2013-2014年华师大版九年级上数学期中复习试题含答案详解

合集下载

华师大版数学九年级上册期中考试试卷带答案详解

华师大版数学九年级上册期中考试试卷带答案详解

华师大版数学九年级上册期中考试试题一、选择题。

(每小题只有一个正确答案)1x 的取值范围是( )A .5x ≥B .5x >C .5x <D .5x ≤2.一元二次方程2x 2﹣3x +1=0化为(x +a )2=b 的形式,正确的是( )A .23x-=162⎛⎫ ⎪⎝⎭B .2312x-=416⎛⎫ ⎪⎝⎭ C .231x-=416⎛⎫ ⎪⎝⎭ D .以上都不对 3.在ABC 与'A B ’'C 中,有下列条件,如果从中任取两个条件组成一组,那么能判断'''ABC A B C ∽的共有( )组. ①AB BC A B B C =''''; ②BC AC B C A C =''''; ③'A A ∠=∠;④'C C ∠=∠. A .1B .2C .3D .4 4.点()1,3N -可以看作由()1,1?M --()得到. A .向上平移4个单位 B .向左平移4个单位 C .向下平移4个单位 D .向右平移4个单位 5.用公式法解231x x -+=时,先求出a 、b 、c 的值,则a 、b 、c 依次为( ) A .1-,3,1- B .1,3-,1- C .1-,3-,1- D .1-,3,1 6.如图,在Rt △ABC 中,∠C=90°,CD ⊥AB ,垂足为D ,AD=8,DB=2,则CD 的长为( )A .4B .16C .D .7.关于x 的一元二次方程()2a 1x 2x 30--+=有实数根,则整数a 的最大值是( )A .2B .1C .0D .-18.如图所示:两根竖直的电线杆AB 长为6,CD 长为3,AD 交于BC 于点E 点,则E 到地面的距离EF 的长是( )A .2B .2.2C .2.4D .2.59.如果a ,b 是一元二次方程2240x x --=的两个根,那么322a b a b -的值为( ) A .8- B .8 C .16- D .1610.如图,EF 是ABC 的中位线,O 是EF 上一点,且满足2OE OF =.则ABC 的面积与AOC 的面积之比为( )A .2B .32C .53D .3二、填空题11与x 的值是________. 12.在一次象棋比赛中,实行单循环赛制(即每个选手都与其他选手比赛一局),每局胜者记2分,负者记0分,如果平局,两个选手各记1分.某位同学统计了比赛中全部选手的得分总和为110分,则这次比赛中共有________名选手参赛.13.梯形的下底长为8cm ,中位线长为6cm ,则上底长为________cm .14=________.15.若关于x 的方程103=恰有两个不同的实数解,则实数a 的取值范围是________. 16.ABC 中,A 的坐标是()3,6,以原点为位似中心,将三角形缩小到原来12,则对应点的'A 的坐标是________.17.当1a =,1b =时,11a b-=________.18.若12a c e b d f ===,则a c e b d f++=++________. 19.已知a 、b 、d 、c 是成比例线段,a=4cm ,b=6cm ,d=9cm ,则c=_____.20.在平面直角坐标系中,点()4,2A ,关于x 轴的对称点坐标是________,关于原点对称的点的坐标为________.三、解答题21.如图ABC 的顶点坐标分别为()1,1A ,()2,3B ,()3,0C .(1)以点O 为位似中心画DEF ,使它与ABC 位似,且相似比为2.(2)在()1的条件下,若(),M a b 为ABC 边上的任意一点,则DEF 的边上与点M 对应的点'M 的坐标为________.22.用适当的方法解下列方程:(1)2420x x +-=; (2)()()323x x x -=-.23.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.24.在正方形ABCD 中,已知13AF AB =,14CG CB =, 求:(1)::EF FG GH ,(2):AE CH .25.如图,在梯形ABCD 中,//AB CD ,15AB =,30CD =,点E ,F 分别为AD ,BC 上一点,且//EF AB .若梯形AEFB ∽梯形EDCF ,求线段EF 的长.26.Rt ABC 中,90A ∠=,8AB cm =,6AC cm =,P 、Q 分别为AC ,AB 上的两动点,P 从点C 开始以1/cm s 的速度向点A 运动,Q 从点A 开始以2/cm s 的速度向点B 运动,当一点到达终点时,P 、Q 两点就同时停止运动.设运动时间为ts .(1)用t 的代数式分别表示AQ 和AP 的长;(2)设APQ 的面积为S ,①求APQ 的面积S 与t 的关系式;②当2t s =时,APQ 的面积S 是多少?(3)当t 为多少秒时,以点A 、P 、Q 为顶点的三角形与ABC 相似?答案与详解1.A【分析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】∵∴x −5≥0,解得x ≥5.故选A.【点睛】考查二次根式有意义的条件,掌握被开方数大于等于0是解题的关键.2.C【分析】先进行移项,再把二次项系数化为1,配方即可.【详解】移项得2x ²-3x =-1, 二次项系数化为1得23122x x -=-, 配方得23919216216x x -+=-+, 即231()416x -=, 故选:C .【点睛】本题考查了配方法解一元二次方程,运用配方法时,方程左右两边同时加上一次项系数一半的平方是解题的关键.3.C【解析】【分析】根据相似三角形的判定定理(①有两角相等的两个三角形相似,②有两边的比相等,并且它们的夹角也相等的两个三角形相似,③有三组对应边的比相等的两三角形相似)得出即可.【详解】能判断△ABC ∽△A ′B ′C ′的有①②或②④或③④,共3组,故选:C.【点睛】考查相似三角形的判定,掌握相似三角形的判定定理是解题的关键.4.A【解析】【分析】根据向上平移,纵坐标加进行计算即可得解.【详解】由M (−1,−1)得到N (−1,3),−1+4=3,所以,向上平移4个单位.故选:A.【点睛】考查点的平移,掌握点的平移规律是解题的关键.5.A【分析】把方程变为一般式,即可确定a ,b ,c .注意a ,b ,c 可同时乘以一个不为零的数.【详解】把方程231x x -+=化为一元二次方程的一般形式为2310x x -+=,∴a =1,b =−3,c =1.但选项里没有这组值,方程两边同乘以−1,得:2310x x -+-=,此时a =−1,b =3,c =−1.故选:A.【点睛】考查公式法解一元二次方程,掌握一元二次方程的一般形式是解题的关键.6.A【详解】∵∠C=90°,CD ⊥AB ,∴∠ADC=∠CDB=90°, ∠CAD+∠CBD=90°,∴∠CAD+∠ACD=90°,∴∠ACD=∠CBD ,∴△ADC ∽△CDB , ∴=CD BD AD CD, ∵AD=8,DB=2∴CD=4.故选A7.C【分析】根据一元二次方程的根的判别式可得答案.【详解】解:∵关于x 的一元二次方程()2a 1x 2x 30--+=有实数根, ∴()a 1a 10{{4412a 10a 3≠-≠⇒∆=--≥≤. 即a 的取值范围是4a 3≤且a 1≠. ∴整数a 的最大值为0.故选C.【点睛】本题考查了一元二次方程,熟练掌握根的判别式与根的关系是解题关键.8.A【解析】【分析】 根据相似三角形对应边成比例可得DF EF BF EF BD AB BD CD==,, 然后代入数据两式相加其解即可.【详解】∵两根电线杆AB 、CD 都竖直,EF 垂直于地面,∴△ABD ∽△EFD ,△BCD ∽△BEF , ∴DF EF BF EF BD AB BD CD==,, ∴DF BF EF EF BD BD AB CD+=+, 即163EF EF +=, 解得EF =2.故选:A.【点睛】考查相似三角形的应用,掌握相似三角形的判定与性质是解题的关键.9.C【解析】【分析】先根据根与系数的关系得到ab=-4,再把原式表示得到原式=a 2•ab -2a•ab ,利用整体代入的方法可化简得到原式=-4a 2+8a ,接着根据一元二次方程解的定义得到a 2=2a+4,然后再次利用整体代入的方法计算即可.【详解】根据题意,ab =−4,所以原式()222242448a ab a ab a a a a =⋅-⋅=--⋅-=-+, ∵a 是一元二次方程2240x x --=的根,∴a 2−2a −4=0,即a 2=2a +4,∴原式=−4(2a +4)+8a =−8a −16+8a =−16.故选:C.【点睛】 本题主要考查一元二次方程根与系数的关系,熟记公式1212,,b c x x x x a a+=-= 是解决本题的关键.10.D【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC,12EF BC=,再求出OE与BC的关系,然后利用三角形的面积公式解答即可.【详解】∵EF是△ABC的中位线,∴EF∥BC,12EF BC=,∵OE=2OF,∴1212123OE BC BC =⨯=+,设点A到BC的距离为h,则11111,22236 ABC AOCS BC h S OE h BC h BC h =⋅=⋅=⨯⋅=⋅,∴△ABC的面积与△AOC的面积之比=3.故选:D.【点睛】考查三角形中位线定理, 三角形的面积,三角形的中位线平行于第三边并且等于第三边的一半.11.2-或5【解析】【分析】直接利用二次根式的性质得出x2-4x=10-x,进而求出即可.【详解】∵与∴x2−4x=10−x,解得:x1=−2,x2=5,故答案为:−2或5.【点睛】考查最简二次根式的定义,掌握同类同类二次根式的定义是解题的关键.12.11【解析】【分析】每局的得分均为2分,2人的比赛只有一局;局数=12×选手数×(选手数-1);等量关系为:2×局数=所得分数.【详解】设这次比赛中共有x 名选手参加,则,12(1)1102x x ⨯⨯-=, 解得x =11,故答案是:11.【点睛】考查一元二次方程的应用,读懂题目,找出题目中的等量关系是解题的关键.13.4【解析】【分析】根据梯形的中位线定理得:下底=中位线长的2倍-上底.【详解】根据梯形的中位线定理得,上底=2×6-8=4cm .故答案为:4.【点睛】考查梯形中位线定理,掌握梯形的中位线定理是解题的关键.14.【解析】【分析】由于两个分母互为有理化因式,故先将分式通分,然后再计算.【详解】== 故答案为:【点睛】考查二次根式的加减,掌握分母有理化的方法是解题的关键.15.0a =或316a ≥-【分析】,∴y≥0,则原方程可化为:211023ay y +-=, 根据方程只有一个正根,即可解决问题.【详解】y ,∴y ≥0,则原方程可化为:211023ay y +-=, ∵方程恰有两个不同的实数解,∴△=0或a =0或a >0(此时方程两根异号,y 只有一个正根,x 有两个不同的实数解)当△=0时,14043a +=, 解得:316a =-, 故实数a 的取值范围是:0a =或316a ≥-, 故答案为0a =或316a ≥-【点睛】考查无理方程,难度一般,关键是掌握用换元法求解无理方程.16.3,32⎛⎫ ⎪⎝⎭或3,32⎛⎫-- ⎪⎝⎭ 【解析】【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k 求解.【详解】根据题意得对应点的A ′的坐标为(12×3,1 2×6)或(−12×3,−1 2×6), 即A ′的坐标为3,32⎛⎫ ⎪⎝⎭或3,32⎛⎫-- ⎪⎝⎭ 故答案为:3,32⎛⎫⎪⎝⎭或3,32⎛⎫-- ⎪⎝⎭ 【点睛】考查位似变换,位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .17.-2【解析】【分析】由a 与b 求出ab 与b-a 的值,所求式子通分并利用同分母分式的减法法则计算,将各自的值代入计算即可求出值.【详解】∵1a =,1b =∴1)12ab b a ==-=-,, 则原式 2.b aab -==-故答案为:−2.【点睛】考查二次根式的化简求值,掌握二次根式的运算是解题的关键.18.12【解析】【分析】 由12aceb d f ===,可得b=2a ,d=2c ,f=2e ,代入可求得a c eb d f ++++的值.【详解】 ∵12ace b df ===,∴b =2a ,d =2c ,f =2e , ∴a c e b d f ++++1.2222()2ac e a c e a c e a c e ++++===++++ 故答案为:1.2【点睛】考查比例的性质,分式的化简求值,根据12a c eb d f ===,可得b=2a ,d=2c ,f=2e ,代入所求代数式是解题的关键.19.13.5cm【解析】解:∵a 、b 、d 、c 是成比例线段,∴a :b =d :c .∵a =4cm ,b =6cm ,d =9cm ,∴4:6=9:c ,∴c =13.5(cm ).故答案为:13.5cm .20.()4,2- ()4,2--【解析】【分析】根据关于x 轴对称的点的规律,关于原点对称的点的规律,可得答案.【详解】在平面直角坐标系中,点A (4,2),关于x 轴的对称点坐标是(4,−2),关于原点对称的点的坐标为(−4,−2),故答案为:(4,−2),(−4,−2).【点睛】考查关于原点对称的点的坐标,关于x 轴、y 轴对称的点的坐标,掌握关于原点对称的点的坐标,关于x 轴、y 轴对称的点的坐标规律是解题的关键.21.()2,2a b 或()2,2a b --【解析】【分析】(1)把点A 、B 、C 的横、纵坐标都乘以2可得到对应点D 、E 、F 的坐标,再描点可得△DEF ;把点A 、B 、C 的横、纵坐标都乘以-2可得到对应点D′、E′、F′的坐标,然后描点可得△D′E′F′; (2)利用以原点为位似中心的位似变换的对应点的坐标特征求解.【详解】(1)如图,△DEF 和△D′E′F′为所作;(2)点M 对应的点M′的坐标为(2a ,2b )或(-2a ,-2b ).故答案为(2a ,2b )或(-2a ,-2b ).【点睛】考查位似变换,找到对应点是解题的关键.22.(1)12x =-22x =-(2)13x =,22x =-.【解析】【分析】(1)利用配方法解方程;(2)先变形得到x (x-3)+2(x-3)=0,然后利用因式分解法解方程.【详解】(1)242x x +=,2446x x ++=,2(2)6x +=,2x +=所以12x =-22x =-(2)()()3230x x x -+-=,()()320x x -+=,30x -=或20x +=,所以13x =,22x =-.【点睛】考查解一元二次方程,掌握配方法,因式分解法是解题的关键.23.(1)12,32-;(2)证明见解析. 【详解】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1, ∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用. 24.()1 ::3:6:2EF FG GH =;()2 :27:16AE CH =.【解析】【分析】(1)由正方形的性质得AD ∥BC ,CD ∥AB ,再根据平行线分线段成比例定理,由AE ∥BG 得到EF AF FG BF =,而13AF AB =,则12EF FG =,同理可得3FG GH=,然后利用比例性质得到EF :FG :GH=3:6:2; (2)根据平行线分线段成比例定理和(1)中的结论,由AF ∥DH 得到38AE EF AD FH ==,即38AE AD =,同理可得29CH GH CD EG ==,即29CH CD =,根据正方形的性质得AD=CD ,所以AE :CH=27:16.【详解】()1∵四边形ABCD 为正方形,∴//AD BC ,//CD AB ,∵//AE BG , ∴EFAFFG BF =,而13AF AB =, ∴12AFBF =, ∴12EFFG =,∵//CH BF , ∴FGBGGH CG =, 而14CGBG =, ∴3BGCG =, ∴3FGGH =, 即36EFFG =,62FGGH =,∴::3:6:2EF FG GH =;()2∵//AF DH , ∴38AEEF AD FH ==,即38AE AD =,∵//CG DE , ∴29CHGHCD EG ==,即29CH CD =,而AD CD =,∴:27:16AE CH =.【点睛】考查平行线分线段成比例,三条平行线被两条直线所截,所得的对应线段成比例.25..【解析】【分析】根据相似多边形对应边成比例列出关系式,代入已知数据计算即可.【详解】∵AEFB ∽梯形EDCF , ∴AB EF EF CD=, ∴2450EF AB CD =⨯=,解得EF =【点睛】考查相似多边形的性质,相似多边形的对应边成比例.26.()1?2AQ t =,6AP t =-;()2 ①26S t t =-,②28cm ;()3当t 为2.4秒或1811时,以点A 、P 、Q 为顶点的三角形与ABC 相似.【解析】【分析】(1)用t 的代数式分别表示AQ=2t ,AP=6-t ;(2)设△APQ 的面积为S ,①根据三角形的面积公式可知()21126622S AQ AP t t t t =⋅=⨯⨯-=-,即S=6t-t 2; ②当t=2s 时,代入三角形的面积公式即可求值.(3)①当当AQ AP AB AC =时2666t t -=,则有t=2.4(s ); ②当AQ AP AC AB =时2668t t -=,则有()1811t s =; 【详解】()1用t 的代数式分别表示2AQ t =,6AP t =-;()2设APQ 的面积为S ,①APQ 的面积S 与t 的关系式为:()21126622S AQ AP t t t t =⋅=⨯⨯-=-,即26S t t =-,②当2t s =时,APQ 的面积()()2112262822S AQ AP cm ⎡⎤=⨯⋅=⨯⨯⨯-=⎣⎦; ()3当t 为多少秒时,以点A 、P 、Q 为顶点的三角形与ABC 相似,①当AQ AP AB AC =时2666t t -=,∴()2.4t s =; ②当AQ AP AC AB =时2668t t -=,∴()1811t s =; 综上所述,当t 为2.4秒或1811时, 以点A 、P 、Q 为顶点的三角形与ABC 相似.【点睛】 考查相似三角形的性质, 列代数式, 根据实际问题列二次函数关系式,掌握相似三角形的性质是解题的关键.。

华师大版九年级上册数学期中考试试卷附答案

华师大版九年级上册数学期中考试试卷附答案

华师大版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列选项中,使根式有意义的a 的取值范围为a <1的是( )A .a 1-B .1a -C .()21a -D .11a -2.若tan(a+10°a 的度数是 ( )A .20°B .30°C .35°D .50°3.在化简甲、乙、丙三位同学化简的方法分别是甲:原式233633==;乙:原式33===( ) A .甲 B .乙 C .丙 D .都正确4.用配方法解方程x 2﹣23x ﹣1=0时,应将其变形为( ) A .(x ﹣13)2=89 B .(x+13)2=109 C .(x ﹣23)2=0 D .(x ﹣13)2=109 5.如图,已知123∠=∠=∠,则下列表达式正确的是( )A .AB DE AD BC= B .AC AD AE AB = C .AB AD AC AE = D .BC AE DE AC = 6.如图,小东设计两个直角,来测量河宽DE ,他量得AD =2m ,BD =3m ,CE =9m ,则河宽DE 为( )A .5mB .4mC .6mD .8m7.如图,A 、B 的坐标分别为(2,0)、(0,1).若将线段AB 平移至11A B ,1A 、1B 的坐标分别(3,)b 、(,2)a ,则+a b 的值为( )A .2B .3C .4D .58.如果代数式225x x -+的值等于7,则代数式2361x x --的值为( )A .5B .6C .7D .89.某商务酒店客房有50间供客户居住.当每间房 每天定价为180元时,酒店会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有客户居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,酒店当天的利润为10890元?设房价定为x 元,根据题意,所列方程是( )A .()18020501089010x x ⎛⎫+--= ⎪⎝⎭ B .()1805050201089010x x ⎛⎫+--⨯= ⎪⎝⎭ C .1805050201089010x x -⎛⎫--⨯= ⎪⎝⎭ D .()18020501089010x x -⎛⎫--= ⎪⎝⎭10.如图,在四边形ABCD 中,90A ∠=︒,AB =3AD =,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为( )A .3B .4C .4.5D .5二、填空题11__.12.计算:÷=__.13.如图,A 、B 、C 、D 为矩形的四个顶点,16AB cm =,8AD cm =,动点P ,Q 分别从点A 、C 同时出发,点P 以3/cm s 的速度向B 移动,一直到达B 为止;点Q 以2/cm s 的速度向D 移动.当P 、Q 两点从出发开始到__秒时,点P 和点Q 的距离是10cm .14.如图,ABC ∆是等腰三角形,90ACB ∠=︒,过BC 的中点D 作DE AB ⊥,垂足为E ,连结CE ,则tan ACE ∠的值为__.三、解答题15.计算 sin 230°+cos 245°·tan45°;16.在ABC ∆中,90C ∠=︒,若BC ,3AC =,求A ∠和AB 的值.17.已知2240x x c -+=的一个根,求方程的另一个根及c 的值. 18.如图,大楼AB 高16m ,远处有一塔CD ,某人在楼底B 处测得塔顶C 的仰角为38.5°,在楼顶A 处测得塔顶的仰角为22°,求塔高CD 的高及大楼与塔之间的距离BC 的长. (参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,si38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80).19.如图,在ABC ∆中,8AB cm =,16BC cm =,动点P 从点A 开始沿AB 边运动,速度为2/cm s ;动点Q 从点B 开始沿BC 边运动,速度为4/cm s ;如果P 、Q 两动点同时运动,那么何时QBP ∆与ABC ∆相似?20.如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知折痕,且tan ∠EFC=34. (1)△AFB 与△FEC 有什么关系?试证明你的结论.(2)求矩形ABCD 的周长.21.一个小风筝与一个大风等形状完全相同,它们的形状如图所示,其中对角线AC ⊥BD .已知它们的对应边之比为1:3,小风筝两条对角线的长分别为12cm 和14cm .(1)小风筝的面积是多少?(2)如果在大风筝内装设一个连接对角顶点的十字交叉形的支撑架,那么至少需用多长的材料?(不记损耗)(3)大风筝要用彩色纸覆盖,而彩色纸是从一张刚好覆盖整个风筝的矩形彩色纸(如图中虚线所示)裁剪下来的,那么从四个角裁剪下来废弃不用的彩色纸的面积是多少?22.如图,在△ABC 中,BC =3,D 为AC 延长线上一点,AC =3CD ,∠CBD =∠A ,过D 作DH ∥AB ,交BC 的延长线于点H .(1)求证:△HCD ∽△HDB .(2)求DH 长度.23.在矩形ABCD 中,E 为DC 边上一点,把ADE 沿AE 翻折,使点D 恰好落在BC 边上的点F .(1)求证:ABF FCE ~;(2)若AB =AD =4,求EC 的长.24.如图,一次函数23y x =-+的图象交x 轴于点A ,交y 轴于点B ,点P 在线段AB 上(不与点A ,B 重合)过点P 分别作OA 和OB 的垂线,垂足为C ,D .(1)关于矩形OCPD 面积的探究:①点P 在何处时,矩形OCPD 的面积为1?写出计算过程;②是否存在一点P ,能使矩形OCPD 的面积为32?说说你的理由. (2)设点P 的坐标是(P x ,23)(0)x x -+>,图中阴影部分的面积为S ,尝试完成下列问题: ①建立x 与S 的关系式,并类比一次函数猜想S 是x 的什么函数,能否对此类函数下一个描述性的定义,其中包含它的一般形式;②我们知道代数式2(1)9x ++有最小值9,试问当P 在何处时S 有最小值,请把你的理由.参考答案1.D【详解】解:A .当a ≥1时,根式有意义.B .当a ≤1时,根式有意义.C .a 取任何值根式都有意义.D .要使根式有意义,则a ≤1,且分母不为零,故a <1.故选D .点睛:判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母的不等于0混淆.2.D【分析】根据特殊角的三角形函数值即可求解.【详解】∵tan60︒=tan(a+10°∴a+10°=60°,即a=50°.故选D.【点睛】本题考查了特殊角的三角函数值.牢记tan60︒=.3.D【分析】根据二次根式的性质化简,方法过程可以略有不同,本题甲、乙、丙三位同学化简的方法和结果都是正确的.【详解】甲:原式233633==,正确;乙:原式33==丙:原式==故选:D.【点睛】本题考查二次根式的性质和化简,熟练掌握性质,灵活运用化简方法是关键.4.D【详解】分析:本题要求用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.详解:∵x2﹣23x﹣1=0,∴x2﹣23x=1,∴x2﹣23x+19=1+19,∴(x﹣13)2=109.故选D.点睛:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.C【分析】题目中给出的条件主要是角度相等,观察图形,寻找其他等角,根据“有两个角对应相等的三角形相似”,找出图中所有相似三角形,对答案逐一判断.【详解】12∠=∠,12DAC DAC∴+=+∠∠∠∠,即BAC DAE∠=∠,23∠=∠,AFE DFC∠=∠,C E∴∠=∠,BAC DAE∠=∠,C E∠=∠,BAC DAE∴∆∆∽,∴AB BCAD DE=,A选项错误;BAC DAE∆∆∽,∴AC ABAE AD=,B选项错误;BAC DAE∆∆∽,∴AB ADAC AE=,C选项正确;BAC DAE∆∆∽,∴BC ACDE AE=,D选项错误;故选:C.【点睛】本题主要考查相似三角形的判定和性质,认真观察图形,找到角的相等关系,运用判定定理找出所有相似三角形是关键.6.B【分析】根据题意可得△ABD ∽△ACE ,根据相似三角形的性质可求得AE=6m ,再由DE=AE-AD 即可求得DE 的长.【详解】根据题意,BD ⊥AE ,CE ⊥AE ,∴△ABD ∽△ACE ,又AD=2m ,BD=3m ,CE=9m . ∴BD AD CE AE =,即329AE=, ∴AE=6m ,∴DE=AE-AD=4m .故选B.【点睛】本题考查了相似三角形的判定及性质,解决本题要把实际问题抽象到相似三角形中,利用相似三角形的对应边成比例解答即可.7.A【分析】根据点在平面直角坐标系中左右上下平移与坐标变化的关系解答,()2,0A 变为()13,A b ,说明线段右移一个单位,()0,1B 变为()1,2B a ,说明线段上移一个单位,由此判断,a b 的值即可.【详解】观察图形可知将线段向右平移一个单位,再向上平移一个单位得到线段11A B ,1a ,1b =,2a b ∴+=,故选:A .【点睛】本题主要考查平面直角坐标系中点的平移与坐标的变化之间的关系,结合图形,熟练掌握这种关系是解答关键.8.A【分析】仔细观察已知代数式与要求的代数式,可发现它们的二次项与一次项存在倍数关系,据此可用整体代入法解决问题.【详解】代数式225x x -+的值等于7,222x x ,2361x x ∴--23(2)1x x =--61=-5=.故选:A .【点睛】本题考查运用整体带入法求代数式的值,找到已知条件与要求的代数式之间的数量关系是关键.9.D【分析】设房价定为x 元,根据利润=房价的净利润×入住的房间数可得.【详解】设房价定为x 元,根据题意,得()18020501089010x x -⎛⎫--= ⎪⎝⎭ 故选:D .【点睛】此题考查了由实际问题抽象出一元二次方程,解题的关键是理解题意找到题目蕴含的相等关系.10.A【分析】根据三角形中位线定理可知EF =12DN ,求出DN 的最大值即可. 【详解】解:如图,连结DN .∵DE =EM ,FN =FM ,∴EF =12DN ,当点N 与点B 重合时,DN 的值最大即EF最大.在Rt△ABD中,∵∠A=90°,AD=3,AB∴BD,∴EF的最大值=12BD=3.故选A.点睛:本题考查了三角形中位线定理、勾股定理等知识,解题的关键是中位线定理的灵活应用,学会转化的思想,属于中考常考题型.11【分析】.【详解】=【点睛】本题考查了二次根式的化简与同类二次根式的意义,理解掌握该知识点是解答关键. 12.3.【分析】先将括号中两数化为最简二次根式,再根据乘法分配律分别除以. 【详解】原式=÷=3=.故答案为:3.【点睛】本题主要考查二次根式的化简与计算,熟练掌握化简方法,运用运算律解答是关键. 13.2或225. 【分析】本题可作PE CD ⊥,设当P 、Q 两点从出发开始到x 秒时,点P 和点Q 的距离是10cm ,再表示出AP ,DQ ,EQ 的长度,在Rt PEQ 中根据勾股定理列出方程式,解之即可,需注意有两个答案.【详解】设当P 、Q 两点从出发开始到x 秒时,点P 和点Q 的距离是10cm ,此时3AP xcm =,(162)DQ x cm =-,()1623EQ x x cm =--在Rt PEQ 中有:222(1623)810x x --+=,解得:12x =,2225x =. 答:当P 、Q 两点从出发开始到2秒或225秒时,点P 和点Q 的距离是10cm . 故答案为:2或225. 【点睛】 本题是综合了矩形与勾股定理等知识的动点问题,除了掌握知识点之外,动点问题一定要将整个运动过程思考清楚,在运动过程中寻找符合要求的节点和此时的数量关系.14.3.【分析】想求tan ACE ∠,需构造与之相关的直角三角形,可作EF AC ⊥于F ,设BE x =,则BD ,通过等腰直角三角形各边的数量关系用x 表示出EF ,CF 即可解答.【详解】作EF AC ⊥于F ,如图,ABC ∆是等腰三角形,90ACB ∠=︒,45A B ∠,AC BC ==, EF AC ⊥,DE AB ⊥,AEF ∴∆和BED ∆都是等腰直角三角形,设BE x =,则BD =,点D 为BC 的中点,BC AC ∴==,4AB x ∴==,43AE x x x ∴=-=,AF EF AE x ∴===,CF AC AF ∴=-=-=, 在Rt EFC ∆中,tan 3EF ECF CF ∠===. 故答案为3.【点睛】本题结合三角函数考查了等腰直角三角形的性质,关键还是根据等腰直角三角形的性质求出与三角函数相关的边长.15.34【分析】此题主要考查特殊角三角函数值的应用,代入值就可以求得结果.【详解】解:原式=(12)2+(2)2 1=14+12=34考点:特殊角三角函数值16.30A ∠=︒,AB =【分析】在直角三角形中根据勾股定理和三角函数关系解答即可.【详解】如图,在ABC ∆中,90C ∠=︒,BC ,3AC =,则AB ==tan BC A AC ∠== 30A ∴∠=︒.【点睛】本题考查的是根据勾股定理和三角函数的解直角三角形,熟练掌握三角函数与勾股定理是解答关键.17.1x 2=1c =【解析】试题分析:设另一根为x 1,由根与系数的关系得,两根和为4,求得x 1,,再根据两根积求得常数项c.试题解析:设另一根为x 1,由根与系数的关系得:12x 4∴=1x 2∴=∴(2c =∴1c =考点:根与系数的关系.18.40米【解析】【分析】过点A 作AE ⊥CD 于点E ,由题意可知:22,CAE ∠= 38.5CBD ∠=,ED =AB =16米,设大楼与塔之间的距离BD 的长为x 米,则AE =BD =x ,分别在Rt △BCD 中和Rt △ACE 中,用x 表示出CD 和CE ,利用CD −CE =DE ,得到有关x 的方程求得x 的值即可.【详解】解:过点A 作AE ⊥CD 于点E ,由题意可知:22,38.5CAE CBD ,∠=∠= ED =AB =16米设大楼与塔之间的距离BD 的长为x 米,则AE =BD =x (不设未知数x 也可以)∵在Rt △BCD 中,tan ,CD CBD BD∠= ∴ t an?38.50.8,CD BD x =⋅≈∵在Rt △ACE 中,tan ,CE CAE AE∠=∴ t an220.4,CE AE x =⋅≈∵CD −CE =DE ,∴0.8x −0.4x =16 ,∴x =40,即BD =40(米) ,CD =0.8×40=32(米),答:塔高CD 是32米,大楼与塔之间的距离BD 的长为40米.19.经过2秒或0.8秒时,QBC ∆与ABC ∆相似.【分析】观察图形可得,QBP ∆与ABC ∆已经有公共角B ,根据题意需要考虑B 的两条边对应成比例,此时会出现两种情况,BP BQ BA BC =和BP BQ BC BA=,可设经过t 秒时QBC ∆与ABC ∆相似,用时间t 分别表示出相关线段的长度,代入比例式解答即可.【详解】设经过t 秒时,QBC ∆与ABC ∆相似,则2AP t =,82BP t =-,4BQ t =,PBQ ABC ∠=∠,∴当BP BQ BA BC=时,BPQ BAC ∆∆∽,即824816t t -=,解得2()t s =; 当BP BQ BC BA=时,BPQ BCA ∆∆∽,即824168t t -=,解得0.8()t s =; 即经过2秒或0.8秒时,QBC ∆与ABC ∆相似.【点睛】本题是结合了相似三角形的判定的动点问题,在运动过程中寻找符合要求的节点,转化为判定三角形的相似是解答关键.20.(1)△AFB ∽△FEC (2)36cm【分析】(1)由四边形BCD 是矩形,可得∠AFE=∠D=90°,又由同角的余角相等,可得∠BAF=∠EFC ,即可证得:△AFB ∽△FEC ;(2)由Rt △FEC 中,tan ∠EFC=34,可得34CE CF =,则可设CE=3k ,则CF=4k ,由勾股定理得EF=DE=5k .继而求得BF 与BC ,则可求得k 的值,由矩形ABCD 的周长=2(AB+BC )求得结果.【详解】解:(1)△AFB ∽△FEC .证明:∵四边形ABCD 是矩形,∴∠B=∠C=∠D=90°,∴∠BAF+∠AFB=90°,由折叠的性质可得:∠AFE=∠D=90°,∴∠AFB+∠CFE=90°,∴∠BAF=∠CFE ,∴△AFB ∽△FEC ;(2)∵tan ∠EFC=34, ∴在Rt △EFC 中,设EC=3xcm ,FC=4xcm ,5(cm)EF x ∴==,由折叠的性质可得:DE=EF=5xcm ,∴AB=CD=DE+CE=8x (cm ),∵∠BAF=∠EFC ,3tan 4BF BAF AB ∴∠==, ∴BF=6x (cm ),10(cm)AF x ∴==,(cm)AE ∴==, 5AE =,∴x=1,∴AD=BC=AF=10x=10(cm ),AB=CD=8x=8(cm ),∴矩形ABCD 的周长为:10+10+8+8=36(cm ).21.(1)84(cm )2;(2) 78cm;(3) 756(cm )2【分析】(1)根据三角形的面积公式列式计算即可;(2)根据相似三角形的性质得到A′C′=3AC=42cm ,同理B′D′=3BD=36cm ,于是得到结论; (3)根据矩形和三角形的面积公式即可得到结论.【详解】解:(1)∵AC ⊥BD ,∴小风筝的面积S=12AC•BD=12×12×14=84(cm)2;(2)∵小风筝与大风筝形状完全相同,∴假设大风筝的四个顶点为A′,B′,C′,D′,∴△ABCD∽△A′B′C′D′,∵它们的对应边之比为1:3,∴A′C′=3AC=42cm,同理B′D′=3BD=36cm,∴至少需用42+36=78cm的材料;(3)从四个角裁剪下来废弃不用的彩色纸的面积=矩形的面积﹣大风筝的面积=42×36﹣9×84=756(cm)2.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质是解题的关键.22.(1)见解析;(2)DH的长度为2.【分析】(1)根据两个角对应相等即可证明△HCD∽△HDB;(2)根据DH∥AB,AC=3CD,对应线段成比例可得CH=1,再结合(1)△HCD∽△HDB,对应边成比例即可求出DH的长度.【详解】(1)证明:∵DH∥AB,∴∠A=∠HDC,∵∠CBD=∠A,∴∠HDC=∠CBD,又∠H=∠H,∴△HCD∽△HDB;(2)∵DH∥AB,∴CD CH AC BC=,∵AC=3CD,∴133CH =,∴CH=1,∴BH=BC+CH=3+1=4,由(1)知△HCD ∽△HDB , ∴DH CH BH DH=, ∴DH 2=4×1=4,∴DH=2(负值舍去).答:DH 的长度为2.【点睛】本题考查了相似三角形的判定与性质,平行线分线段成比例定理,解决本题的关键是掌握相似三角形的判定与性质.23.(1)证明见解析;(2 【分析】(1)先根据矩形的性质可得90B C D ∠=∠=∠=︒,再根据翻折的性质可得90AFE D ∠=∠=︒,然后根据角的和差、直角三角形的性质可得AFB FEC ∠=∠,最后根据相似三角形的判定即可得证;(2)设EC x =,先根据翻折的性质可得4AF AD ==,再根据勾股定理可得2BF =,从而可得2CF =,然后根据相似三角形的性质即可得.【详解】(1)∵四边形ABCD 是矩形,∴90B C D ∠=∠=∠=︒,由翻折的性质得:90AFE D ∠=∠=︒,∴90,90AFB EFC FEC EFC ∠+∠=︒∠+∠=︒,∴AFB FEC ∠=∠,在ABF 和FCE △中,B C AFB FEC ∠=∠⎧⎨∠=∠⎩, ∴ABF FCE ~;(2)设EC x =,由翻折的性质得:4AF AD ==,∴2BF ===,∵四边形ABCD 是矩形,4BC AD ∴==,∴2CF BC BF =-=,由(1)可知,ABF FCE ~, ∴CF ECAB BF =2x =,解得x =即EC =. 【点睛】本题考查了矩形的翻折问题、相似三角形的判定与性质、勾股定理等知识点,熟练掌握相似三角形的判定与性质是解题关键.24.(1)①当(1,1)P 或1(2,2)时,矩形OCPD 的面积为1;②不存在一点P ,能使矩形OCPD 的面积为32;理由见解析;(2)①29234S x x =-+,它是二次函数,若两个变量x ,y 的对应关系可以表示2(y ax bx c a =++,b ,c 是常数,0)a ≠的形式,则称y 是x 的二次函数;②当3(4P ,3)2时,S 有最小值. 【分析】(1)①可设(P x ,23)(0)x x -+>,则矩形OCPD 的面积可表示为(23)x x -+,令其等于1,解方程即可. ②令矩形OCPD 的面积表达式(23)x x -+等于32,解方程看是否有解即可. (2)①观察图形可知,阴影部分面积等于AOB 的面积减去矩形OCPD 的面积,代入数值计算整理为函数的一般形式即可. ②把第①问里的二次函数整理变形为顶点式,根据二次函数的性质求最值即可.【详解】(1)点P 在线段AB 上,∴设(P x ,23)(0)x x -+>,①由题意得,(23)1x x -+=,解得:11x =,212x =,21 231x ∴-+=或1232x -+=, 综上所述,当(1,1)P 或1(2,2)时,矩形OCPD 的面积为1; ②由题意得,3(23)2x x -+=, 整理得,24630x x -+=,△36480=-<,此方程无实数根,∴不存在一点P ,能使矩形OCPD 的面积为32; (2)①一次函数23y x =-+的图象交x 轴于点A ,交y 轴于点B ,3(2A ∴,0),(0,3)B , ()213932323224AOB OCPD S S S x x x x ∆∴=-=⨯⨯--+=-+矩形, 它是二次函数,类比得到一般的,若两个变量x ,y 的对应关系可以表示2(y ax bx c a =++,b ,c 是常数,0)a ≠的形式,则称y 是x 的二次函数; ②22939232()448S x x x =-+=-+, ∴当34x =时,S 有最小值, ∴当3(4P ,3)2时,S 有最小值.【点睛】本题结合平面直角坐标系中由一次函数形成的图形的面积问题考查了二次函数及其性质,理解题意,熟练掌握函数及其性质是解答关键.。

华师大版九年年级上册数学期中考试试卷及答案

华师大版九年年级上册数学期中考试试卷及答案

华师大版九年年级上册数学期中考试试卷及答案集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]河南沈丘外语中学2013年九年级(上)期中数学试卷(华师版)一.选择题(每小题3分,共27分,每小题都有四个选项,其中有且只有一个选项正确)1、下列计算正确的是()=B. 2=C. (26=D.==2有意义,则的取值范围是()A.3x> B. 3x< C. 3x≤ D. 3x≥3、方程x2=3x的解是()A.x=3 B. x=0 C. x1=3, x2=0 D. x1=-3, x2=04、方程232x x-=的两根之和与两根之积分别是()A. 12和 B. 12--和 C.1233-和- D.1233和-5、关于x的一元二次方方程220x x m-+=没有实数根,则的取值范围是()A. 1m>- B. 1m<- C. 1m> D.1m<6、下列各式中,属于最简二次根式的是( )A.x4 B.12+x C.23x D.5.07.某超市一月份的营业额为200万元,三月份时营业额增长到288万元, 如果平均每月增长率为x,则由题意列方程应为 ( )A、2002)1(x+=288 B、200x2=288C、200(1+2x)2=288D、200[1+(1+x)+ 2)1(x+]=2888如图1,AB∥CD,AD交BC于点O,OA:OD=1 :2,,则下列结论:(1)OCOBODOA=(2)CD =2 AB(3)OABOCDSS∆∆=2其中正确的结论是()A.(1)(2) B.(1)(3)C.(2)(3) D.(1)(2)(3)9.下列四条线段为成比例线段的是()ODCBAA 7,4,5,10====d c b aB 2,6,3,1====d c b aC 3,4,5,8====d c b aD 6,3,3,9====d c b a 二.填空题(每小题3分,共30分) 10. 若35=b a ,则__________=-bb a 11.已知a ,b ,c 在数轴上的位置如图:化简代数式cb ac b a a ++-++-22)(的值为12. 方程x x 3122=-的二次项系数是 ,一次项系数是 ,常数项是 13.某学习小组选一名身高为1.6m 的同学直立于旗杆影子的顶端处,该同学的影长为1.2m ,同一时刻旗杆影长为9m ,那么旗杆的高度是________m.14. 已知梯形ABCD 的面积是20平方厘米,高是5厘米,则此梯形中位线的长是 厘米.15.如图,O 是△ABC 的重心,AN ,CM 相交于点O ,那么△MON 与△AOC 的面积的比是_______________16. m 是关于x 的方程02=++m nx x 的根,且0≠m ,则n m +的值是__________ 17.已知1632+n 是整数,则n 的最小整数值是________________18.如图,△ABC 中,AB=8厘米,AC=16厘米,点P 从A 出发,以每秒2厘米的速度向B 运动,点Q 从C 同时出发,以每秒3厘米的速度向A 运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A 、P 、Q 为顶点 的三角形与△ABC 相似时,运动时间为_________________ 19. 如图,ABC △与A B C '''△是位似图形,且顶点都在格点上,则位似中心的坐标是 .ABC △与A B C '''△的相似比为 . 三、解答题(共63分) 20.(本题满分25分,每小题5分)(1)、2)2(-+ 631510⨯-)、(5+)(5-1)+222-x O A B C 1 2 3 4 5 6 7 8 9 10 112 1 2 34 5 6 789101(3)、62416425xx x -+ (4)解方程:2250x x +-=;(请用公式法解)(5)若3a =,求2(((3)4a a a a -+--+的值。

华师大版九年级上册数学期中考试试题附答案

华师大版九年级上册数学期中考试试题附答案

华师大版九年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案)1.下列计算中正确的是( )A =B 3=-C 4=D =2.方程2x x =的解是( )A .1x =B .0x =C .11x =-,20x =D .11x =,20x =3.如果两个相似三角形的相似比是1 那么这两个相似三角形的面积比是A .2:1B .1C .1:2D .1:4 4.用配方法解方程2420x x -+=,下列变形正确的是( )A .()222x -=B .()242x -=C .()220x -=D .()241x -= 5.一元二次方程4x 2+1=3x 的根的情况是( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根6.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x ,下面所列的方程中正确的是 A .560(1+x )2=315B .560(1-x )2=315C .560(1-2x )2=315D .560(1-x 2)=3157.如图,在直角坐标系中,OAB ∆和OCD ∆是位似图形,O 为位似中心,若A 点的坐标为()1,1,B 点的坐标为()2,1,C 点的坐标为()3,3,那么点D 的坐标是( )A .()4,2B .()6,3C .()8,4D .()8,3 8.对于任意实数x ,代数式2610x x -+的值是一个( )A .非负数B .正数C .负数D .整数9.如图,在ABCD 中,E 是BA 延长线上一点,CE 分别与AD ,BD 交于点G ,F .则下列结论:①EG AG GC GD =;②EF BF FC FD =;③FC BF GF FD=;④2CF GF EF =⋅.其中正确的是( )A .①②③④B .①②③C .①③④D .①② 10.如图,双曲线k y x=经过Rt BOC ∆斜边上的点A ,且满足12AO AB =,与BC 交于点D ,8BOD S ∆=,则k 的值为( )A .19B .1C .2D .8二、填空题11,则a 的取值范围为___.12.计算:(=______.13.若关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,则k 的取值范围________.14.如图,平行四边形ABCD 的对角线AC 、BD 交于点O ,E 是AD 的中点,若ABD ∆的周长为6,则DOE ∆的周长为______.15.如图,在△ABC 中,AB >AC ,D 、E 分别为边AB 、AC 上的一点,AC =3AD ,AB =3AE ,点F 为BC 边上一点,添加一个条件使△FDB 与△ADE 相似,则添加的一个条件是_________.三、解答题16.计算17.解方程:2x 2x 350+-=.18.先化简,再求值:2222a b ab b a aa ⎛⎫--÷- ⎪⎝⎭,其中2a =+2b = 19.如图,平行四边形ABCD 中,8BC =,3CD =,点E 在BA 的延长线上且1AE =,连结CE 交AD 于点F .(1)直接写出图中相似的三角形;(2)求DF 的长.20.关于x 的一元二次方程x 2﹣(2m ﹣3)x+m 2+1=0.(1)若m 是方程的一个实数根,求m 的值;(2)若m 为负数,判断方程根的情况.21.某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金﹣各种费用)为275万元?22.如图,DE 是△ABC 的中位线,延长DE 至F ,使EF =DE ,连接BF .(1)求证:四边形ABFD 是平行四边形;(2)求证:BF =DC .23.如图,已知ABC 中,//86DE BC AD AC BD AE ===,,,,求BD 的长.24.如图,在平面直角坐标系中,四边形ABCD 是平行四边形,6AD =,若OA ,OB 的长是关于x 的一元二次方程27120x x -+=的两个根,且OA OB >.(1)直接写出:OA =______,OB =______;(2)若点E 为x 轴正半轴上的点,且163AOE S ∆=; ①求经过D ,E 两点的直线解析式;②求证:AOE DAO ∆∆.(3)若点M 在平面直角坐标系内,则在直线AB 上是否存在点F ,使以A ,C ,F ,M 为顶点的四边形为菱形?若存在,直接写出F 点的坐标,若不存在,请说明理由.参考答案1.D【分析】直接利用二次根式混合运算法则分别判断得出答案.【详解】AB |3|3=-=,故此选项不合题意;C ,故此选项不合题意;D ==.故选D.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.2.D【解析】试题分析:∵20x x -=,∴x (x ﹣1)=0,∴x=0或x ﹣1=0,∴11x =,20x =.故选D . 考点:解一元二次方程-因式分解法.3.C【解析】如果两个相似三角形的相似比是1 那么这两个相似三角形的面积比是1∶2. 故选C.点睛:若两个三角形相似,那么这两个三角形的面积比等于相似比的平方.4.A【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】2420x x -+=移项,得:242x x -=-,配方:24424x x -+=-+,即()222x -=.故选A.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.A【分析】先求出△的值,再判断出其符号即可.【详解】解:原方程可化为:4x 2﹣3x+1=0,∵△=32﹣4×4×1=-7<0,∴方程没有实数根.故选A .6.B【详解】试题分析:根据题意,设设每次降价的百分率为x ,可列方程为560(1-x )²=315. 故选B7.B【分析】利用位似是特殊的相似,若两个图形△ABC 和△A′B′C′以原点为位似中心,相似比是k ,△ABC 上一点的坐标是(x ,y ),则在△A′B′C′中,它的对应点的坐标是(kx ,ky )或(-kx ,ky ),进而求出即可.【详解】∵A 点的坐标为()1,1,C 点的坐标为()3,3,∴位似比3k =,∵B 点的坐标为()2,1,∴点D 的坐标是:()23,13⨯⨯,即()6,3.故选B.【点睛】此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.8.B【分析】先进行配方得到x 2-6x+10=x 2-6x+9+1=(x-3)2+1,由于(x-3)2≥0,则有(x-3)2+1>0.【详解】22610691x x x x -+=-++()231x =-+,∵()230x -≥,∴()2310x -+>,即代数式2610x x -+的值是一个正数.故选B.【点睛】本题考查了配方法的应用:通过配方法把一个代数式变形为一个完全平方式,然后利用其非负数的性质解决问题.9.A【分析】根据平行四边形的性质和平行线分线段成比例定理即可解决问题.【详解】∵四边形ABCD 是平行四边形,∴//BE CD ,//AD BC , ∴EG AG GC GD=,故①正确, ∴EF BF FC FD=,故②正确, FC BF GG FD=,故③正确, ∵CF DF GF EF BF CF ==, ∴2CF EF GF =⋅,故④正确,故选A.【点睛】本题考查相平行四边形的性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识.10.C【分析】作AE ⊥x 轴,易得S △AOE =S △DOC ,从而求出S 四边形BAEC =S △BOD =8,利用相似三角形的面积比等于相似比的平方,求出S △AOE =1,即可求出k 的值.【详解】作AE x ⊥轴,则AE BC ∥,∴AOE BOC ∆∆,∵AOE DOC S S ∆∆=,∴8BOD BAEC S S ∆==四边形,∵AOE BOC ∆∆, ∴221139AOE BOC S AO S BO ∆∆⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ∴1AOE S ∆=,∴2k =.故选C.【点睛】本题考查了反比例函数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.11.a≤0.【解析】试题分析:﹣a ,∴a≤0.考点:二次根式的性质与化简.12.-【分析】根据二次根式的乘法法则求出即可.【详解】(=-=-故答案为:-.【点睛】本题考查了二次根式的乘法法则,能正确运用法则进行计算是解此题的关键,注意:结果化成最简根式.13.1k <且0k ≠【分析】分析:关于x 的一元二次方程2690kx x -+=有两个不相等的实数根所以k≠0且△=b²-4ac>0,建立关于k 的不等式组,解得k 的取值范围即可. 详解:∵关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,∴k≠0且△=b²-4ac=36-36k>0,解得k<1且k≠0.故答案为k<1且k≠0.点睛:本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.总结:一元二次方程根的情况与判别式△的关系:(1) △>0⇔方程有两个不相等的实数根;(2) △=0⇔方程有两个相等的实数根;(3) △<0⇔方程没有实数根.【详解】请在此输入详解!14.3【分析】根据平行四边形的对边相等和对角线互相平分可得,BC=AD ,DC=AB ,AO=CO ,E 点是AD 的中点,可得OE 是△ACD 的中位线,可得OE=12CD .从而得到结果.【详解】∵四边形ABCD 是平行四边形,∴AO CO =,∴O 是AC 中点,又∵E 是AD 中点,∴OE 是ACD ∆的中位线, ∴12OE CD =, 即DOE ∆的周长12ACD =∆的周长, ∴DOE ∆的周长12DAB =∆的周长. ∴DOE ∆的周长1632=⨯=. 故答案为:3.【点睛】本题主要考查平行四边形的性质及三角形中位线的性质的应用,判断出△DOE 的周长=12△ACD 的周长是解答本题的关键.15.∠DFB=∠ADE【分析】根据题意及图易得△ADE ∽△ACB ,进而由相似三角形的性质可得∠C=∠ADE ,∠B=∠AED ,欲证△FDB 与△ADE 相似则需添加角相等即可.【详解】 解: AC =3AD ,AB =3AE ,∠A=∠A , ∴ADE ACB ∽,∴C ADE B AED ∠=∠∠=∠,, 又DFB ADE ∠=∠,∴FDB DAE ∽.故答案为DFB ADE ∠=∠.【点睛】本题主要考查相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.16.原式=3【解析】试题分析:先进行二次根式的乘除运算,再合并同类二次根式即可.==317.x 1=-7,x 2=5【分析】根据十字相乘法进行求解,即可得到答案.【详解】根据十字相乘法将2x 2x 350+-=变形得到(x 7)(x-5)0+=,解得x 1=-7,x 2=5.【点睛】本题考查解一元二次方程,解题的关键是掌握十字相乘法.18.3- 【分析】先将所求式子中括号内的进行通分,再把除法转化为乘法进行约分,再将a ,b 的值代入化简的结果中进行计算即可求解.【详解】2222a b ab b a a a ⎛⎫--÷- ⎪⎝⎭, ()()()222a ab b a b a b a a--++-=÷ ()()()2a b a b a aa b +-=⋅-- a b a b +=--.当2a =2b =原式==【点睛】本题考查了分式的化简求值,解题的关键是准确进行分式的化简,计算结果注意要分母有理化.19.(1)见解析;(2)6【分析】(1)利用平行四边形的性质以及相似三角形的判定即可解决问题.(2)由△AEF ∽△DCF ,可得AE AF DC DF =,由此构建方程即可解决问题. 【详解】(1)∵四边形ABCD 是平行四边形,∴AB ∥DC ,AD ∥BC ,即AE ∥DC ,AF ∥BC ,∴EAFEBC ∆∆,EAF CDF ∆∆, ∴CDF EBC ∆∆.所以,图中相似三角形有EAF EBC ∆∆,EAF CDF ∆∆,CDF EBC ∆∆.(2)∵四边形ABCD 是平行四边形,∴//AB CD ,8AD BC ==,∴AEFDCF ∆∆, ∴AE AF DC DF=, ∵3CD =,1AE =,183DF DF-=, 解得6DF =.【点睛】本题考查相似三角形的判定和性质,平行四边形的性质等知识,解题的关键是正确寻找相似三角形解决问题.20.(1) 13m =-; (2)方程有两个不相等的实根. 【详解】分析:(1)由方程根的定义,代入可得到关于m 的方程,则可求得m 的值;(2)计算方程根的判别式,判断判别式的符号即可.详解:(1)∵m 是方程的一个实数根,∴m 2-(2m-3)m+m 2+1=0,∴m =−13; (2)△=b 2-4ac=-12m+5,∵m <0,∴-12m >0.∴△=-12m+5>0.∴此方程有两个不相等的实数根.点睛:考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.21.(1)24;(2)10.5万元或15万元【详解】解:(1)∵()130000100006-÷500=∴能租出30-6=24间(2)设每间商铺的年租金增加x 万元,则30103010.52750.50.50.5x x x x ⨯⨯⨯(-)(+)-(-)-= 221150x x -+=∴5x =或0.5x =∴每间商铺的年租金定为10.5万元或15万元22.(1)见解析;(2)见解析【分析】(1)由三角形中位线定理可得DE ∥AB ,AB=2DE ,由EF=DE ,可得DF=AB ,即可证四边形ABFD 是平行四边形;(2)由平行四边形的性质可得AD=BF ,可得BF=CD .【详解】(1)∵DE 是△ABC 的中位线,∴DE∥AB,AB=2DE,AD=CD,∵EF=DE,∴DF=2DE,∴AB=DF,且AB∥DF,∴四边形ABFD是平行四边形;(2)∵四边形ABFD是平行四边形,∴AD=BF,且AD=CD,∴BF=DC.【点睛】本题主要考查了平行四边形的判定和性质以及三角形中位线定理,关键是掌握一组对边平行且相等的四边形是平行四边形.23.4.【解析】试题分析:由DE∥BC可得AD:AB=AE:AC,结合BD=AE,AD=8,AC=6,可得8:(8+BD)=BD:6,解此方程可得BD的长.试题解析:∵DE∥BC,∴AD:AB=AE:AC,又∵BD=AE,AD=8,AC=6,∴AB=8+BD,∴8:(8+BD)=BD:6即BD2+8BD-48=0.解得:BD=4或BD=-12(不合题意,舍去).24.(1)4,3;(2)①61655y x=-;,②证明见解析;(3)()13,0F-;()23,8F;37522,147F⎛⎫--⎪⎝⎭;44244, 2525F ⎛⎫-⎪⎝⎭.【分析】(1)解一元二次方程求出OA,OB的长度即可;(2)先根据三角形的面积求出点E的坐标,并根据平行四边形的对边相等的性质求出点D的坐标,然后利用待定系数法求解直线的解析式;分别求出两三角形夹直角的两对应边的比,如果相等,则两三角形相似,否则不相似;(3)根据菱形的性质,分AC 与AF 是邻边并且点F 在射线AB 上与射线BA 上两种情况,以及AC 与AF 分别是对角线的情况分别进行求解计算.【详解】(1)方程27120x x -+=,分解因式得:()()340x x --=,可得:30x -=,40x -=,解得:13x =,24x =,∵OA OB >,∴4OA =,3OB =;故答案为4,3;(2)①根据题意,设(),0E x ,则11164223AOE S OA x x ∆=⨯⨯=⨯=, 解得:83x =, ∴8,03E ⎛⎫⎪⎝⎭,∵四边形ABCD 是平行四边形,∴点D 的坐标是()6,4,设经过D 、E 两点的直线的解析式为y kx b =+, 则80364k b k b ⎧+=⎪⎨⎪+=⎩, 解得:65165k b ⎧=⎪⎪⎨⎪=-⎪⎩,∴解析式为61655y x =-;②如图,在AOE ∆与DAO ∆中,43823OA OE ==,6342AD OA ==, ∴OA AD OE OA=, 又∵90AOE OAD ∠=∠=︒,∴AOE DAO ∆∆;(3)根据计算的数据,3OB OC ==,∵AO BC ⊥,∴AO 平分BAC ∠,分四种情况考虑:①AC 、AF 是邻边,点F 在射线AB 上时,5AF AC ==,∴点F 与B 重合,即()3,0F -;②AC 、AF 是邻边,点F 在射线BA 上时,M 应在直线AD 上,且FC 垂直平分AM , 此时点F 坐标为()3,8;③AC 是对角线时,做AC 垂直平分线L ,AC 解析式为443y x =-+,直线L 过3,22⎛⎫ ⎪⎝⎭,且k 值为34(平面内互相垂直的两条直线k 值乘积为-1), ∴L 解析式为3748y x =+, 联立直线L 与直线AB ,得:3748443y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩, 解得:7514x =-,227y =-,∴7522,147F ⎛⎫-- ⎪⎝⎭; ④AF 是对角线时,过C 作AB 垂线,垂足为N ,∵111222ABC S BC OA AB CN ∆=⋅=⋅=, ∴245BC OA CN AB ⋅==, 在BCN ∆中,6BC =,245CN =,根据勾股定理得185BN ==,即187555AN AB BN =-=-=, 做A 关于N 的对称点,记为F ,1425AF AN ==, 过F 做y 轴垂线,垂足为G ,14342sin 5525FG AF BAO =∠=⨯=, ∴4244,2525F ⎛⎫- ⎪⎝⎭, 综上所述,满足条件的点有四个:()13,0F -;()23,8F ;37522,147F ⎛⎫-- ⎪⎝⎭;44244,2525F ⎛⎫- ⎪⎝⎭. 【点睛】此题考查了解一元二次方程,相似三角形的性质与判定,待定系数法求函数解析式,综合性较强,(3)求点F 要根据AC 与AF 是邻边与对角线的情况进行讨论,不要漏解.。

华师大版九年级上册数学期中考试试卷及答案

华师大版九年级上册数学期中考试试卷及答案

华师大版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.二次根式:( ) A .①和② B .②和③ C .①和④ D .③和④ 2.一元二次方程2x 2﹣x ﹣3=0的二次项系数、一次项系数、常数项分别是( ) A .2,1,3 B .2,1,﹣3 C .2,﹣1,3 D .2,﹣1,﹣3 3.下列计算正确的是( )A .√3⋅√2=√6B .√2+√3=√6C .√(−2)2=−2D .√2+√2=24.将方程x 2﹣6x +2=0配方后,原方程变形为( )A .(x+3)2=﹣2B .(x ﹣3)2=﹣2C .(x ﹣3)2=7D .(x +3)2=7 5.如图,四边形ABCD 和A ′B ′C ′D ′是以点O 为位似中心的位似图形,若OA :OA ′=2:3,则四边形ABCD 与四边形A ′B ′C ′D ′的面积比为( )A .4:9B .2:5C .2:3D 6.如图,已知12,∠=∠则添加下列一个条件后,仍无法判定ABC ADE ∆∆的是( )A .AB BC AD DE = B .AB AC AD AE = C .B ADE ∠=∠ D .C E ∠=∠ 7.如图,DE 是ABC 的中位线,已知ABC 的面积为12,则四边形BCED 的面积为A.3 B.6 C.9 D.108.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=5709.如图,已知AB、CD、EF互相平行,且AB=1,CD=4,那么EF的长是()A.13B.23C.34D.4510.如图,在矩形AOBC中,点A的坐标为(-2,1),点C的纵坐标是4,则B,C两点的坐标分别是()A .(32,3),(23-,4) B .(74,72),(23-,4) C .(32,3),(12-,4) D .(74,72),(12-,4)二、填空题11x 的取值范围是_____. 12.若53a b =,则a b a +=_____. 13.已知等腰三角形的两边长是方程x 2﹣9x+18=0的两个根,则该等腰三角形的周长为_____. 14.如图,在▱ABCD 中,E 为AD 的三等分点,AE=23AD ,连结BE ,交AC 于点F ,AC=15,则AF 为_____.15.将三角形纸片(ABC )按如图所示的方式折叠,使点C 落在边AB 上,记为点C ',折痕为EF ,已知4AB AC ==,5BC =,若以点B ,F ,C '为顶点的三角形与ABC 相似,那么CF 的长是________.16.已知Rt △ABC 中,斜边BC 上的高AD=4,cosB=45,则AC=____.三、解答题17.计算:(1-(2)-(3)21)+--18.解方程:(1)(2x -1)2-25=0 (2) (x +3)2−3x(x +3)=0 (3)x 2−3x +1=0 19.已知关于x 的方程x 2﹣(2k+1)x+4(k ﹣12)=0 (1)求证:无论k 取何值,这个方程总有实数根;(2)若等腰三角形ABC 的一边长a=4,另两边b 、c 恰好是这个方程的两个根,求△ABC 的周长.20.某商业街有店面房共100间,2015年平均每间店面房的年租金为1万元,由于物价上涨,到2017年平均每间店面房的年租金上涨到了1.21万元,据预测,当每间的年租金定为12100元时,可全部租出;若每间的年租金每增加0.1万元,就要少租出10间,该商业街管委会要为租出的商铺每间每年交各种费用0.1万元,未租出的商铺每间每年交各种费用0.05万元.(1)求2015年至2017年平均每间店面房年租金的平均增长率;(2)当每间店面房的年租金上涨多少万元时,该商业街的年收益(收益=租金﹣各种费用)为103.8万元?21.如图,在Rt △ABC 中,∠C =90˚,tanA 34=,BC =6,求AC 的长和sinA 的值.22.在△ABC 中,AB =8,BC =6,∠B 为锐角且cosB =12. (1)求△ABC 的面积.(2)求tanC .23.已知:如图,在平面直角坐标系中,ABC 是直角三角形,90ACB ︒∠=,点A 、C 的横坐标是一元二次方程2230x x +-=的两根(AO OC >),直线AB 与y 轴交于D ,D 点的坐标为90,4⎛⎫ ⎪⎝⎭.(1)求直线AB 的函数表达式;(2)在x 轴上找一点E ,连接EB ,使得以点A 、E 、B 为顶点的三角形与ABC 相似(不包括全等),并求点E 的坐标;(3)在(2)的条件下,点P 、Q 分别是AB 和AE 上的动点,连接PQ ,点P 、Q 分别从A 、E 同时出发,以每秒1个单位长度的速度运动,当点P 到达点B 时,两点停止运动,设运动时间为t 秒,请直接写出几秒时以点A 、P 、Q 为顶点的三角形与AEB △相似. 24.(1)观察发现:如图1,在Rt ABC △中,90B ︒∠=,点D 在边AB 上,过D 作DE BC ∥交AC 于E ,5AB =,3AD =,4AE =.填空:①ABC 与ADE 是否相似(直接回答)________;②AC =________;DE =________;△与AEC是否相(2)拓展探究:将ADE绕顶点A旋转到图2所示的位置,猜想ADB似?若不相似,说明理由;若相似,请证明;(3)迁移应用:将ADE绕顶点A旋转到点B、D、E在同一条直线上时,直接写出线段BE的长.参考答案1.C【解析】把各二次根式化简,然后根据能合并的是同类二次根式进行判断即可.【详解】解:=;;;;①和④.故选:C.【点睛】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.2.D【解析】根据一元二次方程的一般式:20ax bx c ++=,a 是二次项系数,b 是一次项系数,c 是常数项.故选D.3.A【解析】【分析】根据二次根式的乘法和加减法则及√a 2=|a|判断即可.【详解】A.因为√3⋅√2=√6,故本选项正确;B.因为√2+√3=√6,不是同类二次根式,不能合并,故本选项错误;C.因为√(−2)2=2≠−2,故本选项错误;D.因为√2+√2=2√2≠2,故本选项错误;故选:A .【点睛】本题考查了二次根式的性质,二次根式的乘法,二次根式的加减等知识点,解题的关键是理解二次根式的有关性质和法则.4.C【分析】方程常数项移到右边,两边加上9变形后,即可得到结果.【详解】方程x 2−6x+2=0,变形得:x 2−6x=−2,配方得:x 2−6x+9=7,即(x−3)2=7,故选C.【点睛】本题考查解一元二次方程-配方法,解题的关键是掌握解一元二次方程-配方法.5.A【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【详解】解:∵四边形ABCD 和A′B′C′D′是以点O 为位似中心的位似图形,OA :OA′=2:3,∴DA :D′A′=OA :OA′=2:3,∴四边形ABCD 与四边形A′B′C′D′的面积比为:4:9,故选:A .【点睛】本题是对相似图形的考查,熟练掌握多边形相似的性质是解决本题的关键.6.A【分析】先根据∠1=∠2得出∠BAC=∠DAE ,再由相似三角形的判定定理对各选项进行逐一判定即可.【详解】解:∵∠1=∠2,∴∠BAC=∠DAE . A. AB BC AD DE=,∠B 与∠D 的大小无法判定,∴无法判定△ABC ∽△ADE ,故本选项符合题意; B.AB AC AD AE =,∴△ABC ∽△ADE ,故本选项不符合题意; C. B ADE ∠=∠∴△ABC ∽△ADE ,故本选项不符合题意;D. C E ∠=∠∴△ABC ∽△ADE ,故本选项不符合题意;故选:A【点睛】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键. 7.C【分析】根据中位线得到面积的比,即可求出答案.【详解】∵DE 是ABC 的中位线, ∴12DE BC =,DE ∥BC, ∴△ADE ∽△ABC , ∴211()24S ADE S ABC ==∆,∵ABC 的面积为12,∴△ADE 的面积是3,∴四边形BCED 的面积为9,故选:C.【点睛】此题考查三角形的中位线的性质,相似三角形的性质.8.A【详解】六块矩形空地正好能拼成一个矩形,设道路的宽为xm ,根据草坪的面积是570m 2,即可列出方程:(32−2x )(20−x )=570,故选A.9.D【分析】易证明△DEF ∽△DAB ,△BEF ∽△BCD,EF BF CD BD =,从而可得+EF EF AB CD =+DF BF DB BD=1,然后把AB =1,CD =3代入即可求出EF 的值.【详解】∵AB ∥CD ∥EF ,∴∠A =∠FED ,∠C =∠FEB ,在△DAB 和△DEF 中,∵==A FED ADB EDF ∠∠⎧⎨∠∠⎩, ∴△DAB ∽△DEF ,, 同理可得△BEF ∽△BCD ,且EF BF CD BD =, ∴+EF EF AB CD =+DF BF DB BD=1, 又∵AB =1,CD =4,∴14EF EF +=1, ∴EF =45, 故答案选D.【点睛】 本题主要考查了相似三角形的判定与性质,发现+DF BF DB BD=1是解决问题的关键. 10.C【分析】如过点A 、B 作x 轴的垂线垂足分别为F 、M .过点C 作y 轴的垂线交FA 、根据△AOF ∽△CAE ,△AOF ≌△BCN ,△ACE ≌△BOM 解决问题.【详解】解:如图过点A 、B 作x 轴的垂线垂足分别为F 、M .过点C 作y 轴的垂线交FA 、∵点A 坐标(-2,1),点C 纵坐标为4,∴AF=1,FO=2,AE=3,∵∠EAC+∠OAF=90°,∠OAF+∠AOF=90°,∴∠EAC=∠AOF ,∵∠E=∠AFO=90°,∴△AEC ∽△OFA ,EC AE AF OF∴=, 3EC ,2∴= ∴点C 坐标1,42⎛⎫- ⎪⎝⎭, ∵△AOF ≌△BCN ,△AEC ≌△BMO ,∴CN=2,BN=1,BM=MN-BN=3,BM=AE=3,3OM EC 2==,∴点B坐标3,32⎛⎫ ⎪⎝⎭,故选C.【点睛】本题考查矩形的性质、坐标与图形的性质,添加辅助线构造全等三角形或相似三角形是解题的关键,属于中考常考题型.11.x≥﹣1且x≠1【分析】根据被开方数是非负数且分母不等于零,可得答案.【详解】由题意,得x+1≥0且x﹣1≠0,解得x≥﹣1且x≠1,故答案为x≥﹣1且x≠1.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数且分母不等于零得出不等式是解题关键.12.8 3【分析】由53ab=得出5a3b=,然后代入求值.【详解】解:∵53 ab=∴5 a3b =∴5833b ba bb b++==故答案为8 3【点睛】本题考查了在给定条件下求分式的值,一般难以直接代入求值,将已知条件或所求分式适当变形,然后巧妙求解. 13.15. 【分析】解方程,分类讨论腰长,即可求解. 【详解】解:x 2﹣9x+18=0得x=3或6,分类讨论:当腰长为3时,三边为3、3、6此时不构成三角形,故舍, 当腰长为6时,三边为3、6、6,此时周长为15. 【点睛】本题考查了解一元二次方程和构成三角形的条件,属于简单题,分类讨论是解题关键. 14.6 【解析】 【分析】根据平行四边形对边相等的性质可得AD=BC ,然后求出AE=23AD=23BC ,再根据平行线分线段成比例定理求出AF 、FC 的比,然后求解. 【详解】解:在▱ABCD 中,AD =BC ,AD ∥BC ,∵E 为AD 的三等分点, ∵AE =23AD =23BC ,∵AD ∥BC , ∴AF FC =AE BC =23, ∵AC =15, ∴AF =22+3×15=6. 故答案为6. 【点睛】本题考查了平行线分线段成比例定理,平行四边形的对边平行且相等的性质,熟记定理并求出AF 、FC 的比是解题的关键.15.209或52【分析】分两种情况FC BF '=时,FC BC ''=时,根据等腰三角形的性质求线段CF 的长. 【详解】由折叠得:FC FC '=, ∵4AB AC ==, ∴△ABC 是等腰三角形,∵以点B ,F ,C '为顶点的三角形与ABC 相似, ∴△BFC '是等腰三角形, 当FC BF '=时,即5FC FC ''=-得52FC '=, ∴CF=52FC '=;当FC BC ''=时, ∵BFC '∽△BCA ,∴BF C F BC AC '=,即554C F C F''-=, 得CF=C F '=209, 故答案为:209或52. 【点睛】此题考查相似三角形的性质,等腰三角形的性质,注意分类讨论的方法. 16.5 【分析】根据三角形的内角和定理求出∠B=∠CAD ,推出cos ∠CAD=45=ADAC,把AD 的值代入求出即可. 【详解】 解:如图:∵AD 是△ABC 的高,∠BAC=90°, ∴∠ADB=∠ADC=∠BAC=90°,∴∠B+∠BAD=90°,∠BAD+∠DAC=90°, ∴∠B=∠CAD ,∵cosB=45,AD=4, ∴cosB=cos ∠CAD=45=ADAC,即445AC =, ∴AC=5, 故选:A . 【点睛】本题考查了三角形的内角和定理和解直角三角形,解题的关键是推出cosB=cos ∠CAD ,题目比较好.17.(1)0;(2)16;(3)4. 【分析】(1)先同时化简二次根式及乘法计算,再合并同类二次根式; (2)先化简二次根式并合并,再计算除法即可;(3)同时运算平方差公式及完全平方公式计算,再合并同类项. 【详解】解:(1)原式0=-=-=.(2)原式16=+-==;(3)原式21(5154=---=-+=. 【点睛】此题考查二次根式的混合运算,正确化简二次根式,掌握正确的运算顺序是解题的关键.18.(1)x 1=3,x 2=−2;(2)x 1=−3,x 2=32;(3)x 1=3+√52,x 2=3−√52.【解析】【分析】(1)分解因式得出(2x﹣1+5)(2x﹣1﹣5)=0,推出方程2x﹣1+5=0,2x﹣1﹣5=0,求出方程的解即可;(2)分解因式得出(x+3)(x+3﹣3x)=0,推出方程x+3=0,x+3﹣3x =0,求出方程的解即可;(3)求出b2﹣4ac的值,代入x=−b±√b2−4ac2a求出即可.【详解】(1)分解因式得:(2x﹣1+5)(2x﹣1﹣5)=0,2x﹣1+5=0,2x﹣1﹣5=0,解得:x1=3,x2=﹣2.(2)分解因式得:(x+3)(x+3﹣3x)=0,∴x+3=0,x+3﹣3x =0,解得:x1=﹣3,x2=32.(3)b2﹣4ac=32﹣4×1×1=5,∴x=3±√52,即x1=3+√52,x2=3−√52.【点睛】本题考查了对解一元二次方程,能正确地选择适当的方法解方程是解答此题的关键.19.(1)证明见解析;(2)10.【详解】试题分析:(1)先把方程化为一般式:x2﹣(2k+1)x+4k﹣2=0,要证明无论k取任何实数,方程总有两实数根,即要证明△≥0;(2)先利用因式分解法求出两根:x1=2,x2=2k﹣1.先分类讨论:若a=4为底边;若a=4为腰,分别确定b,c的值,求出三角形的周长.试题解析:(1)证明:方程化为一般形式为:x2﹣(2k+1)x+4k﹣2=0,∵△=(2k+1)2﹣4(4k﹣2)=(2k﹣3)2,而(2k﹣3)2≥0,∴△≥0,所以无论k取任何实数,方程总有两个实数根;(2)解:x2﹣(2k+1)x+4k﹣2=0,整理得(x﹣2)[x﹣(2k﹣1)]=0,∴x1=2,x2=2k﹣1,当a=4为等腰△ABC的底边,则有b=c,因为b、c恰是这个方程的两根,则2=2k﹣1,解得k=32,则三角形的三边长分别为:2,2,4,∵2+2=4,这不满足三角形三边的关系,舍去;当a=4为等腰△ABC的腰,因为b、c恰是这个方程的两根,所以只能2k﹣1=4,则三角形三边长分别为:2,4,4,此时三角形的周长为2+4+4=10.所以△ABC的周长为10.20.(1)10%;(2)当上涨0.2万元.【解析】【分析】(1)设2015年至2017年平均每间店面房年租金的平均增长率为x,根据2015年及2017年平均每间店面房年租金,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设每间店面房的年租金上涨y万元,则可租出(100﹣100y)间店面房,根据收益=租金﹣各种费用,即可得出关于y的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)设2015年至2017年平均每间店面房年租金的平均增长率为x,根据题意得:1(1+x)2=1.21,解得:x1=0.1=10%,x2=﹣2.1(舍去).答:2015年至2017年平均每间店面房年租金的平均增长率为10%.(2)设每间店面房的年租金上涨y万元,则可租出(100﹣100y)间店面房,根据题意得:(1.21+y)(100﹣100y)﹣0.1(100﹣100y)﹣0.05×100y=103.8,化简得:500y2+80y﹣36=0,解得:y1=0.2,y2=﹣0.36(舍去).答:当每间店面房的年租金上涨0.2万元时,该商业街的年收益为103.8万元.【点睛】考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.AC=8,sinA3 5【分析】 由tanA =34和BC =6可以求得AC 的值,再由勾股定理求得AB 的值后即可得到sinA 的值. 【详解】解:∵△ABC 中,tanA 34=,BC =6,∴34BC AC =,∴AC =8,∴AB ===10,∴sinA 35BC AB == 【点睛】本题考查用勾股定理解直角三角形,熟练掌握正弦和正切的定义是解题关键.22.(1)(2) 【分析】(1)如图,过点A 作AH ⊥BC 于H .解直角三角形求出AH 即可解决问题. (2)解直角三角形求出AH ,CH 即可解决问题. 【详解】(1)如图,过点A 作AH ⊥BC 于H .∵cosB=12, ∴∠B=60°,∴BH=AB•cosB=812⨯=4,AH=•8AB sinB ==,∴S △ABC=12•BC•AH=12×6× (2)在Rt △ACH 中,∵∠AHC=90°,AH=CH=BC ﹣BH=7﹣4=2,∴tanC AH CH ===. 【点睛】本题考查了解直角三角形,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题. 23.(1)3944y x =+;(2)13,04E ⎛⎫⎪⎝⎭;(3)259t =或12536.【分析】(1)解方程得到点A 、C 的坐标,根据点D 的坐标设直线AB 解析式为94y kx =+, 将点A 坐标代入即可得到直线AB 的解析式;(2)过B 作BE AB ⊥交x 轴于E ,求出点B 的坐标,根据Rt Rt ABC AEB ∽得到对应线段成比例,由此求出AE ,即可得到点E 的坐标; (3)由题意得到AP t =,254AQ t =-,分两种情况:APQ ABE ∽,APQ AEB ∽,列比例式即可求出答案. 【详解】解:(1)2230x x +-=, (x+3)(x-1)=0, ∴13x =-,21x =,∵点A 、C 的横坐标是一元二次方程2230x x +-=的两根, ∴点A 、C 的横坐标分别为-3,1,即点(3,0)A -,点(1,0)C , 设直线AB 解析式为94y kx =+,且过点A , ∴9034k =-+, ∴34k =,∴直线AB 解析式:3944y x =+; (2)如图:过B 作BE AB ⊥交x 轴于E ,当1x =时,则39344y =+=,∴点()1,3B ∴4AC =,3BC =, ∴5AB =,∵Rt Rt ABC AEB ∽, ∴AB ACAE AB =, ∴545AE =, ∴254AE =, ∴2513344OE =-=, ∴点13,04E ⎛⎫⎪⎝⎭; (3)由题意可得:AP t =,254AQ t =-如图: 若APQ ABE ∽,∴AP AQAB AE=, ∴2542554t t-=,∴259t=;如图:若APQ AEB∽,∴AQ AQ AE AB=,∴2542554tt-=,∴12536t=,综上所述:259t=或12536时以点A、P、Q为顶点的三角形与AEB△相似.【点睛】此题考查解一元二次方程,待定系数法求函数解析式,三角形相似的性质定理,相似三角形与动点问题.24.(1)①相似;② 203(2)ADB AEC △∽△,证明见解析;(3)44 【分析】(1)①根据DE BC ∥即可得到相似的结论;②根据相似的性质列比例线段即可得到答案;(2)相似,根据两组边成比例夹角相等即可证明;(3)分别画出图形,根据勾股定理求出BD ,即可得到答案.【详解】解:(1)①∵DE BC ∥,∴ABC 与ADE 相似,故答案为:相似;②∵90B ︒∠=, DE BC ∥,∴∠ADE=90°,∵3AD =,4AE =,∴DE =∵ADE ∽ABC , ∴ADAEDEAB AC BC ==,∵5AB =,3AD =,4AE =,∴AE=203,故答案为:203(2)ADB AEC △∽△,理由如下:由旋转变换的性质可知,BAD CAE ∠=∠,由(1)得,ADAEAB AC =,又BAD CAE ∠=∠,∴ADB AEC △∽△;(3)如图2,在Rt ADB 中,4BD ==,∵点B、D、E在同一条直线上,∴4=+=+BE BD DE=-=-如图3,4BE BD DE线段BE的长为4+4综上所述,将ADE绕顶点A旋转到点B、D、E在同一条直线上时,线段BE的长为4+4【点睛】此题考查三角形相似的判定定理及性质定理,勾股定理,图形旋转的性质.。

华师大版九年级上册数学期中考试试卷含答案

华师大版九年级上册数学期中考试试卷含答案

华师大版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列式子是最简二次根式的是( )A BC D2.已知关于x 的一元二次方程2230x kx -+=有两个相等的实根,则k 的值为( )A .±B .C .2或3 D3.已知∠A 是锐角,且满足3tanA 0,则∠A 的大小为( )A .30°B .45°C .60°D .无法确定 4.如图,太阳光线与水平线成70°角,窗子高AB =2米,要在窗子外面上方0.2米的点D 处安装水平遮阳板DC ,使光线不能直接射入室内,则遮阳板DC 的长度至少是( )A .2tan 70︒米B .2sin70°米C . 2.2tan 70︒米D .2.2cos70°米 5.若关于x 的一元二次方程260x x k -+=通过配方法可以化成2()(0)x m n n +=的形式,则k 的值不可能是( )A .3B .6C .9D .106.为迎接端午促销活动,某服装店从6月份开始对春装进行“折上折“(两次打折数相同)优惠活动,已知一件原价500元的春装,优惠后实际仅需320元,设该店春装原本打x 折,则有 A .500(12)320x -= B .2500(1)320x -=C .250032010x ⎛⎫= ⎪⎝⎭D .2500132010x ⎛⎫-= ⎪⎝⎭ 7.如图,已知△ABC ,任取一点O ,连AO ,BO ,CO ,分别取点D ,E ,F ,使OD =13AO ,OE =13BO ,OF =13CO ,得△DEF ,有下列说法: ①△ABC 与△DEF 是位似图形;②△ABC 与△DEF 是相似图形;③△DEF 与△ABC 的周长比为1:3;④△DEF 与△ABC 的面积比为1:6.则正确的个数是( )A .1B .2C .3D .48.如图,在四边形ABCD 中,P 是对角线BD 的中点,E ,F 分别是AB ,CD 的中点,AD =BC ,∠PEF =25°,则∠EPF 的度数是( )A .100°B .120°C .130°D .150°9.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72a10.如图,在平面直角坐标系中,点A 坐标为(2,),作AB ⊥x 轴于点B ,连接AO ,绕原点B 将△AOB 逆时针旋转60°得到△CBD ,则点C 的坐标为( )A .(﹣1)B .(﹣2)C .,1)D .2)二、填空题11=________________. 12.一元二次方程3(x ﹣5)2=2(x ﹣5)的解是_____.13.如图是用杠杆撬石头的示意图,C 是支点,当用力压杠杆的A 端时,杠杆绕C 点转动,另一端B 向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B 端必须向上翘起10cm ,已知杠杆的动力臂AC 与阻力臂BC 之比为51:,要使这块石头滚动,至少要将杠杆的A 端向下压_____cm .14.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.15.如图,已知▱ABCD 中,AB =16,AD =10,sinA =35,点M 为AB 边上一动点,过点M 作MN ⊥AB ,交AD 边于点N ,将∠A 沿直线MN 翻折,点A 落在线段AB 上的点E 处,当△CDE 为直角三角形时,AM 的长为_____.三、解答题16.计算或解方程(1﹣2cos30°+(12-)﹣2﹣|1|(2)解方程:3x 2x ﹣1=017.已知:关于x的方程x2+2x+k2﹣1=0.(1)试说明无论取何值时,方程总有两个不相等的实数根.(2)如果方程有一个根为3,试求2k2+12k+2019的值.18.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,3).(1)画出△ABC绕点B逆时针旋转90°得到的△A1BC1.(2)以原点O为位似中心,位似比为2:1,在y轴的左侧,画出将△ABC放大后的△A2B2C2,并写出A2点的坐标.19.自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,AB=米,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡200AC=米后,斜坡AB改造为斜坡CD,其坡坡度为1:;将斜坡AB的高度AE降低20度为1:4.求斜坡CD的长.(结果保留根号)20.如图,某旅游景点要在长、宽分别为40m、24m的矩形水池的正中央建立一个与矩形的各边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行且宽度相等的道路,已知道路的宽为正方形边长的14,若道路与观赏亭的面积之和是矩形水池面积的16,求道路的宽21.在正方形ABCD中,P是BC上一点,且BP=3PC,Q是CD的中点.(1)求证:△ADQ∽△QCP;(2)若PQ=3,求AP的长.22.如图,已知Rt△ABC中,∠C=90°,AC=6,BC=8,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从B向A方向运动,Q到达A点后,P点也停止运动,设点P,Q运动的时间为t秒.(1)求P点停止运动时,BP的长;(2)P,Q两点在运动过程中,点E是Q点关于直线AC的对称点,是否存在时间t,使四边形PQCE为菱形?若存在,求出此时t的值;若不存在,请说明理由.(3)P,Q两点在运动过程中,求使△APQ与△ABC相似的时间t的值.23.(操作发现)如图(1),在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD =45°,连接AC,BD交于点M.①AC与BD之间的数量关系为;②∠AMB的度数为;(类比探究)如图(2),在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC,交BD的延长线于点M.请计算ACBD的值及∠AMB的度数;(实际应用)如图(3),是一个由两个都含有30°角的大小不同的直角三角板ABC、DCE 组成的图形,其中∠ACB=∠DCE=90°,∠A=∠D=30°且D、E、B在同一直线上,CE=1,BC,求点A、D之间的距离.参考答案1.C【分析】根据最简二次根式即可求出答案.解:(A)原式=A不选;(B B不选;(D D不选;故选:C.【点睛】本题考查了二次根式的化简,正确掌握二次根式的化简是解题的关键.2.A【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论.【详解】∵方程2-+=有两个相等的实根,230x kx∴△=k2-4×2×3=k2-24=0,解得:k=±故选A.【点睛】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.3.A【分析】直接利用特殊角的三角函数值进而计算得出答案.【详解】解:∵3tanA0,∴tanA=,3∴∠A=30°.【点睛】此题主要考查三角函数,解题的关键是熟知特殊角的三角函数值.4.C【分析】由已知条件易求DB 的长,在光线、遮阳板和窗户构成的直角三角形中,80°角的正切值=窗户高:遮阳板的宽,据此即可解答.【详解】解:∵DA =0.2米,AB =2米,∴DB =DA+AB =2.2米,∵光线与地面成70°角,∴∠BCD =70°.又∵tan ∠BCD =DBDC ,∴DC =DB tan BCD ∠= 2.2tan 70︒m .故选:C .【点睛】此题主要考查三角函数的应用,解题的关键是熟知正切的定义.5.D【分析】方程配方得到结果,即可作出判断.【详解】解:方程260x x k -+=,变形得:26x x k -=-,配方得:2699x x k -+=-,即2(3)9x k -=-,90k ∴-,即9k ,则k 的值不可能是10,故选D .【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.6.C【分析】设该店春装原本打x 折,根据原价及经过两次打折后的价格,可得出关于x 的一元二次方程,此题得解.【详解】解:设该店春装原本打x 折,依题意,得:500(10x )2=320. 故选C .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.C【分析】直接利用位似图形的性质以及相似图形的性质分别分析得出答案.【详解】解:∵任取一点O ,连AO ,BO ,CO ,分别取点D ,E ,F ,OD =13AO ,OE =13BO ,OF =13CO , ∴△DEF 与△ABC 的相似比为:1:3,∴①△ABC 与△DEF 是位似图形,正确;②△ABC 与△DEF 是相似图形,正确;③△DEF 与△ABC 的周长比为1:3,正确;④△DEF 与△ABC 的面积比为1:9,故此选项错误.故选:C .【点睛】此题主要考查位似图形的性质,解题的关键是熟知位似的特点.8.C【解析】【分析】根据三角形中位线定理得到PE=12 AD ,PF=12BC ,根据等腰三角形的性质、三角形内角和定理计算即可.【详解】解:∵P 是对角线BD 的中点,E ,F 分别是AB ,CD 的中点,∴PE=12AD ,PF=12BC , ∵AD=BC ,∴PE=PF ,∴∠PFE=∠PEF=25°,∴∠EPF=130°,故选:C .【点睛】本题考查三角形中位线定理,解题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.9.C【分析】根据相似三角形的判定定理得到ACDBCA ∆∆,再由相似三角形的性质得到答案. 【详解】∵CAD B ∠=∠,ACD BCA ∠=∠,∴ACD BCA ∆∆, ∴2ACD BCA S AC S AB ∆∆⎛⎫= ⎪⎝⎭,即14BCAa S ∆=, 解得,BCA ∆的面积为4a ,∴ABD ∆的面积为:43a a a -=,故选C .【点睛】本题考查相似三角形的判定定理和性质,解题的关键是熟练掌握相似三角形的判定定理和性质.10.A【分析】首先证明∠AOB =60°,∠CBE =30°,求出CE ,EB 即可解决问题.【详解】解:过点C 作CE ⊥x 轴于点E ,∵A (2,),∴OB =2,AB =∴Rt △ABO 中,tan ∠AOB∴∠AOB =60°,又∵△CBD 是由△ABO 绕点B 逆时针旋转60°得到,∴BC =AB =∠CBE =30°,∴CE =12BC BE =3,∴OE =1,∴点C 的坐标为(﹣1,故选:A .【点睛】此题主要考查旋转的性质,解题的关键是熟知正切的性质.11.【解析】【分析】直接利用二次根式的乘法运算法则计算得出答案.【详解】原式=故答案为:【点睛】本题考查了二次根式的乘法运算,正确化简二次根式是解题关键.12.5或173【分析】根据因式分解法即可求出答案.【详解】解:∵3(x ﹣5)2=2(x ﹣5),∴3(x ﹣5)2﹣2(x ﹣5)=0,∴(x ﹣5)[3(x ﹣5)﹣2]=0,∴x =5或x =173; 故答案为5或173 【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.13.50.【分析】首先根据题意构造出相似三角形,然后根据相似三角形的对应边成比例求得端点A 向下压的长度.【详解】解:如图;AM BN 、都与水平线垂直,即//AM BN ;易知:ACM BCN ∽;AC AM BC BN∴=, 杠杆的动力臂AC 与阻力臂BC 之比为51:, 51AM BN ∴=,即5AM BN =; ∴当10BN cm ≥时,50AM cm ≥;故要使这块石头滚动,至少要将杠杆的端点A 向下压50cm .故答案为50.【点睛】本题考查相似三角形的判定与性质的实际应用,正确的构造相似三角形是解题的关键.14.2【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF 的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.15.4或8【解析】【分析】①当∠CDE=90°,如图1,根据折叠的性质得到MN⊥AB,AM=EM,得到AN=DN=1 2AD=5,设MN=3x,AN=5x=5,于是得到AM=4;②当∠DEC=90°,如图2,过D作DH⊥AB于H,根据相似三角形的性质得到DE CDHE DE=,由sinA=35,AD=10,得到DH=6,AH=8,设HE=x,根据勾股定理求出x的值,继而求得AE的值,从而得到AM的值,即可得到结论.【详解】当△CDE为直角三角形时,①当∠CDE=90°,如图1,∵在▱ABCD中,AB∥CD,∴DE⊥AB,∵将∠A沿直线MN翻折,点A落在线段AB上的点E处,∴MN⊥AB,AM=EM,∴MN∥DE,∴AN=DN=12AD=5,∵sinA=35 MNAN=,∴设MN=3x,AN=5x=5,∴MN=3,∴AM=4;②当∠DEC=90°,如图2,过D作DH⊥AB于H,∵AB∥CD,∴∠HDC=90°,∴∠HDC+∠CDE =∠CDE+∠DCE =90°,∴∠HDE =∠DCE ,∴△DHE ∽△CED , ∴DE CD HE DE=, ∵sinA =35,AD =10, ∴DH =6,∴AH =8,设HE =x ,∴DE =∵DH 2+HE 2=DE 2,∴62+x 2=16x ,∴x =8﹣x =不合题意舍去),∴AE =AH+HE =16﹣,∴AM =12AE =8,综上所述,AM 的长为4或8,故答案为4或8.【点睛】本题考查了翻折变换(折叠问题),平行四边形的性质,解直角三角形,相似三角形的判定和性质,正确的作出辅助线是解题的关键.16.(1)5;(2)x 1,x 2【分析】(1)根据特殊锐角三角函数的值以及负整数指数幂的意义即可求出答案;(2)根据公式法即可求出答案.【详解】解:(1)原式=﹣1)=5;(2)由题意可知:a =3,b ,c =﹣1,∴△=6+12=18,∴x∴x 1=6,x 2=6. 【点睛】此题主要考查实数的运算及一元二次方程的求解,解题的关键是熟知实数的性质及公式法求解方程.17.(1)见解析;(2)2003【分析】(1)计算判别式的值得到△=4,然后根据判别式的意义可判断方程总有两个不相等的实数根;(2)利用一元二次方程根的定义得到k 2+6k =﹣8,再把2k 2+12k+2019变形为2(k 2+6k )+2019,然后利用整体代入的方法计算.【详解】解:(1)∵△=(2k )2﹣4×1×(k 2﹣1)=4k 2﹣4k 2+4=4>0,∴无论k 取何值时,方程总有两个不相等的实数根;(2)把x =3代入x 2+2x+k 2﹣1=0的9+6k+k 2﹣1=0,∴k 2+6k =﹣8,∴2k 2+12k+2019=2(k 2+6k )+2019=﹣16+2019=2003.【点睛】此题主要考查根的判别式及根的定义,解题的关键是熟知根的判别式的应用.18.(1)见解析;(2)(﹣4,2) .【分析】(1)根据网格结构找出点A 、B 、C 以点B 为旋转中心逆时针旋转90°后的对应点,然后顺次连接即可.(2)利用位似图形的性质得出对应点位置即可得出答案.【详解】解:(1)如图所示,△A 1BC 1即为所求;(2)如图,△A 2B 2C 2,即为所求,A 2(﹣4,2);故答案是:(﹣4,2).【点睛】此题主要考查旋转与位似图形的作图,解题的关键是熟知旋转的性质及位似的定义.19.斜坡CD 的长是【分析】根据题意和锐角三角函数可以求得AE 的长,进而得到CE 的长,再根据锐角三角函数可以得到ED 的长,最后用勾股定理即可求得CD 的长.【详解】∵90AEB =︒∠,200AB =,坡度为1:,∴tan3ABE ∠==, ∴30ABE ∠=︒,∴11002AE AB ==, ∵20AC =,∴80CE =,∵90CED ∠=︒,斜坡CD 的坡度为1:4, ∴14CE DE =, 即8014ED =, 解得,320ED =,∴CD =米,答:斜坡CD 的长是【点睛】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.20.道路的宽为2米【分析】首先假设道路的宽为x 米,根据道路的宽为正方形边长的14,得出正方形的边长以及道路与正方形的面积进而得出答案.【详解】解:设道路的宽为x 米,则可列方程:x (24﹣4x )+x (40﹣4x )+16x 2=16×40×24, 即:x 2+8x ﹣20=0,解得:x 1=2,x 2=﹣10(舍去).答:道路的宽为2米.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系列出方程求解.21.(1)见解析;(2)【分析】(1)在所要求证的两个三角形中,已知的等量条件为:∠D=∠C=90°,若证明两三角形相似,可证两个三角形的对应直角边成比例;(2)证明AQ=2PQ,AQ⊥PQ即可解决问题.【详解】(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠C=∠D=90°;又∵Q是CD中点,∴CQ=DQ=12 AD;∵BP=3PC,∴CP=14 AD,∴CQAD=CPDQ=12,又∵∠C=∠D=90°,∴△ADQ∽△QCP;(2)由(1)知,△ADQ∽△QCP,CQAD=PQQA=12,∴AQ=2PQ,∵PQ=3,∴AQ=6,∵△ADQ∽△QCP,∴∠AQD=∠QPC,∠DAQ=∠PQC,∴∠PQC+∠DQA=DAQ+AQD=90°,∴AQ⊥QP,∴∠AQP=90°,∴PA【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知正方形的性质及相似三角形的判定定理.22.(1(2)存在,t=3017s时,四边形PQCE是菱形;(3)t的值为3011s或5013s时△APQ与△ABC相似【分析】(1)求出点Q的从B到A的运动时间,再求出AP的长,利用勾股定理即可解决问题.(2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.根据DQ=CK,构建方程即可解决问题.(3)分两种情形:如图3﹣1中,当∠APQ=90°时,如图3﹣2中,当∠AQP=90°时,分别构建方程即可解决问题.【详解】解:(1)在Rt△ABC中,∵∠C=90°,AC=6,BC=8,∴AB=10,点Q运动到点A时,t=102=5,∴AP=5,PC=1,在Rt△PBC中,PB(2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.∵四边形PQCE是菱形,∴PC⊥EQ,PK=KC,∵∠QKC=∠QDC=∠DCK=90°,∴四边形QDCK是矩形,∴DQ=CK,∴35•2t=12(6﹣t),解得t=30 17.∴t=3017s时,四边形PQCE是菱形.(3)如图3﹣1中,当∠APQ=90°时,∵∠APQ=∠C=90°,∴PQ∥BC,∴AQAB=APAC,∴10210t -=6t , ∴t =3011. 如图3﹣2中,当∠AQP =90°时,∵△AQP ∽△ACB , ∴AQ AC =AP AB, ∴1026t -=10t , ∴t =5013, 综上所述,t 的值为3011s 或5013s 时△APQ 与△ABC 相似. 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是根据题意分情况讨论,找到对应线段成比例进行求解.23.【操作发现】①AC =BD ;②∠AMB =45°;【类比探究】AC BD =,∠AMB =90°;【实际应用】【分析】操作发现:如图(1),证明△COA ≌△DOB (SAS ),即可解决问题.类比探究:如图(2),证明△COA ∽△ODB ,可得AC CO BD OD==∠MAK =∠OBK ,已解决可解决问题.实际应用:分两种情形解直角三角形求出BE ,再利用相似三角形的性质解决问题即可.【详解】解:操作发现:如图(1)中,设OA 交BD 于K .∵∠AOB =∠COD =45°,∴∠COA =∠DOB ,∵OA =OB ,OC =OD ,∴△COA ≌△DOB (SAS ),∴AC =DB ,∠CAO =∠DBO ,∵∠MKA =∠BKO ,∴∠AMK =∠BOK =45°,故答案为AC =BD ,∠AMB =45°类比探究:如图(2)中,在△OAB 和△OCD 中,∵∠AOB =∠COD =90°,∠OAB =∠OCD =30°,∴∠COA =∠DOB ,OC ,OA , ∴OCOAOD OB =,∴△COA ∽△ODB ,∴ACCOBD OD ==∠MAK =∠OBK ,∵∠AKM =∠BKO ,∴∠AMK =∠BOK =90°.实际应用:如图3﹣1中,作CH ⊥BD 于H ,连接AD .在Rt△DCE中,∵∠DCE=90°,∠CDE=30°,EC=1,∴∠CEH=60°,∵∠CHE=90°,∴∠HCE=30°,∴EH=12EC=12,∴CH在Rt△BCH中,BH92 ==,∴BE=BH﹣EH=4,∵△DCA∽△ECB,∴AD:BE=CD:EC∴AD=如图3﹣2中,连接AD,作CH⊥DE于H.同法可得BH=92,EH=12,∴BE=92+12=5,∵△DCA∽△ECB,∴AD:BE=CD:EC∴AD=【点睛】本题属于相似形综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

【九年级】九年级上册数学期中复习试题(华师大版附答案)

【九年级】九年级上册数学期中复习试题(华师大版附答案)

【九年级】九年级上册数学期中复习试题(华师大版附答案)期中检测题(时间:120分钟,满分:120分)一、(每小题3分,共36分)1.在实数范围内,如果有意义,则的值范围为()a.b.c.d.2.设-1在两个相邻整数之间,则两个整数为()a.1和2b.2和3c.3和4d.4和53.以下计算是正确的()a.b.+c、 d。

4.已知:则与的关系为()5.在下列二次根中,简化后可以结合的是()a.b.c.d.6.如果是一个单变量的二次方程,则的值应为()a.=2b.c.d.无法确定7.方程的解为()a.b.c、 d。

8.若是关于的方程的根,则的值为()a、不列颠哥伦比亚省。

9.定义:如果一元二次方程满足,那么我们称这个方程为“凤凰”方程.已知是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()a、不列颠哥伦比亚省。

10.下列说法中正确的是()a、两个直角三角形相似。

B.两个等腰三角形相似c.两个等边三角形相似d.两个锐角三角形相似在梯形图中,对角线与对角线相交若,则的值为()a. b.c. d.12.当代数公式的值为7时,代数公式的值为()二、题(每小题3分,共24分)13.有意义的值范围为14.当时,=_____________.15.如果等式成立,则16.如果,那么的关系是________.17.如果关于的方程没有实根,则______18.方程的解是__________________.19.如果(none为0),则的值为20.在△abc中,,,,另一个与它相似的△的最短边长为45c,则△的周长为________.三、回答问题(总共60分)21.(6分)先化简,再求值:,其中.22.(8分)有一个练习题:先改变公式简,后求值,其中.小明的解法如下:====. 小明的解决方案对吗?如果不对,请改正.23.(8分)已知、真实和,求的值.24.(8分)如图所示,焊接钢架需要多少米的钢材(精炼钢)确到)?25.(7点)如果一元二次方程的常数项为0,那么值是多少?26.(7分)如果,求的值.27.(8点)如图所示,在梯形中,∠ 然后,问:(1)△与△相似吗?请说明理由;(2)如果是,则为请求的长度28.(8分)如图,在△中,∠90°,,,点从出发,沿以2?的速度向移动,点从出发,以的速度向移动,若分别从同时出发,设运动时间为,当为何值时,△与△相似?期中考试问题的参考答案1.c解析:若有意义,则≥,且2.C分析:∵∵3.c解析:b中的二次根式的被开方数不同,不能合并;c项正确;d项4.分析:∵, ∧5.a解析:因为不能化简,所以只有a项化简后能与合并.6.C分析:因此,从问题的意义来看7.a解析:∵,∴,∴.故选a.8.D分析:将其代入方程中,得到:,∵, ∧,∴.故选d.9.分析:根据主题的意思,可以通过同时操作获得,所以选择10.c11.B分析:在梯形中,对角线在点处相交,你知道△≓△, 所以12.a解析:当时,即,——代数公式,所以选择13.解析:由.14.分析:当时,15.且解析:由得16.分析:原始方程可简化为17.解析:∵,∴.18.分析:方程有两个不相等的实根,即19.1解析:设,所以因此20.195c解析:因为△abc∽△,所以.又因为在△abc中,边最短,所以,所以,所以△的周长为21.解决办法:=当时,原式22.解决方案:小明的解决方案是错误的,正确的如下:由题意得,,∴应有.∴====.23.解:由题意得,,且.∴,∴.∴.24.解:根据毕达哥拉斯定理得出.所需的钢材长度为+.答:要焊接一个如原题图所示的钢架,大约需要长的钢材.25.解决方案:从问题的意义出发即当时,的常数项为26.解:原方程可简化为:,∴,∴.27.解决方案:(1)∵, ∠ 90 °又∠90°,∴∠∠.∥∧∠ ∴△∽△. (2)∵△∽△,∴又,,∴.28.解决方案:(1)当,△≓△, 就是,解得.(2)当时,,△≓△, 也就是说,得到了解故当为或时,△与△相似.。

(华师大版)初中数学九年级上册 期中测试(含答案)

(华师大版)初中数学九年级上册 期中测试(含答案)

期中测试一、选择题(本大题共10小题,共30分) 1.一元二次方程2660x x --=配方后化为( ) A.2(3)15x -=B.2(3)3x -=C.2(3)15x +=D.2(3)3x +=2.如图,在ABC △中,点D 是AB 边上的一点,若ACD B ∠=∠,1AD =,2AC =,ADC 的面积为1,则BCD △的面积为( )A.1B.2C.3D.43.下列各组图形一定相似的是( ) A.各有一角是70︒的两个等腰三角形 B.任意两个等边三角形 C.任意两个矩形D.任意两个菱形4.如图,已知直线a b c ∥∥,直线m ,n 与a ,b ,c 分别交于点A ,C ,E ,B ,D ,F ,若4AC =,10AE =,3BD =,则DF 的值是( )A.5.5B.5C.4.5D.45.关于x 的一元二次方程230x x m ++=有两个不相等的实数根,则m 的取值范围为( ) A.49m ≤B.49m <C.94m ≤D.94m <6.下列计算中,结果错误的是( ) A.235+=B.532333-=C.623÷=D.2(2)2-=7.下列方程是关于x 的一元二次方程的是( ) A.20ax bx c ++= B.2112x x+=C.2221x x x +=-D.()23(1)21x x +=+8.将ABC △的三个顶点坐标的横坐标都乘以1-,纵坐标不变,则所得图形与原图的关系是( ) A.关于x 轴对称 B.关于y 轴对称C.关于原点对称D.将图形向下平移一个单位9.在平面直角坐标系中,ABC △顶点()2,3.A 若以原点O 为位似中心,画三角形ABC 的位似图形'''A B C △,使ABC △与'''A B C △的相似比为23,则'A 的坐标为( ) A.93,2⎛⎫⎪⎝⎭ B.4,63⎛⎫ ⎪⎝⎭C.93,2⎛⎫ ⎪⎝⎭或93,2⎛⎫-- ⎪⎝⎭D.4,63⎛⎫ ⎪⎝⎭或4,63⎛⎫-- ⎪⎝⎭10.若最简二次根式-x 的值是( ) A.2B.3C.4D.5二、填空题(本大题共6小题,共18分) 11.一元二次方程()40x x +=的根是________. 12.已知()305a c b d b d ==+≠,则a c b d+=+________. 13.如图,数学活动小组为了测量学校旗杆AB 的高度,使用长为2m 的竹竿CD 作为测量工具,移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O 处重合,测得4m OD =,14m BD =,则旗杆AB 的高为________m .14.剧院里5排2号可以用()5,2表示,则()7,4表示________.15.如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为()1,1A ,()2,1B -,()2,1C --,()1,1.D y -轴上一点()0,2P 绕点A 旋转180︒得点1P ,点1P 绕点B 旋转180︒得点2P ,点2P 绕点C 旋转180︒得点3P ,点3P 绕点D 旋转180︒得点4P ,……,重复操作依次得到点1P ,2P ,……,则点2010P的坐标是.16.一个四边形的各边之比为1:2:3:4,和它相似的另一个四边形的最小边长为5cm ,则它的最大边长为________cm .三、解答题(本大题共9小题,共72分)17.如图,在平面直角坐标系中,ABO △的三个顶点坐标分别是()0,0O ,()3,0A ,()2,3B .(1)在网格中以原点O 为位似中心画EFO △,使它与ABO △位似,且相似比为2.(2)点13,24⎛⎫⎪⎝⎭是ABO △上的一点,直接写出它在EFO △上的对应点的坐标为__________.18.解方程:2210x x +-=.19.解下列方程. (1)2230x x --=(2)()2(3)23x x +=+20.已知在ABC △中,D 是边AC 上的一点,CBD ∠的角平分线交AC 于点E ,且AE AB =. (1)求证:ABD ACB △∽△(2)4AD =,7CD =,AE =________.21.已知:关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及方程的另一个根; (2)求证:不论a 取何值时,该方程都有两个不相等的实数根.22.用适当的方法解方程:()226952x x x -+=-.23.请在方格纸上画ABC △,使它的顶点都在格点上,且三边长分别为2,,.并求出: (1)ABC △的面积; (2)最长边上高.24.若1y =,求3x y +的值.∠=∠.求证:25.已知:如图,ABC△中,点E在中线AD上,DEB ABC(1)2=⋅;DB DE DA∠=∠.(2)DCE DAC期中测试 答案解析一、 1.【答案】A【解析】本题考查的是一元二次方程的配方有关知识,首先对该式进行配方,然后再进行解答即可. 解:2660x x --=,269960x x ∴-+--=,()2315x ∴-=.故选A . 2.【答案】C【解析】本题考查的是相似三角形的判定与性质有关知识,由ACD B ∠=∠,结合公共A A ∠=∠,即可证出ACD ABC △∽△,然后再利用三角形相似的性质即可解答. 解:ACD B ∠=∠,A A ∠=∠,ACD ABC ∴△∽△,214ACD ABC S AD S AC ⎛⎫∴== ⎪⎝⎭△△, 1ACD S =△,4ABC S ∴=△,3BCD ABC ACD S S S =-=△△△.故选C . 3.【答案】B【解析】本题考查的是相似图形有关知识,根据对应角星等,对应边成比例的两个图形,角相似图形,然后来进行判断即可解答.解:.A 各有一个角是70︒的两个等腰三角形,由角对应相等,不能确定对应边成比例,不一定相似; B .任意两个等边三角形对应角相等,对应边成比例,一定相似; C .任意两个矩形对应边不一定成比例,不一定相似; D .任意两个菱形的对应角不一定相等,不一定相似. 故选B . 4.【答案】C【解析】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.直接根据平行线分线段成比例定理即可得出结论. 解:直线a b c ∥∥,4AC =,6AE =,3BD =,6CE ∴=,AC BDCE DF ∴=, 即436DF=, 解得 4.5DF =. 故选C . 5.【答案】D【解析】本题主要考查的是根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac =-△有如下关系:当0△>时,方程有两个不相等的实数根;当0=△时,方程有两个相等的实数根;当0△<时,方程无实数根.利用判别式的意义得到2340m =-△>,然后解不等式即可. 解:根据题意得2340m =-△>, 解得94m <. 故选D . 6.【答案】A【解析】此题考查二次根式的运算,掌握运算方法与化简的方法是解决问题的关键.利用二次根式加、减、乘、除的运算方法逐一计算得出答案即可.解:A B 、计算结果正确,故此选项不合题意; C 、计算结果正确,故此选项不合题意; D 、计算结果正确,故此选项不合题意. 故选A . 7.【答案】D【解析】解:A 、缺少0a ≠这一条件,若0a =,则方程就不是一元二次方程,故错误; B 、是分式方程,故错误; C 、化简后不含二次项,故错误; D 、符合一元二次方程的形式,正确. 故选D . 8.【答案】B【解析】本题考查了关于坐标轴、原点对称及平移的几何变换,属于基础题,比较简单,明确对称的坐标特点,还要知道图形平移时,若向左右平移,则横坐标减、加变化;若向上、下平移,纵坐标加、减变化.解:横坐标都乘以1-,即横坐标变为相反数,纵坐标不变,符合关于y 轴对称, 故选:B .A 、关于x 轴对称:横坐标不变,纵坐标相反;B 、关于y 轴对称:横坐标相反,纵坐标不变;C 、关于原点对称:横坐标相反,纵坐标相反;D 、将图形向下平移一个单位:横坐标不变,纵坐标1-. 9.【答案】C【解析】本题主要考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -.由于ABC △与'''A B C △的相似比为23,则是把ABC △放大32倍,根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -,于是把()2,3A 都乘以32或32-即可得到'A 的坐标.解:ABC 与'''A B C △的相似比为23,'''A B C ∴△与ABC △的相似比为32,位似中心为原点0,33'2,322A ⎛⎫∴⨯⨯ ⎪⎝⎭或33'2,322A ⎛⎫-⨯-⨯ ⎪⎝⎭,即9'3,2A ⎛⎫ ⎪⎝⎭或9'3,.2A ⎛⎫-- ⎪⎝⎭故选C . 10.【答案】D【解析】若最简二次根式可以合并可知被开方数相同,由此可得x .本题主要考查同类二次根式的概念,理解同类二次根式是化为最简二次根式后,被开方数相同是解答此题的关键.解:最简二次根式-5x ∴=,故选D . 二、11.【答案】10x =,24x =-【解析】本题主要考查的是解一元二次方程,熟练掌握用因式分解的方法解方程是解题的关键.两个因式的积为零,这两个因式都可能为零,即可得出两个一元一次方程,求出方程的解即可. 解:()40x x +=,0x ∴=或40x +=,10x ∴=,24x =-.故答案为10x =,24x =-. 12.【答案】35【解析】本题考查的是比例的性质有关知识,利用比例性质中的合比性质直接解答即可. 解:利用合比的性质直接计算可得:()0a cb d b d=+≠, 35a c ab d b +∴==+. 故答案为35.13.【答案】9【解析】本题主要考查的是相似三角形的应用,证得三角形相似得到关于AB 的方程是解题的关键.由条件可证明OCD OAB △∽△,利用相似三角形的性质可求得答案. 解:4m OD =,14m BD =,18m OB OD BD ∴=+=,由题意可知ODC OBA ∠=∠,且O ∠为公共角,OCD OAB ∴△∽△,OD CDOB AB ∴=, 即4218AB =, 解得9AB =. 即旗杆AB 的高为9m . 故答案为9. 14.【答案】7排4号【解析】解:5排2号可以表示为()5,2,7∴排4号可以表示为()7,4.故答案为:7排4号第一个数表示排,第二个数表示号,将位置问题转化为有序数对. 用有序数对表示位置,体会数学给生活带来的便利. 15.【答案】()2010,2-【解析】本题考查了旋转变换的规律.关键是根据等腰梯形,点的坐标的特殊性,寻找一般规律.由P 、A 两点坐标可知,点P 绕点A 旋转180︒得点1P ,即为点P 关于A 的对称点,依此类推,点2P 为1P 关于B 的对称点,由此发现一般规律.解:由已知可以得到,点1P ,2P 的坐标分别为()2,0,()2,2-. 记()222,P a b ,其中22a =,22b =-.根据对称关系,依次可以求得()3224,2P a b ----,()4222,4P a b ++,()522,2P a b ---,()6224,.P a b + 令()662,P a b ,同样可以求得,点10P 的坐标为()624,a b +,即()102242,P a b ⨯+, 由于201045022=⨯+, 所以点2010P 的坐标为()2010,2-. 故答案为()2010,2-. 16.【答案】20【解析】根据“相似多边形的对应边长的比等于相似比”列式求解即可.本题考查了相似多边形的性质,比较简单,要注意对应边的确定.两个四边形相似,一个四边形的各边之比为1:2:3:4,∴和它相似的多边形的对应边的比为1:2:3:4, 另一个四边形的最小边长为5cm ,∴最长边为4520cm ⨯=, 故答案为:20. 三、17.【答案】解:(1)如图所示,EFO △和''E OF △即为所求:(2)31,2⎛⎫ ⎪⎝⎭或31,2⎛⎫-- ⎪⎝⎭【解析】此题主要考查了位似变换以及位似图形的性质,正确得出对应点位置是解题关键.(1)直接利用位似图形的性质分别得出对应点位置进而得出答案;具体解答过程参照答案.(2)利用位似图形的性质得出对应点的坐标即可. 点13,24⎛⎫ ⎪⎝⎭是ABO △上的一点, ∴它在EFO △上的对应点的坐标是:31,2⎛⎫ ⎪⎝⎭或31,2⎛⎫-- ⎪⎝⎭. 故答案为31,2⎛⎫ ⎪⎝⎭或31,2⎛⎫-- ⎪⎝⎭. 18.【答案】解2210x x +-=,()()1210x x +-=,10x +=,210x -=,11x ∴=-,212x =. 【解析】本题主要考查的是解一元二次方程,解此题的关键是能把一元二次方程转化成一元一次方程.将原方程的左边的算式进行分解因式,即可得出两个一元一次方程,求出方程的解即可.19.【答案】解:(1)2230x x --=,1a =,2b =-,3c =-,()()2241316∆=--⨯⨯-=,12x ∴=±, 13x ∴=,21x =-;(2)()()23230x x +-+=, ()()310x x ++=,30x ∴+=或10x +=,13x ∴=-,21x =-.【解析】本题考查了公式法解一元二次方程和因式分解法解一元二次方程,考查了学生的计算能力,培养了学生分析问题与解决问题的能力.(1)利用公式法解一元二次方程计算得结论;(2)利用因式分解法解一元二次方程计算得结论.20.【答案】(1)证明:BE 平分CBD ∠,DBE CBE ∴∠=∠,AE AB =,ABE AEB ∴∠=∠,ABE ABD DBE ∠=∠+∠,AEB C CBE ∠=∠+∠,ABD C ∴∠=∠,ABD C ∠=∠,A A ∠=∠,ABD ACB △∽△.(2)ABD ACB △∽△,::AB AD AC AB ∴=,即:AB AB AD AC ⋅=⋅,AE AB =,AE AE AD AC ∴⋅=⋅,()2447AE ∴=⨯+,AE ∴=故答案为.【解析】本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质.(1)根据角平分线的性质和外角等于不相邻两内角和即可求得ABD C ∠=∠,可证明ABD ACB △∽△,即可解题.具体解答过程参照答案.(2)具体解答过程参照答案.21.【答案】(1)把1x =代入方程得:120a a ++-=,解得12a =, 把12a =代入方程得:213022x x +-=,解得:11x =,232x =-, 故a 的值为12,方程的另一个根为32-; (2)()2224412(2)4b ac a a a =-=-⨯⨯-=-+△,2(2)0a -≥2(2)40a ∴-+>,∴对于任意实数a ,该方程都有两个不相等的实数根.【解析】本题考查了一元二次方程根的判别式:①0>⇔△方程有两个不相等的实数根;②0=⇔△方程有两个相等的实数根;③0⇔△<方程没有实数根.同时本题考查了方程的解的定义,就是能使方程左右两边相等的未知数的值.(1)把方程的一个实数根0代入原方程求出a 的值,然后把a 的值代入原方程求出方程的另一个根;(2)要想证明对于任意实数a ,方程有两个不相等的实数根,只要证明0△>即可.22.【答案】解:()226952x x x -+=-, ()()22352x x -=-,352x x ∴-=-或325x x -=-,183x =,24x =. 【解析】此题主要考查一元二次方程的解法,主要有:因式分解法、公式法、配方法、直接开平方法等,要针对不同的题型选用合适的方法.本题用直接开平方法解答.23.【答案】解:如图:(1)2AC =,2BD =,122ABC S AC BD ∴=⨯=△,(2)最长边AB =h ,则122ABC S AB h =⨯=△,h ∴=,. 【解析】此题主要考查二次根式的应用,三角形面积公式的理解及运用能力.(1)根据题意画出图形,已知AC 的长为2,观察可得其边上的高BD 的长为2,从而不难求得其面积;(2)根据第(1)问求得的面积,再利用面积公式即可求得其边上的高.24.【答案】解:321y x =-有意义,320230x x -=⎧∴⎨-=⎩,解得23x =, 1y ∴=,3213x y ∴+=+=.【解析】本题考查的是二次根式有意义的条件,即被开方数大于等于0.先根据二次根式有意义的条件,列出关于x 的不等式组,求出x 的取值范围即可.25.【答案】证明:(1)在ABC △和ADB △中DEB ABC ∠=∠,BDE ADB ∠=∠,BDE ADB ∴△∽△,DE DB DB DA∴=, 2DB DE DA ∴=⋅.(2)AD 是中线,CD DB ∴=,2CD DE DA ∴=⋅,CD DA DE CD∴=, 又ADC CDE ∠=∠, DEC DCA ∴△∽△,DCE DAC ∴∠=∠.【解析】本题考查相似三角形的判定和性质.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边成比例、对应角相等.(1)根据已知可证BDE △∽DAB △,得到DE DB DB DA=,即证2DB DE DA =⋅; (2)在(1)的基础上,因为CD DB =,可证CD DA DE CD=,即可证DEC DCA △∽△,得到DCE DAC ∠=∠.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期中检测题
(时间:120分钟,满分:120分)
一、选择题(每小题3分,共36分)
1.在实数范围内,若
有意义,则的取值范围是( )
A. B. C. D .
2.设-1,在两个相邻整数之间,则这两个整数是( )
A .1和2
B .2和3
C .3和4
D .4和5
3.下列计算正确的是( )
A.
=
4.已知:则与的关系为( )
5.下列二次根式中,化简后能与2合并的是( )
A.
2
1
B . C. D .
6.
2121003
m x x m -++=是关于x 的一元二次方程,则的值应为( ) A.m =2 B.23m = C.3
2
m = D.无法确定
7.方程2(2)9x -=的解是( )
A.125,1x x ==-
B.125,1x x =-=
C.1211,7x x ==-
D.1211,7x x =-=
8.若(0)n n ≠是关于x 的方程2
20x mx n ++=的根,则m n +的值为( )
A .
B .
C .
D .
9.定义:如果一元二次方程2
0(0)ax bx c a ++=≠满足0a b c ++=,那么我们称这个方程为“凤凰”方程.已知2
0(0)ax bx c a ++=≠是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )
A .a c =
B .a b =
C .b c =
D .a b c == 10.下列说法中正确的是( )
A.两个直角三角形相似
B.两个等腰三角形相似
C.两个等边三角形相似
D.两个锐角三角形相似 11.如图,在梯形
中,

,对角线
相交于点
若,则的值为( )
A.
B. C.
D.
12.当代数式532
++x x 的值为7时,代数式2932
-+x x 的值为( )
二、填空题(每小题3分,共24分)
13.x 的取值范围是 .
14.当x =22
1
1x x x
---=_____________. 15.若等式1)23
(0=-x
成立,则x 的取值范围是 . 16.如果
,那么
的关系是________.
17.如果关于x 的方程022
=--k x x 没有实数根,则k 的取值范围为_____________.
18.方程062
=--x x 的解是__________________.
19. 若432z y x ==(均不为0),则z z
y x -+2的值为 .
20. 在△ABC 中,


,另一个与它相似的△

最短边长为45 cm ,则△
的周长为________.
三、解答题(共60分)
21.(6分)先化简,再求值:
231839
x x ---,其中3x =.
22.(8分)有一道练习题是:对于式子2a
简,后求值,其中a =
小明的解法如下:2a B
2 m
=2a 2(2)a a --=2a +
2.小明的解法 对吗?如果不对,请改正.
23.(8分)已知x 、y
为实数,且1y =, 求x y +的值.
24.(8分)要焊接如图所示的钢架,大约需要多少米钢材(精 确到)?
25.(7分)若关于x 的一元二次方程012)1(22=-++-m x x m 的常数项为0,求m 的值是多少? 26.(7分)如果
,求()z xy 的值.
27.(8分) 如图,在梯形中,∥,∠°,且对角线
,试问:
(1)△与△相似吗?请说明理由; (2)若
,,请求出的长.
28.(8分)如图,在△
中,∠
90°,

,点从出发,沿
以2㎝的速度向移动,点从出发,以的速度向移动,若分别从

时出发,设运动时间为
,当为何值时,△
与△
相似?
C
Q 第28
题图
期中检测题参考答案
1.C 解析:若
有意义,则

,且
2.C 解析:∵ ∴∴
3.C 解析: B 中的二次根式的被开方数不同,不能合并;C 项正确;D 项
4.A 解析:∵ ,∴
5.A 解析:因为
225
5512.052202221,,,====不能化简,所以只有A 项化简后能与2合并.
6.C 解析:由题意得,212m -=,解得3
2
m =
.故选C. 7.A 解析:∵ 2(2)9x -=,∴ 23x -=±,∴ 125,1x x ==-.故选A.
8.D 解析:将x n =代入方程得2
20n mn n ++=,∵0n ≠,∴20n m ++=, ∴2m n +=-.故选D.
9.A 解析:依题意得,
联立得2()4a c ac += ,∴ 2()0a c -=,∴
a c =.故选.
10.C
11.B 解析:在梯形中,

,对角线
相交于点,知△
∽△

所以
12.A 解析: 当2357x x ++=时,即2
32x x +=,
∴ 代数式22
3923(3)23224x x x x +-=+-=⨯-=.故选.
13. 解析:由.
14.2
2
解析:当2x =时,22
11x x x ---
15.0≥x 且12≠x 解析:由

16.
解析:原方程可化为[]2
4()50x y -+=,∴
.
17.1k <- 解析:∵ 224(2)41()440b ac k k -=--⨯⨯-=+<,∴ 1k <-. 18.123,2x x ==- 解析:.方程有两个不等的实
数根

19.1 解析:设
()04
32≠===m m z
y x ,所以
所以.144622=-+=-+m
m m m z z y x
20.195 cm 解析:因为△ABC ∽△,所以
.又因为在△ABC 中,

最短,所以
,所以

所以△
的周长为
21.解:)3)(3(1833918332-+--=---x x x x x =33
)3)(3()3(3+=-+-x x x x . 当
时,原式
10
10
3103= 22.解:小明的解法不对.改正如下:
由题意得,22a =<,∴ 应有2
(2)(2)2a a a -=--=-+.
∴ 2
244a a a --+=22(2)a a --=2(2)a a --+=32a -=322-.
23.解:由题意得,20090x -≥,且2
0090x -≥.∴2009x =,∴1y =.∴ 2010x y +=.
24.解:由勾股定理得22224220
AD BD +=+=.
2222
21BD CD +=+.
∴ 所需钢材长度为
555
.
答:要焊接一个如原题图所示的钢架,大约需要 长的钢材.
25.解:由题意得
即当1m =-时,012)1(22=-++-m x x m 的常数项为 26.解:原方程可化为,

,∴ 2
()(6)z xy -=-1
36

27.解:(1)∵ ,∴ ∠
90°. 又∠90°,∴ ∠∠.
又∵

,∴ ∠

.∴ △
∽△
.
(2)∵ △∽△,∴
又,
,∴. 28.解:(1)当∥时,△
∽△
,即
CA CQ CB CP =,即12
16216t
t =-, 解得.
(2)当
CB
CQ
CA CP =时,△∽△,即
1612216t
t =-,解得11
64
. 故当为或11
64
时,△
与△
相似.。

相关文档
最新文档