On immersions of uncountable graphs
史树中 凸分析参考答案

史树中凸分析参考答案
什么是史树?
史树(Genealogy)实际上就是构成谱系的一系列个体(人类或非
人类)和家庭关系之间的联系。
它可以用来帮助我们了解和追踪某一
地区或特定家庭的历史、非人类物种的发展,也可以帮助我们研究某
些种族的起源。
史树也可以用来研究社会、法律、军事以及宗教等方
面的发展。
什么是凸分析?
凸分析(Convex Analysis)是一种统计分析方法,该方法旨在解
决多元数据的可视化以及分析凸形函数的构成组成和寻找最优解等问题。
此外,凸分析还可以应用于人类和非人类家谱关系(社会关系)、多项式函数以及信号处理等方面,旨在发现家谱中的凹凸变化或构成
团体等。
史树中凸分析参考答案
史树中凸分析的具体用途主要有以下几点:
1、可以用来分析两个特定家庭之间的关系,比如血缘关系、配偶
构成的最短距离等。
2、可以用来查明社会地位的差异,以及在家谱内人物彼此之间互
动以及家庭利益的分配。
3、可以用来研究跨越整个家族的形态,并分析家谱的发展过程,
以及家谱群体的构成。
4、可以用来研究多样化的家庭价值观以及家谱构成的对应结构,
以及家谱社会系统之间的关联。
5、可以用来研究社会发展,探讨多种变迁以及传承问题。
此外,史树中凸分析还可以作为更广泛的研究的重要参考工具,
比如比较社会结构和历史现象,理解物种适应以及物种进化的过程等。
交叉扩散捕食模型古典解的全局存在性

l l ,Q)= l J r q (
面 d
+d
:
I
I
+2 d
I
I
=
( , ( >0是 正整 Q ) mI
(1素 2 ) r . r 一 )一 ≤
瓤 = u 口 ) ≤ . ( + d 一
由 Gow l不等 式可 得 u I ( , I ( ≤ Ⅳ rn a l s I ‘ )I p - . , 类 似地 , 统 ( ) 系 2 的第 二 个 方 程 两 边 同乘 , 在 再
上积 分可得
1
Ca )其 0卢 1 : 0 ∈/ 2( . 中 <<, 誓:, 0 + 2 .
产生 了 自由扩散 现 象 , 而 某 一 物 种 的扩 散 常常 会 然
扩 散捕食 一 饵模 型 食
.
Anea 给 出 了如 下 带 有 一 个 食 饵 趋 向 的捕 isb 食 一 饵 反应 扩散 系统 . 食
一
d △ 。 ( )“ )= - “+ ( “ Vv ( t ∈. ×( ,T , , ) 0 )
( 即食 饵 的 梯 度 越 大 ) 捕 食 者 就 越 容 易 被 吸 引 , , 这 是 一种 特 殊 的交 错 扩 散 . k b ¨ 对 捕 食 者 捕 食 行 O uo 为 的测 定证 实 了这 个假 定 , 而 , 出 了具 有食 饵趋 从 提
代表捕食者 和食饵密度 ; 正常数 d 和 d 是分பைடு நூலகம்为 。 :
记函数 u xt空间 q,’ 卢 Q ) (, ) 7 ( 范数为
l l a r I cP r l l ( )+ l l g( ) 嚷 q tl Q ・
graphical model解释

图形模型1. 介绍图形模型(Graphical Model)是一种用于描述随机变量之间依赖关系的工具。
它可以表示为一个图结构,其中节点表示随机变量,边表示变量之间的依赖关系。
图形模型在统计学、人工智能和机器学习等领域中得到广泛应用。
图形模型分为两大类:有向图模型(Directed Graphical Model)和无向图模型(Undirected Graphical Model)。
有向图模型也称为贝叶斯网络(Bayesian Network)或信念网络(Belief Network),无向图模型也称为马尔可夫随机场(Markov Random Field)。
2. 有向图模型有向图模型使用有向边来表示变量之间的因果关系。
节点表示随机变量,边表示变量之间的依赖关系。
每个节点都与其父节点相连,父节点的取值影响子节点的取值。
贝叶斯网络是一种常见的有向图模型。
它通过条件概率表来描述各个节点之间的依赖关系。
条件概率表定义了给定父节点取值时子节点取值的概率分布。
例如,假设我们要建立一个天气预测系统,其中包括三个变量:天气(Weather)、湿度(Humidity)和降雨(Rainfall)。
天气节点是根节点,湿度和降雨节点是其子节点。
贝叶斯网络可以表示为以下图结构:Weather -> HumidityWeather -> Rainfall其中,天气节点对湿度和降雨节点有直接影响。
我们可以通过条件概率表来描述这种影响关系。
3. 无向图模型无向图模型使用无向边来表示变量之间的相关关系。
边表示变量之间的相互作用,没有方向性。
每个节点都与其他节点相连,表示它们之间存在依赖关系。
马尔可夫随机场是一种常见的无向图模型。
它通过势函数来描述各个节点之间的依赖关系。
势函数定义了变量取值的联合概率分布。
例如,假设我们要建立一个人脸识别系统,其中包括三个变量:人脸(Face)、眼睛(Eyes)和嘴巴(Mouth)。
人脸节点是中心节点,眼睛和嘴巴节点与人脸节点相连。
diffisuion模型 本科毕业设计

基于你提到的"diffusion模型"作为本科毕业设计的主题,我可以给你一些建议和思路。
"Diffusion"意为扩散,"diffusion模型"是指描述物质或信息在空间中扩散过程的数学模型。
以下是一个可能的本科毕业设计方案:1. 研究背景和目标:介绍扩散模型在不同领域的应用,并确定你的研究目标,可能是改进现有的扩散模型或应用扩散模型解决特定问题。
2. 文献综述:对扩散模型相关的经典理论和方法进行综述,包括分析模型、数值模拟方法等。
同时,了解扩散模型在你感兴趣的应用领域中的具体应用情况。
3. 模型建立:选择一种适合你研究目标的扩散模型,并根据实际问题建立数学模型。
可以考虑常见的扩散模型,如Fick扩散方程、非线性扩散模型等。
4. 模型求解:将建立的扩散模型转化为数值计算问题,并选择适当的数值方法进行求解。
可以使用有限差分法、有限元法、蒙特卡洛模拟等方法进行数值计算。
5. 模拟与分析:使用计算机编程语言(如MATLAB、Python等)编写程序,进行模型的数值模拟和数据分析。
通过改变参数、边界条件等,分析扩散过程的特性和影响因素。
6. 结果与讨论:对模拟结果进行详细的分析和讨论,解释现象和趋势,并与已有的实验结果或理论进行比较。
可以绘制图表、制作动画等方式展示模型的效果。
7. 结论与展望:总结研究结果,回顾研究目标的达成程度,并提出未来研究的方向和改进的建议。
需要注意的是,具体的本科毕业设计方案会受到你所在学校和专业的要求、导师的意见以及时间和资源的限制等因素的影响。
因此,在开始设计之前,建议与导师进行详细的讨论和指导,以确保设计方案的可行性和符合要求。
operation would result in non-manifold bodies

operation would result in non-manifold bodies在计算机图形学和几何建模领域,非流形体是指在三维空间中形状的一种特殊类型。
一个非流形体具有一个或多个不符合流形特性的区域。
流形是指一个无边界、表面光滑、内部无孔洞的物体,而非流形体则违反了这些性质。
非流形体在计算机图形学中经常出现,因为在建模和形状编辑过程中,一些操作可能会导致这种类型的物体。
下面是一些可能导致非流形体的操作:1. 重叠面:当一个物体的两个面共享相同的边或边集时,就会出现重叠面。
这可能是由于复制、移动或变形等操作导致的,会导致一个或多个非流形体形成。
2. 孔洞:一个非流形体可能有一个或多个孔洞,即在物体内部形成的空心区域。
这可能是由于布尔运算(如取交集、取并集)或其他形状编辑操作导致的。
3. 自交:自交是指一个物体的某个部分与其它部分相交。
这可能是由于旋转、拉伸、挤压等操作导致的,会导致非流形体的产生。
4. 嵌塞:嵌塞是指一个物体的某个部分被另一个物体或其自身部分所包围。
这可能是由于复制、移动、布尔运算等操作导致的。
5. 物体边界:非流形体的边界可能会有额外的不连续部分,即在其中一个顶点出现了一个无界的半边。
这种情况可以由于顶点的合并、分裂、删除等操作引起。
非流形体的存在可能会影响后续的计算和渲染过程。
例如,非流形体在进行体现场计算(CSG)和有限元分析时可能会导致错误的结果。
此外,在图形渲染过程中,非流形体可能会导致阴影、光照、纹理映射等效果的不准确或意外变化。
为了处理非流形体,通常需要进行修复操作,将其转换为流形体。
修复非流形体的方法有很多,一些常用的方法包括:1. 网格替代:通过重新生成一个流形网格替代非流形网格。
这可能涉及到重建表面或拓扑结构,以确保生成的网格符合流形特性。
2. 清理操作:通过一系列操作,例如顶点合并、边合并、面合并等,来清理非流形体中的不连续和重叠部分。
3. 网格修剪:通过删除非流形体中的不规则部分或孔洞,使其成为一个流形体。
一类本原有向图Scrambling指数的上界

情形 1 s ≤广 要1 .
此 时应 用 引理 2 , 不 难得 到结论 成立 .
情形 2 s >i - 昙] .
由于 L( D) ={ 8 , n , n , …, n , n } , 且 任意 三个 圈长 的最 大公约 数都 大于 1 , 所 以对所 有 1 ≤ ≤r g c d ( s ,
,
则 是 … ( D ) ≤ m i n { L 号 J s , L S J } + z … .
定理 1 设 D 是 一 个 阶 本 原 有 向 图 , 5是 D 的 最 小 圈 长 , 令 L( D) ={ S , a 1 , a , , …, a 1 t -, a r } , 集合中的
公 因子为 1 .
t
本文 中 , 记号 U — , 表示 有 向 图 D 中存在 从 到 长为 t的途径 . 记号 z …表 示从 U到 途径 的长度 .
M. Ak e l b e k和 S . K i r k l a n d在 2 0 0 9年 发表 的论 文- 1 中引入 了 S c r a mb l i n g指数 的概 念.
n ) ≠1 , 并且必然存在一个p E L ( D ) , 满足s <p ≤口 且g c d ( 5 , 户 ) ≤吾. 若不然, 则g c d ( s , n ) ( 1 ≤ ≤r ) 只能
第 1 2 卷
第 1 期
太 原 师 范 学 院 学 报 ( 自然 科 学版 )
J OUR NAL OF TA I YUAN N OR MA L UNI VE R S I T Y( Na t u r a l S c i e n c e E d i t i o n )
V o 1 . 1 2 N o . 1
Gorenstein投射模的张量积

南京大学学报数学半年刊第37卷第 1期JOURNAL OF NANJING UNIVERSITY Vol. 37, No.l 2020年5月MATHEMATICAL BIQUARTERLY May, 2020DOI: 10.3969/j.issn.0469-5097.2020.01.06G orenstein投射模的张量积*黄云涛 宋伟灵(南京林业大学理学院应用数学系,南京210037)摘要设丑和S是代数闭域K上的有限维代数.如果M和7V分别是有限生成的(半- )Gorenstein投射右i?-模和右模,则M W是有限生成的(半-)Gorenstein投射右模.作为应用,如果i?的上三角矩阵代数是C M-有限的,则i?也是C M-有限的.关键词张量积,半-G o r e n s t e i n投射模,Gorenstein投射模,上三角矩阵代数中图法分类号0154.21引言代数的张量积是有限维代数的表示理论中重要的研究课题和研究工具.它与代数的表示型[3]以及代数的Gorenstein性质有着密切的联系.对有限维代数,Auslander和Reiten在[2]中 证明了,和S都是Gorenstein代数当且仅当也是Gorenstein代数.注意到上三角矩阵代数是代数张量积的一种特殊情形.近年来,上三角矩阵代数的同调性质得到代数学家们的广泛研究.另一方面,相对同调代数最早是由E i l e n b e r g和Moore在上世纪60年代创立的,主要是用某一类模代替经典同调代数中的投射模类,称之为相对投射模.通过将投射,内射和平坦模推广***************;***************.cn收稿日期:2020^2-04.• 84 •南京大学学报数学半年刊2020年5月为Gorenstein投射,内射和平坦模,Auslander和B r i d g e r,Enochs和Jenda等人建立了Gorenstein同调理论(丨1,7,8]).现在,Gorenstein同调理论已成为相对同调代数的核心研究内容,这一理论在 代数表不论和代数几何中都起着重要的作用.很多代数学者,如:Enochs, C h r i s t e n s e n, Holm, Ringel以及国内的丁南庆,章璞,陈小伍,刘仲奎等及他们的合作者都在这方面做出了很多贡 献([5,6,9,10,11]).特别地,2020年1111^61和章撲合作提出了半-0〇^1^6比投射模的概念,并证明 了Gorenstein投射模的定义中所涉及条件的独立性[12].更多关于半-G o r e n s t e i n投射的研究参 见[13].本文主要结合代数的张量积研究半-G o r e n s t e i n投射模以及Gorenstein投射模的性质并证 明如下的定理.定理1设和S是代数闭域K上的有限维代数.如果M和i V分别是有限生成的(半-) Gorenstein投射右模和右S-模,则M(g i j f W是有限生成的(半-)G o r e n s t e i n投射右S-模.本文的章节安排如下:在第二节中我们回顾基础知识;在第三节中我们证明主要结果.本文中所有的代数都是代数闭域K上的有限维代数.如无特殊声明,所有的模都是有限生 成右模.2基础知识在本节中,我们回顾有关(半^Gorenstein投射模和代数的张量积的基本知识.设是一个代数,用mod-i?表示有限生成右i?-模范畴.我们有以下定义丨7,81.定义2.1设M e mod-兄如果存在正合序列...—y P\—y j P〇—^_P〇—y^,其中所有的尺,户都是有限生成的投射右!模,使得该序列作用函子后保持正合且M兰Im(P〇-^_P〇),则称M为Gorenstein 投射模.我们有如下事实:对任意M€ m o d-i?,M是Gorenstein投射的当且仅当M是自反的(即M兰H o m M H o m/^M,且对任意i2 1,Ext^(M, R) =0=Ext^HomnCM, R),R)([8,命题10.2.6]).下面我们给出半-Gorenstein投射模的概念丨12].第1期黄石涛等:Gorenstein投射模的张量积•85 •定义2.2设M€m o d-R如果对任意i>1,Ext^(M,丑)=0成立,则称M是半-G o r e n s t e i n 投射模.易知,Gorenstein投射模是半-Gor e n s t e i n投射模.反之,一般是不成立的([12]).下面的引理对于本文主要结果的证明很关键.引理2.3([4,第XI章,命题1.2.3和定理3.1])设丑和S是两个代数, e mod-尺且i V i,i V2€ mod-S.则对于任意的m》0,我们有⑭尺A/i,(8)k爪)兰㊉i+j=m E x t W M i M2)⑭尺Ext^iVi,爪).3主要结果及证明在本节中,我们给出半-G o r e n s t e i n投射模与代数的张量积之间的关系,并证明本文的主要 结果.命题3.1设i?和S是两个代数,M e mod-/?且T V e m〇d-S.则(1)Homi{l8,(.s(M (8>if N, R <S>k S)S Homfi(M, R) <S>k U o m s(N, S).(2)如果M和T V分别是自反右模和右S-模,则M T V是自反右丑孓模.证明(1)由引理2.3即得.(2)设M和7V分别是自反右i i-模和右模.则HomH(Homfi(M,i?),i?) =M,Homs(Homs(A^,S),S) =N.于是由(1)得,Homfi8K lS(HomR lg lK J s(M<8>/c A T,丑•?),尺S)=H o m R®Ks(Homfi(M, R) <S>K U o m s(N, S),R<g>K S)=Hom/{(Homfl(M, R), R) <S)k Homfl(Homs(A^, 5),S)^M^>K N,因此M T V是自反右丑;模.命题3.2设和S是两个代数.如果M和TV分别是半-Gorenstein投射右i?-模和右■5-模,则/V是半-Gorenstein投射右S1-模..86.南京大学学报数学半年刊2020年5月证明设M和7V分别是半-G o r enstein投射右i i-模和右S1-模.则对任意i2 1,我们有E x4(M, R) = 0 = Ext^(N, S).由引理2.3,对于任意的m>1,我们有E x t^0l<s(M (gi/c N, R(g>K S) = ®i+j=m E x t*f l(M, R) <S ik Extj s(N, S) =0.故M(8>a:iV是半-Gorenstein投射右丑S1-模.现在我们可以给出本文的主要定理.定理3.3设i?和S1是两个代数且M£ mod-丑,W€ mod-S.如果M和i V分别是G o r e nstein投 射右i i-模和右模,则T V是Gorenstein投射右S-模.证明设M和TV分别是Gorenstein投射右i?-模和右S1-模.则M和TV分别是自反右i?-模和 右孓模.于是由命题3.1(2)知,是自反右模•而由命题3.2知,M®K iV是半-Gorenstein投射右5■-模,即对任意i2 1,我们有E x t^KS(M N, R<S> S) = 0.另外,由引理2.3和命题3.1⑴知,对任意1,我们有Ex t^lglKS(HomR0Ks(M ^>K N, R S), R <S>k S)=Extfllgl/fS(Homfl(M, R) ®K Homs(Ar, S), R ®K S)谷㊉i+j=m Ext%(M,i?)E x t S(7V,S1)故M<8>if W是G〇renstein投射右i? S1-模.如果m od-i?中只有有限多个互不同构的不可分解的G orenstein投射模,则称代数丑为CM- 有限的;否则,称i?为CM-无限的(间).利用定理3.3,我们有如下结果.推论3.4设是代数E的上三角矩阵代数.如果T U i?)是CM-有限的,则i?也是CM-有 限的.证明记S为K的上三角矩阵代数,即S1 =则S是遗传代数.设P是任意的不可分解投射右模且M是任意的不可分解Gorenstein投射右i?-模.注意到r…(it)兰由定理3.3 知,M P是Gorenstein投射模.由于夂是代数闭域,因此HomsOP,/3)=尺.又因为M是不可分解的,所以HomWA^M)是 一个局部代数,从而 、HomXn(fl)(M P, M <S>k P) =Homfi(M, M) <S)k H〇m s(P, P)第1期黄石涛等:Gorenstein投射模的张量积■ 87 •也是局部代数.于是是不可分解的Gorenstein投射右模.易知,如果M2(在mod-i?中),则M2(在mod-r…(i?)中).由此易得,若丑是C M-无限的,则r…(i?)也是C M-无限的.证毕.参考文献[1] Auslander M and Bridger M. Stable module theory. Memoirs Amer. Math. Soc., No. 94, AmericanMathematical Society, Providence, R.I., 1969.[2] Auslander M and Reiten I. Cohen-Macaulay and Gorenstein algebras, in Representation Theory ofFinite Groups and Finite-Dimensional Algebras. Bielefeld, 1991, edited by G.O. Michler and C.M.Ringel, Progr. Math., Vol. 95, Birkhauser, Basel, 1991, 221-245.[3] Auslander M, Reiten I and S m ol</> S O. Representation Theory of Art i n Algebras, Corrected reprint ofthe 1995 original. Cambridge Studies in Adv. Math., Vol. 36, Cambridge Univ. Press, Cambridge, 1997.[4] Cartan H and Eilenberg S. Homological algebra. Princeton Landmarks in Mathematics, PrincetonUniversity Press, Princeton, N.J., 1999.[5] Chen X W. An Auslander-type result for Gorenstein-projective modules. Adv. Math., 2008, 218:2043-2050.[6] Christensen L W, Frankild A and Holm H. On Gorenstein projective, injective, and at modules-Afunctorial description with applications, J. Algebra, 2006, 302: 231-279.[7] Enochs E E and Jenda O M G. Gorenstein injective and projective modules. Math. Z., 1995, 220:611-633.[8] Enochs E E and Jenda O M G. Relative Homological Algebra, de Gruyter Exp. Math., Vol. 30,Walter de Gruyter Co., 2000.[9] Geng Y X and Ding N Q. V^-Gorenstein modules. J. Algebra, 2011, 325: 132-146.[10] Li Z W and Zhang P. Gorenstein algebras of finite Cohen-Macaulay type. Adv. Math., 2010, 218:728-734.[11] Liu Z K and Yang X Y. Gorenstein projective, injective and flat modules, J. Aust. Math. Soc.,2009, 87: 395-407.[12] Ringel C M and Zhang P. Gorenstein projective modules and Semi-Gorenstein projective modules.Algebra Number Theory, 2020, 14: 1-36.• 88 ■南京大学学报数学半年刊2020年5月[13] Ringel C M and Zhang P. Gorenstein projective modules and Semi-Gorenstein projective modulesII, J Pure Appl. Algebra, 2020, 224: 106248.T E N SO R P R O D U C T S OF G O R EN STEINPR O JEC TIV E M ODULESHuang Yuntao Song Weiling(Department of Applied Mathematics, College of Science, Nanjing Forestry University,Nanjing 210037)A b s t r a c t Let R and S be finite dimensional algebras over an algebraically closed field K. If M and N are finitely generated (semi-)Gorenstein projective right /^-module and right S-module respectively, then M 0/c is a finitely generated (semi-)Gorenstein projective right R <S>k5-module. As an application, we get that if the upper triangular matrix algebra of an algebra R is CM-finite, then so is R.K e y w o r d s Tensor products, semi-Gorenstein projective modules, Gorenstein projective modules, upper triangular matrix algebrasA M S(2000)s u b j e c t c la s s ific a tio n18G25, 16E30。
在海边上做的事英语作文

在海边上做的事英语作文Embarking on Coastal Adventures: A Comprehensive Guideto Seaside Delights.The allure of the seaside has captivated hearts for centuries, beckoning us with its symphony of crashing waves, golden sands, and boundless horizons. From serene strolls along the shore to exhilarating water sports, the coast offers a myriad of enthralling experiences that cater to a wide range of interests.1. Sun-Kissed Days on the Beach.The very essence of a seaside getaway revolves around basking in the warmth of the sun while immersing oneself in the sensory delights of the beach. Sink your toes into the soft, yielding sand, feel its gentle caress on your skin, and let the rhythmic sound of the waves lull you into astate of tranquility. Unwind with a captivating book, lose yourself in the pages of a captivating novel, or simplysurrender to the meditative stillness of the moment. If relaxation is your paramount goal, consider indulging in the rejuvenating embrace of a beachside massage, allowing skilled hands to knead away any lingering tension.2. Coastal Explorations on Foot or Bike.Embark on a leisurely walk or invigorating bike ride along the scenic coastline, breathing in the invigorating ocean air. Marvel at the rugged beauty of towering cliffs, witness the graceful flight of seabirds soaring overhead, and discover hidden coves that seem untouched by time. As you traverse the winding paths, let your senses awaken to the sights, sounds, and scents of the coastal environment. Whether you choose to amble at a leisurely pace or push your limits with a challenging bike ride, the coastline offers a sanctuary for both relaxation and exhilaration.3. Water Sports: Unleashing Your Inner Aquatic Adventurer.The ocean beckons with a wealth of exhilarating watersports, promising an adrenaline rush that will leave you yearning for more. Glide over the water on a surfboard or bodyboard, harnessing the power of the waves for an unforgettable surfing experience. If you prefer to explore beneath the surface, strap on a snorkel or scuba mask and immerse yourself in a vibrant underwater world teeming with marine life. From the graceful ballet of tropical fish to the awe-inspiring majesty of sea turtles, the ocean's depths hold countless wonders waiting to be discovered.4. Coastal Culture: Embracing Local Heritage.Beyond the sun, sand, and water, the seaside often boasts a rich cultural tapestry that is waiting to be explored. Delve into local history by visiting charming coastal towns and villages, where quaint streets lined with pastel-hued cottages whisper tales of bygone eras. Explore museums that showcase the region's maritime heritage, showcasing ancient seafaring traditions and the intrepid explorers who ventured forth from these shores. Immerse yourself in the local cuisine, savoring seafood delicacies freshly caught from the bountiful ocean, and engage withfriendly locals who are eager to share their stories and cultural insights.5. Sunset Spectacles: A Symphony of Hues.As the day draws to a close, make your way to a vantage point overlooking the horizon and witness the mesmerizing spectacle of a coastal sunset. Watch in awe as the sky transforms into a canvas of vibrant colors, painting the sky with hues of crimson, amber, and gold. Capture the moment with a breathtaking photograph, forever etching the memory of this fleeting beauty. Allow the gentle sea breeze to carry your worries away as you surrender to the tranquility of the moment, enveloped in the ethereal glow of nature's grand finale.6. Stargazing Extravaganza:After darkness descends, the seaside transforms into a celestial sanctuary, offering unparalleled opportunitiesfor stargazing. Spread out a blanket on the beach and gaze up at the starlit sky, marveling at the uncountablecelestial bodies twinkling above. Escape the artificial lights of urban areas and immerse yourself in the pristine darkness that allows the stars to shine in their full glory. Identify constellations, make a wish upon a shooting star, and feel a profound connection to the vastness of the universe.7. Coastal Wildlife Encounters.The coastline is a vibrant ecosystem that supports a diverse array of wildlife. Embark on a guided tour or embark on a self-guided exploration to encounter the creatures that call this unique environment home. Observe majestic seabirds soaring through the air, their wings cutting through the wind with effortless grace. Watch as playful dolphins leap from the water, their sleek bodies glistening in the sunlight. Keep an eye out for seals basking on the rocks or sea turtles nesting on secluded beaches. These encounters with coastal wildlife are sure to create lasting memories that will warm your heart.8. Culinary Delights: Savoring the Flavors of the Sea.No seaside adventure is complete without indulging in the culinary delights that the ocean has to offer. Visit local restaurants that specialize in seafood, where skilled chefs showcase the freshest catch of the day with culinary artistry. Savor succulent oysters, freshly shucked and served with a squeeze of lemon. Delight in the delicate flavor of steamed mussels, accompanied by a flavorful broth. Sample grilled fish, its tender flesh infused with the essence of the sea. Each bite is a testament to the bountyof the ocean and the culinary traditions that have been passed down through generations.9. Coastal Gardens: A Tapestry of Botanical Beauty.Amidst the vast expanse of the coastline, discover hidden gems in the form of coastal gardens. These carefully cultivated sanctuaries showcase a remarkable collection of plants that have adapted to the unique conditions of the seaside environment. Wander through vibrant flowerbeds, inhale the heady fragrance of blooming roses, and admirethe architectural beauty of succulents that thrive in thesalty air. Coastal gardens are a testament to theresilience of nature and offer a tranquil oasis amidst the boundless energy of the ocean.10. Coastal Photography:The seaside presents a photographer's paradise,offering countless opportunities to capture the beauty of the natural world. With endless horizons, dramatic cliffs, and captivating wildlife, the coast is a virtual playground for photographers of all skill levels. Experiment with different angles, compositions, and lighting to create stunning images that evoke the essence of this enchanting environment. Share your coastal photography with the world, inspiring others to appreciate the wonders of the seaside.In conclusion, the allure of the seaside lies in its ability to cater to a myriad of interests and desires. Whether you seek relaxation, adventure, cultural immersion, or simply the opportunity to connect with nature, the coast offers an abundance of experiences that will enrich your life. Embark on a coastal adventure today and discover thecaptivating delights that await you by the shimmering shores.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Journal of Combinatorial Theory,Series B87(2003)130–137/locate/jctbOn immersions of uncountable graphsThomas AndreaeMathematisches Seminar,Universita¨t Hamburg,Bundesstra e55,Hamburg D-20146,GermanyReceived6March2001AbstractIn his paper on well-quasi-ordering infinite trees(Proc.Cambridge Philos.Soc.61(1965) 697),Nash-Williams proposed the conjecture that the class of all graphs(finite or infinite)is well-quasi-ordered by the immersion relation(which is denoted here by p1).In addition,in a subsequent paper,Nash-Williams discussed a weaker version of his original conjecture to the effect that the class of graphs is well-quasi-ordered with respect to a relation p2which, roughly speaking,is obtained by redefining H p1G so that distinct vertices of H can be mapped into the same vertex of G:It is the purpose of the present note to disprove Nash-Williams’two immersion conjectures.r2002Elsevier Science(USA).All rights reserved.Keywords:Immersion relation;Infinite graphs;Well-quasi-ordering;Antichains1.IntroductionFor graph theoreticterminology,we refer to the definitions and notational conventions collected at the end of the introduction or to the textbook of Diestel[1]. The graphs considered in this note do not contain loops or multiple edges.For graphs G;H;we write H p G if G contains a subgraph which is isomorphic to a subdivision of H:A classical result in infinite graph theory states that the class of trees is well-quasi-ordered by the subdivision relation p:Theorem A(Nash-Williams[2]).If T1;T2;y is an infinite sequence of trees,then there exist positive integers i;j such that i o j and T i p T j:The following well-known conjecture of E.Va zsonyi apparently dates back to the 1930s.Forfinite graphs,the truth of the conjecture is an immediate consequence of E-mail address:andreae@math.uni-hamburg.de.0095-8956/02/$-see front matter r2002Elsevier Science(USA).All rights reserved.doi:10.1016/S0095-8956(02)00030-8T.Andreae/Journal of Combinatorial Theory,Series B87(2003)130–137131the graph minor theorem of Robertson and Seymour[4];cf.also[1].In the general case,however,the conjecture remains far from proved to this day,although partial results on the infinite case can be obtained as consequences of results of Thomas[6].Conjecture(Va zsonyi).If G1;G2;y is an infinite sequence of graphs in which every vertex has degree p3;then there exist positive integers i;j such that i o j and G i p G j: Theorem A and Va zsonyi’s conjecture deal with restricted classes of graphs, namely,trees and graphs with maximum degree at most3,respectively.This prompted Nash-Williams[2]to suggest another conjecture for the class of all graphs which,if true,would have both Theorem A and Va zsonyi’s conjecture as corollaries. For a graph G;let PðGÞdenote the set of nontrivial paths of G:For graphs G;H;an immersion j:H-G is a mapping j:VðHÞ,EðHÞ-VðGÞ,PðGÞsuch that(i)if v A VðHÞ;then jðvÞA VðGÞ;(ii)if v;v0A VðHÞ;v a v0;then jðvÞa jðv0Þ;(iii)if e¼vv0A EðHÞ;then jðeÞA PðGÞand the path jðeÞconnects jðvÞwith jðv0Þ; (iv)if e;e0A EðHÞare distinct,then jðeÞand jðe0Þare edge-disjoint and(v)if e¼vv0A EðHÞand v00A VðHÞ;then jðv00Þe VðjðeÞÞ\f jðvÞ;jðv0Þg:Writing H p1G to indicate that there exists an immersion j:H-G;Nash-Williams’conjecture reads as follows.Conjecture A(Nash-Williams[2]).If G1;G2;y is an infinite sequence of graphs,then there exist positive integers i;j such that i o j and G i p1G j:In his paper[3],Nash-Williams subsequently presented a weaker version of Conjecture A which is still strong enough to imply Theorem A and Va zsonyi’s conjecture.Let CðGÞdenote the set of cycles of a graph G:For graphs G;H;an immersion j:H-G in the weak sense is a mapping j:VðHÞ,EðHÞ-VðGÞ,PðGÞ,CðGÞsuch that(i),ðii0Þ;ðiii0Þ;(iv),(v)hold,where (i),(iv)and(v)are as above and the statementsðii0Þ;ðiii0Þare as follows.(ii0)if e¼vv0A EðHÞand jðvÞa jðv0Þ;then jðeÞA PðGÞand the path jðeÞconnects jðvÞwith jðv0Þand(iii0)if e¼vv0A EðHÞand jðvÞ¼jðv0Þ;then jðeÞA CðGÞand jðvÞis a vertex on cycle jðeÞ:Writing H p2G if there exists an immersion j:H-G in the weak sense,the modified version of Conjecture A reads as follows.Conjecture B(Nash-Williams[3]).If G1;G2;y is an infinite sequence of graphs,then there exist positive integers i;j such that i o j and G i p2G j:In[4],Robertson and Seymour announced a proof of Conjecture A for the case of finite graphs G1;G2;y(which,of course,implies the truth of Conjecture B forfinitegraphs).It is the purpose of the present paper to show that,in the general case of arbitrary graphs,counterexamples to Conjectures A and B exist.The question whether or not the conjectures hold for countable graphs remains open.(Actually,the paper also leaves open the question whether Nash-Williams’conjectures hold for graphs of cardinality less than the first limit cardinal greater than the cardinality of the continuum.)The paper is organized as follows.In Section 2,we establish a result which,to some extent,clarifies the relationship between the immersion relations p 1and p 2:we show that for each family of graphs G i ði A I Þthere exists a family of graphs H i ði A I Þsuch that,for all i ;j A I ;G i p 1G j if and only if H i p 2H j (Theorem 1).In particular this means that,in order to disprove Conjecture B,it is enough to find a counterexample to Conjecture A.In Section 3,we modify some of the ideas of Thomas [5]in order to make them compatible with the immersion relation p 1:This,when taken together with Theorem 1of the present note,implies Theorem 2,which states that there exists a sequence H 1;H 2;y of uncountable graphs such that H i 4/2H j for all i ;j with i o j :Theorem 3is a sharpened version of Theorem 2showingthat the sequence H 1;H 2;y can be modified to obtain an antichain H 01;H 02;y ;thatis,H 0i 4/2H 0j holds for all i ;j with i a j :Our terminology is standard.For graph theoreticterms not defined here,we refer to Diestel [1].The vertex set and edge set of a graph G are denoted by V ðG Þand E ðG Þ;respectively.If e is an edge joining vertices v ;w ;then e is denoted by vw :For v A V ðG Þ;the degree of v in G is denoted by d G ðv Þ:An edge is said to be pendant if one of its ends has degree one.A family of graphs G i ði A I Þis edge-disjoint if E ðG i Þ-E ðG j Þ¼|for all i ;j A I with i a j :A path is a graph P consisting of n þ1distinct vertices a 0;y ;a n ðn X 0Þand edges a i a i þ1ði ¼0;y ;n À1Þ:For paths,we use notations like P ¼ða 0;y ;a n Þ:A path is trivial if it consists of just one vertex.For a path P ¼ða 0;y ;a n Þ;the vertices a 0;a n are called endvertices of P :A path P is an x ;y -path (or likewise P is said to connect x with y )if x and y are its endvertices.In order to stress the difference of the above defined notions of an ‘immersion’and an ‘immersion in the weak sense’,the former will also be referred to as an immersion in the strong sense .A binary relation %on a set Q is a quasi -order if it is reflexive and transitive.We say that Q is well -quasi -ordered by %if the relation %is a quasi-order on Q and if for each infinite sequence q 1;q 2;y of elements of Q there exist positive integers i ;j such that i o j and q i %q j :Given a quasi-order %on Q ;a family q i ði A I Þof elements of Q is called an antichain (with respect to %)if q i I q j for all i ;j A I with i a j :The set f 0;1;y g of natural numbers is denoted o :The symbol c denotes the cardinality of the continuum.Cardinals are identified with their initial ordinals.2.A result linking the two versions of the immersion relationIn this section,we establish a result (Theorem 1)on the relations p 1and p 2which in particular shows that,in order to disprove Conjecture B,it is enough to findT.Andreae /Journal of Combinatorial Theory,Series B 87(2003)130–137132a counterexample to Conjecture A.Most likely,Theorem1can also be applied in other situations to reduce a problem for p2to the analogous problem for p1: Theorem 1.For each family of graphs G iði A IÞthere exists a family of graphs H iði A IÞsuch that,for all i;j;A I;G i p1G j if and only if H i p2H j:In particular,G iði A IÞis an antichain with respect to p1if and only if H iði A IÞis an antichain with respect to p2:Proof.Let G iði A IÞbe a family of graphs.We may assume that G i-G j¼|for all i;j A I;i a j:Let m;a;b;g be cardinals such thato p m o a o b o g and d GiðvÞo m for all i A I and v A VðG iÞ:ð1ÞFor the purpose of defining the graphs H i;we introduce a graph F as follows.Let VðFÞbe the union of disjoint sets X0;X1;y;X5where X0consists of three elements a;b;c and X1;y;X5are infinite sets with j X1j¼m;j X2j¼j X3j¼a;j X4j¼b;j X5j¼g:Let further x:X2-X3be a bijection and define the edge set of F by EðFÞ¼f ax:x A X1,X2,X3g,f bx:x A X1,X4,f c gg,f cx:x A X5g,f xx0:x A X2;x0¼xðxÞg:The graph F is displayed in Fig.1.In particular,observe that in F there are*m edge-disjoint paths of length two connecting a with b;*a edge-disjoint triangles attached at a;*b pendant edges attached at b and*g pendant edges attached at c:Let V¼SVðG iÞ;where the union is taken over all i A I:For each v A V;let F v be acopy of F such that F v-F w¼|whenever v a w and such that F v-G j¼|for all v A V and j A I:For each v A V;let f v:F-F v be an isomorphism and put a v:¼f vðaÞ;b v:¼f vðbÞ;c v:¼f vðcÞ:For each i A I;let H i be the graph that results from G i and the graphs F vðv A VðG iÞÞby identifying each vertex v A G i with vertex a v A F v:Since the so-defined graphs H i are disjoint,we may write dðxÞrather than d Hi ðxÞto denote the degree of a vertex x in H i:For each i A I;we put A i:¼VðG iÞð¼Fig.1.The graph F occurring in the proof of Theorem1.T.Andreae/Journal of Combinatorial Theory,Series B87(2003)130–137133f a v :v A V ðG i ÞgÞ;B i :¼f b v :v A V ðG i Þg ;and C i :¼f c v :v A V ðG i Þg :Further,we write x B y to indicate that x and y are vertices of the same graph F v :Clearly,if G i p 1G j then H i p 1H j and thus H i p 2H j :For the proof of the converse,let i ;j A I and assume that h :H i -H j is an immersion in the weak sense.Let g :G i -H j denote the restriction of h to G i :Clearly,Theorem 1is proved if we show thatg is an immersion G i -G j in the strong sense :ð2ÞFor the proof of (2),first observe thath ðc ÞA C j for all c A C i :ð3ÞIndeed,as a consequence of the construction of the graphs H i and H j ;together with assumption (1),one obtains d ðc Þ¼g 4d ðv Þfor all c A C i and all v A V ðH j Þ\C j :Hence(3).For similar reasons,we have h ðb ÞA B j ,C j for all b A B i :However,for b A B i ;h ðb ÞA C j is impossible since there is no cycle of H j passing through a vertex of C j ;while each vertex of B i is on a cycle of H i :Henceh ðb ÞA B j for all b A B i :ð4ÞNow,let a A A i :Note that there are a edge-disjoint cycles passing through a and,consequently,the same must be true for h ða Þ:From this,together with the fact that a 4m ;one concludes that h ða ÞA A j ;and thus we have found thath ða ÞA A j for all a A A i :ð5ÞWe next show that the following holds.Let a A A i ;c A C i with a B c :Then h ða ÞB h ðc Þ:ð6ÞFor the proof,consider b A B i with a B b B c :We first show h ða ÞB h ðb Þ:Suppose that h ða ÞB h ðb Þdoes not hold.Note that there exists a family ðP n Þn o m of m edge-disjoint paths of H j connecting h ða Þwith h ðb Þsince there are m such paths of H i connecting a with b :For each n o m ;let e n be the edge of P n which is incident with h ða Þ:From the supposition that h ða ÞB h ðb Þdoes not hold,together with (5),it follows that all edges e n are in G j and thus we have d G j ðh ða ÞÞX m ;which contradicts (1).Hence h ða ÞB h ðb Þ:Thus in order to obtain (6)it remains to show h ðb ÞB h ðc Þ:Suppose that this does not hold.Then one concludes from (4)and (5),together with h ða ÞB h ðb Þ;that the path h ðbc Þcontains h ða Þas an inner vertex,which is impossible.Hence h ðb ÞB h ðc Þ:We claim thath ðc Þa h ðc 0Þfor all c ;c 0A C i ;c a c 0:ð7ÞSuppose h ðc Þ¼h ðc 0Þfor distinct c ;c 0A C i :By (3),we have h ðc ÞA C j :Denote by D the component of H j Àh ðc Þcontaining the vertices of B j ;let e be the unique edge connecting h ðc Þwith D :Let b ;b 0A B i with b B c ;b 0B c 0:By (4)we have h ðb Þ;h ðb 0ÞA D and thus we conclude from h ðc Þ¼h ðc 0Þthat e is an edge of both h ðcb Þand h ðc 0b 0Þ;which is impossible.Hence (7).As a consequence of (3),(5)–(7)one obtainsh ða Þa h ða 0Þfor all a ;a 0A A i ;a a a 0:ð8ÞT.Andreae /Journal of Combinatorial Theory,Series B 87(2003)130–137134By(8),g is an immersion G i-H j in the strong sense.Further,by(5),g maps the vertices of G j onto vertices of G j:Moreover,note that it follows from the construction of H j that a path of H j is completely contained in G j if its endvertices are in G j:Hence(2).&3.Counterexamples to Conjectures A and BIn this section,based on ideas of[5],we construct a counterexample to Conjecture A.The existence of a counterexample to Conjecture B then follows from Theorem1. For an ordinal a;2a denotes the set of mappings x:a-f0;1g:We put2o a¼Sb o a2b:If x A2a and b p a;then x p b A2b denotes the restriction of x to b:For x0A2o and n A o;we putU nðx0Þ¼f x A2o:x p n¼x0p n g:The set2o is considered as a topological space endowed with the product topology, i.e.the topology whose basicopen sets are the U nðxÞ:Let k0;k1;y be cardinals with c p k0o k1o?.For each x A2o and n A o;let A x;n be a set of cardinality k n such that A x;n-2o oþ1¼|and A x;n-A y;m¼|whenever ðx;nÞaðy;mÞ:For each X D2o;we define a graph G X byVðG XÞ:¼f x p a:x A X;a A oþ1g,[x A Xn A oA x;n;EðG XÞ:¼[x A Xn A of av:a A A x;n;v A f x;x p n gg:For X D2o and v A VðG XÞ;we denote by d XðvÞthe degree of v in G X:As a consequence of the definitions,one obtains d XðvÞ¼sup f k i:i A o g if v A X;d XðvÞ¼j U nðxÞ-X jÁk n¼k n if v¼x p n for x A X and n A o;and d XðvÞ¼2;otherwise. Hence,for X;Y D2o;we haved XðxÞ4d YðvÞfor all x A X and v A VðG YÞ\Y:ð9ÞLemma1.For X D2o;let x;x0be distinct elements of X:Let further n A o:Then there exists a system of k n edge-disjoint x;x0-paths of G X if and only if x A U nðx0Þ: Proof.Assume x A U nðx0Þ:Then x0p n¼x p n:Let f:A x0;n-A x;n be a bijection.Foreach a A A x0;n;we define a path P a of length four by putting P a¼ðx0;a;x0p n¼x p n;fðaÞ;xÞ:Then these paths form a system of k n edge-disjoint x;x0-paths of G X: For a proof of the‘only if’direction,assume that x e U nðx0Þ:Let P be an x;x0-path of G X:From the definition of G X;together with the fact that x e U nðx0Þ;one readily obtains that P must contain a subpath P0¼ðy;a;v;b;zÞwith y A X\U nðx0Þ; z A U nðx0Þ;v¼y p m¼z p m;a A A y;m;b A A z;m for some m A o:Because y e U nðx0Þand z A U nðx0Þ;we have y p n a z p n:Hence m o n and thus we have proved that each x;x0-path P of G X must pass through a vertex v with v¼y p m for some y A X and T.Andreae/Journal of Combinatorial Theory,Series B87(2003)130–137135m o n:Note that there are onlyfinitely many vertices of this kind and each such vertex has degree at most k nÀ1:Thus there cannot exist k n edge-disjoint x;x0-paths of G X:&Lemma2.For X;Y D2o;let g:G X-G Y be an immersion in the strong sense and denote by j the restriction of g to X:Then j is a continuous injective function X-Y: Proof.By(9),we have jðXÞD Y:Clearly j is injective and thus it remains to show that j is continuous.For this purpose,let x0A X:For some n A o;consider the basic open neighborhood U nðjðx0ÞÞ:We have to show that there exists a natural number a n such thatjðU anðx0Þ-XÞD U nðjðx0ÞÞ:ð10ÞWe show that this is true for a n¼n:Let x A U nðx0Þ-X:If x¼x0;then jðxÞA U nðj x0ÞÞclearly holds.Hence let x a x0:By Lemma1,x0and x are joined by k n edge-disjoint paths of G X;and thus the same must hold for jðx0Þand jðxÞin G Y:Consequently,again by Lemma1,jðxÞA U nðjðx0ÞÞ:Hence(10).&By a result of Thomas[5,Theorem2]there exists a sequence X1;X2;y of subsets of2o(each of cardinality c)such that for all i;j with i o j there is no continuous injective function X i-X j:By combining this with Theorem1and Lemma2of the present paper,we obtain the following result.Theorem 2.There exists a sequence H1;H2;y of uncountable graphs such that H i4/2H j for all positive integers i;j with i o j:Proof.Let X1;X2;y be as given above.Put G i:¼G Xi ði¼1;2;yÞ:Then,byLemma2,we have G i4/1G j for all i;j with i o j and thus Theorem2follows by application of Theorem1.(It immediately follows from the proof of Theorem1that the resulting graphs H1;H2;y are uncountable.)&4.AntichainsThe following is a sharpened version of Theorem2.Theorem 3.There exists a sequence H01;H02;y of uncountable graphs such thatH0i 4/2H0jfor all positive integers i;j with i a j:Proof.Let G iði¼1;2;yÞbe as in the proof of Theorem2.Then G i4/1G j for all i;j with i o j:Note that a graph G X(as defined in Section3)is infinite and connected if X is non-empty.Consequently,the G i are infinite connected graphs.Let l1o l2y be cardinals with l14j VðG iÞjði¼1;2;yÞ:For i¼1;2;y;let G0i result from G i byadding l i new vertices of degree0.Then j VðG0j Þj o j VðG0iÞj for all j;i with j o i;andT.Andreae/Journal of Combinatorial Theory,Series B87(2003)130–137 136thus G0ip1G0j is impossible if j o i:On the other hand,G0i p1G0j is also impossible if i o j since this clearly would imply G i p1G j:Hence G0i4/1G0j for all i;j with i a j: Theorem3then follows from Theorem1.(By the proof of Theorem1,the resulting graphs H01;H02;y are uncountable.)&Note that the above proof of Theorem3yields disconnected graphs H01;H02;y.Inorder to obtain connected graphs showing the same,one can proceed as in the proofof Theorem3with just one slight modification when defining G0i :just pick one of thel i new vertices and join it by edges to all other vertices of G0i :Let a i A VðG0iÞbe thisvertex which now has degree l iði¼1;2;yÞ:Then any immersion G0i-G0j(in the strong sense)would map a i to a j(because of their degrees),and hence G i to G j:But the former is impossible for i4j;while the latter is impossible for i o j:Application ofTheorem1then yields the desired connected graphs H01;H02;y.(Note that,by theproof of Theorem1,the connectedness of the graphs H0i is an immediateconsequence of the connectedness of the graphs G0i:)References[1]R.Diestel,Graph Theory,Springer,New York,2000.[2]C.St.J.A.Nash-Williams,On well-quasi-ordering infinite trees,Proc.Cambridge Philos.Soc.61(1965)697–720.[3]C.St.J.A.Nash-Williams,A glance at graph theory—Part II,Bull.London Math.Soc.14(1982)294–328.[4]N.Robertson,P.D.Seymour,Graph Minors XX.Wagner’s conjecture,preprint.[5]R.Thomas,A counter-example to‘Wagner’s conjecture’for infinite graphs,Math.Proc.CambridgePhilos.Soc.103(1988)55–57.[6]R.Thomas,Well-quasi-ordering infinite graphs with forbiddenfinite planar minor,Trans.Amer.Math.Soc.312(1989)279–313.T.Andreae/Journal of Combinatorial Theory,Series B87(2003)130–137137。