watts StreetVectron international GmbH & Co. KGLandstrasseVectron Asia Pacific Sales OfficeUnit 3119 31st Floor, Jin Mao Tower, 88How to Order this Product:Step 1 Use this worksheet to forward the following information to your factory representative:Model Stability Code Supply Voltage Code RF Output Code Package Code C1419Example: C1419 C104 SV050 RFH A1Step 2 The factory representative will then respond with a Vectron Model Number in the following Configuration: Model Package Code Dash Dash NumberC1419 [Customer Specified Package Code]- [Factory Generated 4 digit number] Typical P/N = C1419A1-0001Notes:1 Contact factory for improved stabilities or additional product options. Not all options and codes are available at all frequencies.2 Unless otherwise stated all values are valid after warm-up time and refer to typical conditions for supply voltage, frequency controlvoltage, load, temperature (25°C)3 Phase noise degrades with increasing output frequency.4 Subject to technical modification.5 Contact factory for availability.。
中小学教师教育网-统计部分

宝山路小学刘军宝山路小学钟青宝山路小学仓慧宝山路小学李萍宝山路小学杨燕飞宝山路小学孙文华宝山路小学居云漪宝山路小学顾颖宝山路小学杨玉花宝山路小学郁海霞宝山路小学朱勤宝山路小学李莉宝山路小学顾红梅宝山路小学第荣珠宝山路小学桑若冰宝山路小学谷燕宝山路小学秦红宝山路小学徐雅蓉宝山路小学包奕华宝山路小学陈炜稼宝山路小学张蓓蕾宝山路小学朱岚宝山路小学金蔚宝山路小学沈俊宝山路小学周怡宝山路小学张淑芸宝山路小学沈君宝山路小学王旭凤宝山路小学熊毅华宝山路小学沈惠娟宝山路小学徐惠玲宝山路小学陈静宝山路小学谢萍宝山路小学王会英宝山路小学俞丽娜宝山路小学李英姿宝山路小学杨燕琳保德路小学施玮保德路小学宋艳保德路小学王帼瑛保德路小学刘全法保德路小学温沪玉保德路小学王卫保德路小学宋燕保德路小学陈琼保德路小学王军保德路小学韦庆保德路小学缪红梅保德路小学范志敏保德路小学戴青保德路小学俞海云保德路小学陈瑞保德路小学姜晓筠保德路小学张慧莱保德路小学朱伟保德路小学龚娟保德路小学苏政保德路小学王越保德路小学朱缨保德路小学胡秀玲保德路小学李竣保德路小学庄爱芳保德路小学华炯保德路小学刘继红保德路小学丁怿琦保德路小学吴敏保德路小学朱宏保德路小学张丽娜保德路小学徐晓艳保德路小学高柳保德路小学孔群威保德路小学张宇保德路小学祁靖保德路小学方矜保德路小学袁睿智保德路小学王珏保德路小学朱佳荔保德路小学裴颖慧成功教育实验小学蒋昌月成功教育实验小学韦桂华成功教育实验小学李素清成功教育实验小学汪巧琳成功教育实验小学王晓湖成功教育实验小学范莉钧成功教育实验小学章其颖成功教育实验小学黄慧弘成功教育实验小学陈德才成功教育实验小学刘文帼成功教育实验小学王露成功教育实验小学张娜成功教育实验小学王家倩成功教育实验小学邓文成功教育实验小学徐雅萍成功教育实验小学欧晓英成功教育实验小学陶青成功教育实验小学骆林华成功教育实验小学王英成功教育实验小学周金荣成功教育实验小学罗璐成功教育实验小学苏悦成功教育实验小学陈美娜成功教育实验小学惠建臻成功教育实验小学沈燕成功教育实验小学徐洁成功教育实验小学姚怀红成功教育实验小学丁为民成功教育实验小学王菲成功教育实验小学黄莹成功教育实验小学周莉成功教育实验小学吴开明成功教育实验小学彭安凤成功教育实验小学卢晴成功教育实验小学顾文忻成功教育实验小学毛虹大宁小张佳大宁小朱雯大宁小陈怡大宁小倪建萍大宁小朱爱萍大宁小王峥钰大宁小于晓清大宁小张凤大宁小沙乃琦大宁小薛靖大宁小卢慧凤大宁小徐云大宁小陶静大宁小尤蓉大宁小邱蓓雯大宁小徐芸大宁小王莉大宁小张亦大宁小王瑛大宁小陈莉大宁小李紫兰大宁小钱学军大宁小陈琴大宁小张成凤大宁小王艳晖大宁小顾东妮大宁小季莲春大宁小陈欢大宁小王尧大宁小孙爱珍大宁小许雯珺大宁小陈朝霞大宁小王芳大宁小沙文娴大宁小韩丽阳大宁小胡卫娣大宁小李玉敏大宁小高若莹大宁小吴佳捷大宁小邱?|超大宁小冯琼大宁小王文静大宁小金怡大宁小章兰第一聋校陶梅第一聋校孙雪枫第一聋校刘青第一聋校沈雯第一聋校俞健华第一聋校孙明理第一聋校张颖第一聋校孙珏第一聋校高洁第一聋校时左成第一聋校黄雅萍第一聋校邹霞萍第一聋校华海燕第一聋校樊蕴丽第一聋校黄玲第一聋校唐晋林第一聋校陈琪第一聋校王庆国第一聋校马永骅第一聋校陈志刚第一聋校陈萍第一聋校徐燕第一聋校赵燚第一聋校郭奕敏第一聋校阮祎频第一聋校曹洁第一聋校林岗第一聋校薛林第一聋校何立峰第一聋校邹琴儿第一聋校徐洁第一聋校孙洁第一聋校吴晨第一聋校颜玲第一聋校曹慧第一聋校罗岚第一聋校段向芸第一聋校戴英姿第一聋校顾婷婷第一聋校蔡建峰二中心小学徐荣二中心小学邵磊二中心小学姚玉华二中心小学黄佩二中心小学孙勇二中心小学刘清二中心小学朱云轶二中心小学赖海燕二中心小学黄琦二中心小学吴燕萍二中心小学陈亚明二中心小学郑华二中心小学杜茜二中心小学陈卫华二中心小学余盼二中心小学李慧敏二中心小学陆斌二中心小学刘莺二中心小学沈明洁二中心小学揭文菊二中心小学程赟二中心小学周莹二中心小学李芳二中心小学叶琼雯二中心小学潘爱华二中心小学张薇二中心小学马映吉二中心小学刘海萍二中心小学邹晏儒二中心小学潘勤二中心小学奚延平二中心小学张莹二中心小学糜寒蓉二中心小学罗秋红二中心小学孙燕二中心小学张斌二中心小学秦璟二中心小学王晓霞二中心小学陈俊航二中心小学张惠二中心小学强琼二中心小学陈丽虹二中心小学史金铃二中心小学汪茗磊二中心小学朱雯二中心小学顾晓蓉二中心小学徐守芳二中心小学王晓颖二中心小学袁晓磊二中心小学陈云二中心小学吴甬二中心小学张丽芳二中心小学张觐文二中心小学王灵娜二中心小学沈重重二中心小学沈丁二中心小学裘雯菁二中心小学钱辰佳二中心小学潘夏一二中心小学罗立峰二中心小学林丽敏二中心小学江怡婷二中心小学高雅二中心小学董赟二中心小学程斅二中心小学陈雯珺二中心小学陈颖蕃瓜弄小学潘臻弘蕃瓜弄小学张文杰蕃瓜弄小学陈杏英蕃瓜弄小学汪亚琼蕃瓜弄小学高小鸿蕃瓜弄小学李海霞蕃瓜弄小学陈芫蕃瓜弄小学朱乐萍蕃瓜弄小学周丽蕃瓜弄小学王旭华蕃瓜弄小学徐学兰蕃瓜弄小学徐敏倚蕃瓜弄小学戴晓艳蕃瓜弄小学倪瑾瑾蕃瓜弄小学卞文娟蕃瓜弄小学孙惠琴蕃瓜弄小学胡颖玲蕃瓜弄小学周仁莉蕃瓜弄小学尤睿蕃瓜弄小学俞梅蕃瓜弄小学朱健美蕃瓜弄小学崔振芳蕃瓜弄小学朱红蕃瓜弄小学周文玲蕃瓜弄小学余慧蕃瓜弄小学韩芸蕃瓜弄小学穆蕙敏蕃瓜弄小学朱居兰蕃瓜弄小学王秋珺蕃瓜弄小学王美芳蕃瓜弄小学王淑馨蕃瓜弄小学游澄君蕃瓜弄小学唐蕾蕃瓜弄小学项春丹蕃瓜弄小学奚佳敏蕃瓜弄小学樊琳燕蕃瓜弄小学汤一鸣蕃瓜弄小学高志华蕃瓜弄小学叶劭文蕃瓜弄小学郁丽华福建北路小学黄盛福建北路小学钱慧萍福建北路小学徐迎春福建北路小学顾臻婷福建北路小学虞芳福建北路小学吴炯福建北路小学刘骏福建北路小学周娟芳福建北路小学薄翌芹福建北路小学张勤福建北路小学王贞珺福建北路小学崔岚福建北路小学严利锋福建北路小学于燕福建北路小学孟瑛福建北路小学夏敏福建北路小学王明灵福建北路小学周益琴福建北路小学韩煜福建北路小学李海芸福建北路小学王争福建北路小学张惠芳福建北路小学张萍福建北路小学韩瑛福建北路小学高佩珍福建北路小学杨红娟福建北路小学陈彤彤福建北路小学汤爱华福建北路小学秦静福建北路小学毛饮可福建北路小学许洁如福建北路小学卢益敏福建北路小学于敏福建北路小学朱静福建北路小学师伟芳福建北路小学黄丽娟福建北路小学胡莺福建北路小学仲慧福建北路小学王英福建北路小学何菁福建北路小学黄灵福建北路小学何伟萍福建北路小学姚烟雁福建北路小学黄琦福建北路小学徐兴龙福建北路小学张宏信福建北路小学郏环红福建北路小学陆涨英福建北路小学龚丹福建北路小学傅??福建北路小学施丽华福建北路小学陈海云福建北路小学罗文清福建北路小学杨景勇福建北路小学俞耀青福建北路小学张倩福建北路小学赵琼福建北路小学潘兰萍福建北路小学诸伟芳共康小学周彪共康小学陈志萍共康小学张俊德共康小学尹伟文共康小学徐绚共康小学胡海明共康小学盛红燕共康小学俞静共康小学朱瑛共康小学曹蕾共康小学万宝清共康小学周凌鹃共康小学阎俊萍共康小学李勇共康小学苏冠瀛共康小学黄铭琴共康小学郦骊共康小学曹楠共康小学严芳共康小学陶珠杰共康小学王芳共康小学倪玉辉共康小学王思瑜共康小学高岭共康小学邱娜共康小学陈云共康小学叶秀玲共康小学郁瑾共康小学徐雯丽共康小学金斌共康小学詹晓寒共康小学祝芳颖共康小学张晓莉共康小学俞佳妍和田路小学郭勇燕和田路小学周莉和田路小学王海时和田路小学王继红和田路小学宫菱和田路小学胡鹤雄和田路小学杨钧和田路小学吴跃良和田路小学蒋晓燕和田路小学陈敏和田路小学林正红和田路小学陈煜骅和田路小学陈琦和田路小学刘毓真和田路小学潘丽英和田路小学杨麟和田路小学郑荭和田路小学秦怡萍和田路小学柳玲和田路小学潘艳和田路小学钱燕蓉和田路小学于俊和田路小学倪哲宇和田路小学何卫平和田路小学刘兰花和田路小学戴玮和田路小学张军瑾和田路小学舒雯雯和田路小学蔡燕和田路小学周季春和田路小学徐婕和田路小学梁红和田路小学叶婧和田路小学陈丽娟和田路小学王浏浏和田路小学刘怡和田路小学张维莉和田路小学朱瑞敏和田路小学周乃侠和田路小学路赟和田路小学董梅和田路小学朱晓菁和田路小学季丽霞和田路小学李磊和田路小学陆赟和田路小学李融和田路小学施晓倩和田路小学陆益尊和田路小学王赢和田路小学桂奕倩和田路小学赵蓓莉和田路小学牛芩景凤路小学季蓓景凤路小学潘倩青景凤路小学施瑾景凤路小学沈颖景凤路小学刘梅琴景凤路小学杨菊芳景凤路小学楼梅景凤路小学杨慧景凤路小学冯珏景凤路小学梁晓晔景凤路小学王琪铭景凤路小学陈虹景凤路小学陆海燕景凤路小学王璐景凤路小学薛藜娜景凤路小学夏建萍景凤路小学张萍景凤路小学徐芝雯景凤路小学王小燕景凤路小学邵洁景凤路小学任祥娟景凤路小学郁若萱景凤路小学朱秀勤景凤路小学钱罄景凤路小学袁凌豪景凤路小学吕英景凤路小学罗燕景凤路小学吴婵臻景凤路小学成晓琴景凤路小学胡敏贞景凤路小学沈欣妍景凤路小学陆樱莹景凤路小学宋倩婷景凤路小学崔真景凤路小学秦霞科技学校高慧科技学校姚亮科技学校蒋勇刚科技学校陈屹科技学校刘咏梅科技学校徐艳科技学校余光润科技学校陆嵘科技学校祝一彬科技学校许儒萍科技学校赵华英科技学校周华雁科技学校王蔚科技学校刘明华科技学校周贇科技学校杨晓敏科技学校秦燕科技学校唐中瑛科技学校高琴韵科技学校冯俊科技学校杨敏慧科技学校孙轶华科技学校郑敏科技学校闵培新科技学校朱云枚科技学校唐缨科技学校万月秋科技学校朱蓓锦科技学校王梅科技学校王佩琍科技学校吴妍科技学校陈佳妍科技学校张嫣莹科技学校孟珅科技学校郑蕾科技学校徐迅科技学校孙佳明科技学校孙蔼玲科技学校周文德科技学校张泓科技学校潘晖南临汾路小学蔡慧华临汾路小学陈继红临汾路小学丁红临汾路小学杜文波临汾路小学吴叔君临汾路小学丁佩珏临汾路小学何永芳临汾路小学叶昕临汾路小学赵玲临汾路小学沈慧芳临汾路小学龚文娟临汾路小学陈燕娜临汾路小学戴瑛临汾路小学何桂花临汾路小学归晓荣临汾路小学忻晓萍临汾路小学江赟应临汾路小学刘晓璐临汾路小学周洁平临汾路小学许斌临汾路小学丁炜林临汾路小学董依萍临汾路小学范咏梅临汾路小学周国琴临汾路小学范燕临汾路小学范栩琦临汾路小学罗燕萍临汾路小学曾敏临汾路小学王霞芸临汾路小学范勤雯临汾路小学柏丽萍临汾路小学曹琦临汾路小学韩 瑾临汾路小学沈颖婧临汾路小学葛 静临汾路小学柴晓倩临汾路小学丁晓斐洛川东路小学吴昌洛川东路小学王燕萍洛川东路小学吕军洛川东路小学廖雯娟洛川东路小学贾瑛洛川东路小学王华龙洛川东路小学沈振亚洛川东路小学秦英辉洛川东路小学杨晓燕洛川东路小学朱莉华洛川东路小学徐宏洛川东路小学张陆合洛川东路小学施珏峰洛川东路小学仇相娣洛川东路小学裴玲洛川东路小学鲍莉洛川东路小学曹珺洛川东路小学夏雪琴洛川东路小学游娜洛川东路小学钱海强洛川东路小学陈琼洛川东路小学孔红英洛川东路小学吴琦洛川东路小学薛静洛川东路小学严红萍洛川东路小学郭华琴洛川东路小学章武军洛川东路小学朱宜文洛川东路小学单华丽洛川东路小学刘平洛川东路小学王珏洛川东路小学瞿来娣洛川东路小学郑瑞珍洛川东路小学吴东洛川东路小学谈旭晴洛川东路小学朱玉琴洛川东路小学朱晓姝洛川东路小学宋丹洛川东路小学杨桦彭浦实验小学姚志杰彭浦实验小学缪永霞彭浦实验小学潘晓斌彭浦实验小学陈维昭彭浦实验小学祝栋梁彭浦实验小学朱明彭浦实验小学余杰彭浦实验小学王春华彭浦实验小学孙佳彭浦实验小学赵蔚秋彭浦实验小学叶俊莉彭浦实验小学王瑾彭浦实验小学胡文岚彭浦实验小学吴兵彭浦实验小学黎元惠彭浦实验小学刘恩荣彭浦实验小学达菲彭浦实验小学丁晓炜彭浦实验小学郎艳红彭浦实验小学张凌云彭浦实验小学戴峥彭浦实验小学田蓓珠彭浦实验小学施春雷彭浦实验小学谈莹彭浦实验小学王雯彭浦实验小学高岚彭浦实验小学卫杨青彭浦实验小学马盛军彭浦实验小学黄去疾彭浦实验小学秦颖彭浦实验小学倪蕾彭浦实验小学范俊彭浦实验小学梁华彭浦实验小学和健彭浦实验小学王茹彭浦实验小学金伟霞彭浦实验小学宋瑛彭浦实验小学竺琦彭浦实验小学贾伟明彭浦实验小学林珏彭浦实验小学王爱娟彭浦实验小学顾丽娟彭浦实验小学管贝娜彭浦实验小学吴金毅彭浦实验小学戴芙蓉彭浦实验小学王芳彭浦实验小学郑思佳彭浦实验小学胡雯琴彭浦实验小学卢佳彭浦实验小学章萍彭浦实验小学李羚彭浦实验小学陈君兰彭浦实验小学陈莹彭浦实验小学白若蓓彭浦实验小学范莉萍彭浦实验小学高波彭浦实验小学丁静彭浦实验小学陈华?B 彭浦实验小学侯莉萍彭浦实验小学陈莉敏彭浦实验小学周?B 彭浦新村四小毕健彭浦新村四小蔡东飞彭浦新村四小陆文娟彭浦新村四小唐维群彭浦新村四小陈晓俊彭浦新村四小张情彭浦新村四小宓敏莉彭浦新村四小杨琳彭浦新村四小宋佩琦彭浦新村四小陈敏彭浦新村四小施文澜彭浦新村四小姜钧彭浦新村四小孙朝华彭浦新村四小程钢彭浦新村四小张卓晔彭浦新村四小黄子平彭浦新村四小杨颖彭浦新村四小陈惠燕彭浦新村四小刘丽彭浦新村四小余伟春彭浦新村四小查纪平彭浦新村四小何慧彭浦新村四小张文娟彭浦新村四小卢依萍彭浦新村四小卢依萍彭浦新村四小花亚敏彭浦新村四小曲鸣华彭浦新村四小孙颖斐彭浦新村四小郁志琴彭浦新村四小华玲彭浦新村四小姜贤琴彭浦新村四小施晴琴彭浦新村四小潘胜男彭浦新村四小付丽萍彭浦新村四小徐臻彭浦新村四小施艳彭浦新村四小王俏梅彭浦新村四小徐曼蓉彭浦新村四小沈晶晶彭浦新村四小秦佳颖彭浦新村四小何颖婧彭浦新村四小李丽彭浦新村四小顾赛燕彭浦新村四小温美芬彭浦新村五小罗青峰彭浦新村五小王卫中彭浦新村五小许伟蓉彭浦新村五小周黎珏彭浦新村五小蒋文莉彭浦新村五小熊乃钢彭浦新村五小陈婷婷彭浦新村五小袁少敏彭浦新村五小俞春斐彭浦新村五小李惠萍彭浦新村五小邱瑾彭浦新村五小邵亮彭浦新村五小解咏梅彭浦新村五小王晓蕾彭浦新村五小汤敏彭浦新村五小王苏萍彭浦新村五小袁莹彭浦新村五小赵雅文彭浦新村五小吴畏彭浦新村五小姜淑蓉彭浦新村五小唐尧彭浦新村五小李君彭浦新村五小陈瑶琪彭浦新村五小杨咏彭浦新村五小翟海瑛彭浦新村五小梅静彭浦新村五小沈燕大彭浦新村五小潘刘佳彭浦新村五小缪敏珠彭浦新村五小孙丹珺彭浦新村一小从慰莉彭浦新村一小王晓洁彭浦新村一小李晓萍彭浦新村一小侯培静彭浦新村一小王春燕彭浦新村一小刘景彭浦新村一小贺健芬彭浦新村一小姚瑶彭浦新村一小夏敏彭浦新村一小吴伟彭浦新村一小谢磊彭浦新村一小李嫔彭浦新村一小侍娴彭浦新村一小曾慧彭浦新村一小张静彭浦新村一小杨莺彭浦新村一小夏琳彭浦新村一小张竹青彭浦新村一小王玉珍彭浦新村一小陆红燕彭浦新村一小张颖彭浦新村一小叶丽敏彭浦新村一小张敏雯彭浦新村一小顾莹莹彭浦新村一小周华彭浦新村一小张月灵彭浦新村一小姚黎红彭浦新村一小赵冬琳彭浦新村一小李萍彭浦新村一小姜爱丽彭浦新村一小傅慧康彭浦新村一小黄冬冬彭浦新村一小刘莹颖彭浦新村一小邵莉丽彭浦新村一小谢群彭浦新村一小李震彭浦新村一小李旭平彭浦新村一小吴烨彭浦新村一小刘静彭浦新村一小彭虹彭浦新村一小郭晓棠彭浦新村一小沈佳彭浦新村一小何磊彭浦新村一小齐爱华彭浦新村一小王晓燕彭浦新村一小强敏彭浦新村一小杨秀娟彭浦新村一小陶健彭浦新村一小张瑶婷彭浦新村一小顾盈欣彭浦新村一小张雯彭浦新村一小周文婷彭浦新村一小陆雯婷彭浦新村一小杨霈娇彭浦新村一小金禧彭浦新村一小纪克斐彭浦新村一小唐振杰彭浦新村一小袁晓菲彭浦新村一小成欣彭浦新村一小曹雁彭浦新村一小范丽倩彭浦新村一小柴莹彭浦新村一小茆训凤启慧学校刘淼启慧学校李渊启慧学校冯梅玉启慧学校曹琳启慧学校周敏启慧学校凌忆文启慧学校寿知青启慧学校王岚启慧学校奚冬敏启慧学校沈燕启慧学校曹静萍启慧学校孙斌启慧学校李秀敏启慧学校蒋雯启慧学校李冬平启慧学校金张乐启慧学校陆品君启慧学校万玲娣启慧学校王晓洁启慧学校郑梅琴启慧学校陈蓓琛启慧学校刘树琴启慧学校张建华启慧学校成杰启慧学校曹燕瑛启慧学校周峰启慧学校周琳华启慧学校辛玮启慧学校钟琴启慧学校余蓉启慧学校李燕启慧学校赵雅蓉启慧学校白静启慧学校范卫红启慧学校张艳启慧学校方敏启慧学校郑莉莉启慧学校徐萍启慧学校董俊梅启慧学校尹岚启慧学校刘海云启慧学校杨雨娟启慧学校赵新流启慧学校陈翠凤启慧学校周薇晔启慧学校刘杰启慧学校许倩启慧学校徐少妹启慧学校孙璐烨启慧学校陈诺贝启慧学校许敏启慧学校陆璐青活中心周旭东青活中心陆晨宁青活中心吴玮青活中心金艳青活中心潘蔚青活中心王汉鑫青活中心周俭青活中心肖燕青活中心张骏青活中心徐林峰青活中心傅蕾青活中心张颖青活中心崔国静青活中心殷莺青活中心郑莹青活中心张静青活中心郭志东青活中心马文艳青活中心杨一宾青活中心严蕾青活中心刘耀媖青活中心万宏雷青活中心冷伟岚青活中心王莲萍青活中心胥赟青活中心胡文亮青活中心吴有源青活中心沈勤青活中心王瑾青活中心唐莺青活中心李健青活中心周艺青活中心姜媛媛青活中心刘蕊青活中心王晖青活中心刘玮彬青活中心廖传冰青活中心许艳青活中心张继红青活中心李琳洁青活中心陆玥玟青活中心丁艳敏青活中心金梦佳青活中心姚佳磊青活中心张一鸣青活中心郑丽莉青活中心张晓希三泉路小学宋杰三泉路小学丁盛铭三泉路小学杨莉三泉路小学夏文俊三泉路小学雷芳三泉路小学谢英静三泉路小学赛曌三泉路小学薛晟磊三泉路小学周佩军三泉路小学杨仁南三泉路小学夏亮三泉路小学张岚三泉路小学杨天霞三泉路小学魏巍三泉路小学虞国风三泉路小学陆瑾三泉路小学徐敏三泉路小学胡青三泉路小学查敏三泉路小学张建华三泉路小学奚蓓琦三泉路小学邱宏三泉路小学鲁蓓清三泉路小学黄艳蓓三泉路小学翁雯洁三泉路小学赵颖三泉路小学朱瑾瑾三泉路小学田华三泉路小学谢雯三泉路小学张翊三泉路小学朱芳三泉路小学胡玉英三泉路小学周晓青三泉路小学周琼三泉路小学刘海燕三泉路小学王纯芝。
GGA

GG1A—12一、产品介绍GG-1A(F)型开关柜是一种防护型固定式金属封闭高压开关设备。
广泛地运用于高压电动机的起动、投切运行等场合,可频繁操作,无爆炸、火灾等危险。
GG-1A(F)型系列开关柜防误程序锁功能齐全,性能可靠。
真空断路器的真空绝缘度高,灭弧性强,使用寿命长,维护方便。
二、型号意义三、结构说明开关柜框架由角钢焊接而成,面板及隔板均为薄钢板。
一次器件和二次器件相互隔离各成系统。
正面有门、操作面板和防误机构,侧面有防护板相隔。
开关柜正面右上方是断路器室门,右下方是电缆室门。
中间隔板将开关柜内部分为上下两部分。
上部分有断路器室、继电器室、仪表盘,下部分是电缆室。
隔离开关安装在柜体顶部,中间有隔板与断路器分开。
真空断路器、隔离开关操作机构等在断路器室内;电流互感器在中间隔板上;零序互感器等安装在电缆室内,断路器操作机构安装在柜体正面左下方。
二次仪表及器件安装在仪表盘上和继电器室内。
上隔离开关关合与上下门的开闭受控于程序锁,当隔离开关关合时,上下门打不开;当上下门打开时,隔离开关合不上。
四、主要技术参数五、工作条件1、环境温度:上限40℃,下限-10℃,高寒地区-25℃;2、相对湿度:日平均值≤95%,月平均值≤90%;3、使用环境:没有火灾、爆炸危险,没有严重污秽、化学腐蚀及剧烈震动等场所;4、安装地点垂直倾斜度不超过5°。
六、订货须知:订货时用户须提供下列资料:1.主接线方案编号;2.二次回路接线原理图,端子排列图,如端子无排列图时,按制造厂规定;3.开关柜内的电器元件的型号、规格、数量;。
2016年一汽丰田卡罗拉维修电路图8.08-多路通信系统

26 A (*5) 26 B (*1)
CANH
26 A CANL
13 A CANH
A41(A),A42(B) 制动执行器总成
A40(A) ECM
* 1 : 带 VSC * 2 : 自动空调 * 3 : 手动空调 * 4: 带智能进入和起动系统 * 5 : 不带 VSC * 6 :1ZR-FE * 7 :2ZR-FE * 14 : 导航接收器型 * 15 : 无线电收音机和显示屏接收器型
DLC3(TFTM 制造)
* 1 :1ZR-FE * 2 :2ZR-FE * 3: 不带智能进入和起动系统
1 号 CAN 接线连接器
W
R
E18 DLC3
6 CANH
14 CANL
TC
TAC
13
9
GR
P
11 AE2
3 AE2
GR
P
33 A TC
31 A TACH
A40(A) ECM
-93-
多路通信系统 (CAN)(TFTM 制造)
32 A CANH
31 A CANL
CNH1 3D
CNL1 4D
W (*14)
R (*14)
MSCL 28 A
MSCH 29 A
E55(A) 组合仪表总成
11 A CANH
12 A CANL
E43(A) 空调放大器总成
-94-
多路通信系统 (CAN)(TFTM 制造)
E18 DLC3
E36(A) 主车身 ECU
-95-
1
12
9
20
7B CANH
8B CANL
7B CANH
8B CANL
E45(B) 动力转向 ECU 总成
2024年安全管理人员安全培训试题附答案【A卷】

2024年安全管理人员安全培训试题附答案【A卷】单位:_______ 姓名:_______ 时间:_______ 分数:______ 满分:100一、单选题(25题每题1分,共25分)1.三线电缆中的红线代表()。
A.零线B.零线C.地线2.在事故应急救援中,救援人员应迅速建立警戒区域,将警戒区和污染区内与事故应急处理无关的人员( ),并将相邻的危险化学品疏散到安全地点,以减少不必要的人员伤亡和财产损失。
A.隔离B.隔绝C.撤离3.从业人员经过安全教育培训,了解岗位操作规程,但未遵守而造成事故的,行为人应负( )责任。
A.领导B.管理C.直接4.一个灭火器设置点的灭火器配置数量不宜多于()具。
A.2B.3C.55.电焊和气焊均会产生紫外线而引起功能性伤害,在焊接作业现场,应设罝指令标识和警告标识。
依据《安全标志及其使用导则》(GB2894-2008),焊接作业现场应设罝的指令和警告标识分别是( )。
A.必须穿防护服和当心高温表面B.必须配戴遮光护目镜和当心弧光C.必须穿防护服和当心辐射D.必须戴防护眼镜和当心烫伤6.疏散楼梯的最小宽度不宜小于( )米。
A.1.20米B.1.10米C.1.00米7.万某、叶某、姚某、徐某4人被某劳务派遣公司派遣到一家公司工作。
一天公司为从业人员发放劳动防护用品,但没有给他们4人发。
公司负责人安某告诉他们说,由于你们和公司没有建立劳动关系,不是正式员工,按照国家规定由劳务派遣单位为你们带给劳动防护用品。
徐某和他辩论说,不对,你们应当把我们和其他人一样对待,带给劳动防护用品。
见两人争执不下,万某劝徐某说,算了。
咱就是个临时工,不给咱发也说得过去。
叶某说,咱们和人家身份不一样,就别争了。
姚某说,不给咱发也行,咱就干活儿拿钱,他们那些规章制度咱也不用听。
以上说法正确的是( )。
A.安某B.徐某C.万某D.叶某E.姚某8.作业内容变更、()、作业地点转移或超过有效期限的,以及作业条件、作业环境或工艺条件改变的,应重新办理操作票工作票。
LM19资料

October 2007 LM192.4V, 10μA, TO-92 Temperature SensorGeneral DescriptionThe LM19 is a precision analog output CMOS integrated-cir-cuit temperature sensor that operates over a −55°C to +130°C temperature range. The power supply operating range is+2.4 V to +5.5 V. The transfer function of LM19 is predomi-nately linear, yet has a slight predictable parabolic curvature.The accuracy of the LM19 when specified to a parabolictransfer function is ±2.5°C at an ambient temperature of +30°C. The temperature error increases linearly and reaches amaximum of ±3.8°C at the temperature range extremes. Thetemperature range is affected by the power supply voltage. Ata power supply voltage of 2.7 V to 5.5 V the temperaturerange extremes are +130°C and −55°C. Decreasing the pow-er supply voltage to 2.4 V changes the negative extreme to−30°C, while the positive remains at +130°C.The LM19's quiescent current is less than 10 μA. Therefore,self-heating is less than 0.02°C in still air. Shutdown capabilityfor the LM19 is intrinsic because its inherent low power con-sumption allows it to be powered directly from the output ofmany logic gates or does not necessitate shutdown at all.Applications■Cellular Phones■Computers■Power Supply Modules■Battery Management■FAX Machines■Printers■HVAC■Disk Drives■AppliancesFeatures■Rated for full −55°C to +130°C range■Available in a TO-92 package■Predictable curvature error■Suitable for remote applications■UL Recognized ComponentKey Specifications■ Accuracy at +30°C±2.5 °C (max)■ Accuracy at +130°C & −55°C±3.5 to ±3.8 °C (max)■ Power Supply Voltage Range+2.4V to +5.5V■ Current Drain10 μA (max)■ Nonlinearity±0.4 % (typ)■ Output Impedance160 Ω (max)■ Load Regulation 0 μA < I L< +16 μA−2.5 mV (max) Typical Application20004002VO= (−3.88×10−6×T2) + (−1.15×10−2×T) + 1.8639orwhere:T is temperature, and VOis the measured output voltage of the LM19.Output Voltage vs Temperature20004024FIGURE 1. Full-Range Celsius (Centigrade) Temperature Sensor (−55°C to +130°C)Operating from a Single Li-Ion Battery Cell© 2007 National Semiconductor LM19 2.4V, 10μA, TO-92 Temperature SensorTemperature (T)Typical V O +130°C +303 mV +100°C +675 mV +80°C +919 mV +30°C +1515 mV +25°C +1574 mV 0°C +1863.9 mV −30°C +2205 mV −40°C +2318 mV −55°C+2485 mVConnection DiagramTO-9220004001See NS Package Number Z03AOrdering InformationOrder Temperature TemperatureNS Package DeviceNumber Accuracy Range NumberMarking Transport MediaLM19CIZ±3.8°C−55°C to +130°CZ03ALM19CIZBulk 2L M 19Absolute Maximum Ratings (Note 1)Supply Voltage +6.5V to −0.2V Output Voltage(V + + 0.6 V) to−0.6 VOutput Current 10 mA Input Current at any pin (Note 2) 5 mA Storage Temperature −65°C to +150°C Maximum Junction Temperature (T JMAX )+150°C ESD Susceptibility (Note 3) : Human Body Model 2500 VMachine Model250 VLead Temperature TO-92 PackageSoldering (3 seconds dwell)+240°COperating Ratings(Note 1)Specified Temperature Range: T MIN ≤ T A ≤ T MAX 2.4 V ≤ V +≤ 2.7 V −30°C ≤ T A ≤ +130°C 2.7 V ≤ V +≤ 5.5 V−55°C ≤ T A ≤ +130°CSupply Voltage Range (V +)+2.4 V to +5.5 VThermal Resistance, θJA (Note 4) TO-92150°C/WElectrical CharacteristicsUnless otherwise noted, these specifications apply for V + = +2.7 V DC . Boldface limits apply for T A = T J = T MIN to T MAX ; all other limits T A = T J = 25°C; Unless otherwise noted.ParameterConditionsTypical (Note 5)LM19C Units (Limit)Limits (Note 6)Temperature to Voltage Error V O = (−3.88×10−6×T 2)+ (−1.15×10−2×T) + 1.8639V (Note 7)T A = +25°C to +30°C ±2.5°C (max)T A = +130°C ±3.5°C (max)T A = +125°C ±3.5°C (max)T A = +100°C ±3.2°C (max)T A = +85°C ±3.1°C (max)T A = +80°C ±3.0°C (max)T A = 0°C ±2.9°C (max)T A = −30°C ±3.3°C (min)T A = −40°C±3.5°C (max)T A = −55°C ±3.8°C (max)Output Voltage at 0°C+1.8639 V Variance from Curve ±1.0°C Non-Linearity (Note 8)−20°C ≤ T A ≤ +80°C±0.4 %Sensor Gain (Temperature Sensitivity or Average Slope) to equation:V O =−11.77 mV/°C×T+1.860V −30°C ≤ T A ≤ +100°C −11.77−11.0−12.6mV/°C (min)mV/°C (max)Output Impedance 0 μA ≤ I L ≤ +16 μA (Notes 10, 11) 160Ω (max)Load Regulation(Note 9)0 μA ≤ I L ≤ +16 μA (Notes 10, 11) −2.5mV (max)Line Regulation+2. 4 V ≤ V + ≤ +5.0V +3.7mV/V (max)+5.0 V ≤ V + ≤ +5.5 V+11mV (max)Quiescent Current+2. 4 V ≤ V + ≤ +5.0V 4.57μA (max)+5.0V ≤ V + ≤ +5.5V 4.59μA (max)+2. 4 V ≤ V + ≤ +5.0V4.510μA (max)Change of Quiescent Current +2. 4 V ≤ V + ≤ +5.5V+0.7 μA Temperature Coefficient of −11 nA/°C Quiescent CurrentShutdown CurrentV + ≤ +0.8 V0.02μALM19Note 1:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.Note 2:When the input voltage (V I ) at any pin exceeds power supplies (V I < GND or V I > V +), the current at that pin should be limited to 5 mA.Note 3:The human body model is a 100 pF capacitor discharged through a 1.5 k Ω resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin.Note 4:The junction to ambient thermal resistance (θJA ) is specified without a heat sink in still air.Note 5:Typicals are at T J = T A = 25°C and represent most likely parametric norm.Note 6:Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).Note 7:Accuracy is defined as the error between the measured and calculated output voltage at the specified conditions of voltage, current, and temperature (expressed in°C).Note 8:Non-Linearity is defined as the deviation of the calculated output-voltage-versus-temperature curve from the best-fit straight line, over the temperature range specified.Note 9:Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output due to heating effects can be computed by multiplying the internal dissipation by the thermal resistance.Note 10:Negative currents are flowing into the LM19. Positive currents are flowing out of the LM19. Using this convention the LM19 can at most sink −1 μA and source +16 μA.Note 11:Load regulation or output impedance specifications apply over the supply voltage range of +2.4V to +5.5V.Note 12:Line regulation is calculated by subtracting the output voltage at the highest supply input voltage from the output voltage at the lowest supply input voltage.Typical Performance CharacteristicsTemperature Error vs. Temperature20004034Thermal Response in Still Air200040351.0 LM19 Transfer FunctionThe LM19's transfer function can be described in different ways with varying levels of precision. A simple linear transfer function, with good accuracy near 25°C, isV O = −11.69 mV/°C × T + 1.8663 VOver the full operating temperature range of −55°C to +130°C, best accuracy can be obtained by using the parabolic transfer functionV O = (−3.88×10−6×T 2) + (−1.15×10−2×T) + 1.8639solving for T:A linear transfer function can be used over a limited temper-ature range by calculating a slope and offset that give best results over that range. A linear transfer function can be cal-culated from the parabolic transfer function of the LM19. The slope of the linear transfer function can be calculated using the following equation:m = −7.76 × 10−6× T − 0.0115,where T is the middle of the temperature range of interest and m is in V/°C. For example for the temperature range of T min =−30 to T max =+100°C:T=35°Candm = −11.77 mV/°CThe offset of the linear transfer function can be calculated us-ing the following equation:b = (V OP (T max ) + V OP (T) + m × (T max +T))/2,where:•V OP (T max ) is the calculated output voltage at T max using the parabolic transfer function for V O•V OP (T) is the calculated output voltage at T using the parabolic transfer function for V O .Using this procedure the best fit linear transfer function for many popular temperature ranges was calculated in Figure 2. As shown in Figure 2 the error that is introduced by the linear transfer function increases with wider temperature ranges.4L M 19Temperature Range Linear EquationV O =Maximum Deviation of Linear Equation fromParabolic Equation (°C)T min (°C)T max (°C)−55+130−11.79 mV/°C × T + 1.8528 V ±1.41−40+110−11.77 mV/°C × T + 1.8577 V ±0.93−30+100−11.77 mV/°C × T + 1.8605 V ±0.70-40+85−11.67 mV/°C × T + 1.8583 V ±0.65−10+65−11.71 mV/°C × T + 1.8641 V ±0.23+35+45−11.81 mV/°C × T + 1.8701 V ±0.004+20+30−11.69 mV/°C × T + 1.8663 V±0.004FIGURE 2. First Order Equations Optimized For Different Temperature Ranges.2.0 MountingThe LM19 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or ce-mented to a surface. The temperature that the LM19 is sens-ing will be within about +0.02°C of the surface temperature to which the LM19's leads are attached.This presumes that the ambient air temperature is almost the same as the surface temperature; if the air temperature were much higher or lower than the surface temperature, the actual temperature measured would be at an intermediate temper-ature between the surface temperature and the air tempera-ture.To ensure good thermal conductivity the backside of the LM19 die is directly attached to the GND pin. The tempertures of the lands and traces to the other leads of the LM19 will also affect the temperature that is being sensed.Alternatively, the LM19 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LM19 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where conden-sation can occur. Printed-circuit coatings and varnishes such as Humiseal and epoxy paints or dips are often used to ensure that moisture cannot corrode the LM19 or its connections.The thermal resistance junction to ambient (θJA ) is the pa-rameter used to calculate the rise of a device junction tem-perature due to its power dissipation. F or the LM19 the equation used to calculate the rise in the die temperature is as follows:T J = T A + θJA [(V + I Q ) + (V + − V O ) I L ]where I Q is the quiescent current and I L is the load current on the output. Since the LM19's junction temperature is the ac-tual temperature being measured care should be taken to minimize the load current that the LM19 is required to drive.The tables shown in Figure 3 summarize the rise in die tem-perature of the LM19 without any loading, and the thermal resistance for different conditions.TO-92TO-92no heat sink small heat fin θJA T J − T A θJA T J − T A (°C/W)(°C)(°C/W)(°C)Still air 150TBD TBD TBD Moving airTBDTBDTBDTBDFIGURE 3. Temperature Rise of LM19 Due to Self-Heating and Thermal Resistance (θJA )3.0 Capacitive LoadsThe LM19 handles capacitive loading well. Without any pre-cautions, the LM19 can drive any capacitive load less than 300 pF as shown in Figure 4. Over the specified temperature range the LM19 has a maximum output impedance of 160Ω. In an extremely noisy environment it may be necessary to add some filtering to minimize noise pickup. It is recommend-ed that 0.1 μF be added from V + to GND to bypass the power supply voltage, as shown in Figure 5. In a noisy environment it may even be necessary to add a capacitor from the output to ground with a series resistor as shown in Figure 5. A 1 μF output capacitor with the 160 Ω maximum output impedance and a 200 Ω series resistor will form a 442 Hz lowpass filter.Since the thermal time constant of the LM19 is much slower,the overall response time of the LM19 will not be significantly affected.20004015FIGURE 4. LM19 No Decoupling Required for CapacitiveLoads Less than 300 pF.LM192000401620004033R (Ω) C (µF)20014700.16800.011 k0.001FIGURE 5. LM19 with Filter for Noisy Environment and Capacitive Loading greater than 300 pF. Either placementof resistor as shown above is just as effective.4.0 Applications Circuits20004018FIGURE 6. Centigrade Thermostat20004019FIGURE 7. Conserving Power Dissipation with Shutdown 6L M 19LM1920004028Most CMOS ADCs found in ASICs have a sampled data comparator input structure that is notorious for causing grief to analogoutput devices such as the LM19 and many op amps. The cause of this grief is the requirement of instantaneous charge of theinput sampling capacitor in the ADC. This requirement is easily accommodated by the addition of a capacitor. Since not all ADCshave identical input stages, the charge requirements will vary necessitating a different value of compensating capacitor. This ADCis shown as an example only. If a digital output temperature is required please refer to devices such as the LM74.FIGURE 8. Suggested Connection to a Sampling Analog to Digital Converter Input StagePhysical Dimensions inches (millimeters) unless otherwise noted3-Lead TO-92 Plastic Package (Z)Order Number LM19CIZ NS Package Number Z03A 8L M 19LM19 NotesNotesL M 19 2.4V , 10μA , T O -92 T e m p e r a t u r e S e n s o rTHE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION (“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIF ICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS,IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERF ORMED. NATIONAL ASSUMES NO LIABILITY F OR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE F OR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INF RINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.LIFE SUPPORT POLICYNATIONAL ’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN L IFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.Copyright© 2007 National Semiconductor CorporationFor the most current product information visit us at National Semiconductor Americas Customer Support Center Email:new.feedback@ Tel: 1-800-272-9959National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530-85-86Email: europe.support@ Deutsch Tel: +49 (0) 69 9508 6208English Tel: +49 (0) 870 24 0 2171Français Tel: +33 (0) 1 41 91 8790National Semiconductor Asia Pacific Customer Support Center Email: ap.support@National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507Email: jpn.feedback@ Tel: 81-3-5639-7560。