人教版八年级上册数学13.4最短路径问题 公开课教案

合集下载

人教版八年级上册数学13.4最短路径问题公开课教案

人教版八年级上册数学13.4最短路径问题公开课教案

【教材分析】【教学流程】13.4第十三章 轴对称课题学习 最短路径问题合作交流自主探究合作交流轴对称的知识回答了这个问题•这个问题后来被称为将军饮马问题”.你能将这个问题抽象为数学问题吗?追问1这是一个实际问题,你打算首先做什么?答:将A, B两地抽象为两个点,将河1抽象为条直线.----------------------------------- 1追问2 你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?答:⑴从A地出发,到河边1饮马,然后到B地;(2)在河边饮马的地点有无穷多处,把这些地点与A, B连接起来的两条线段的长度之和,就是从A地到饮马地,再回到B地的路程之和;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线1上的点•设C为直线上的一个动点,上面的问题就转化为:当点C在1的什么位置时,AC与CB的和最小(如图).问题2:如图,点A, B在直线1的同侧,点C是直线上的一个动点,当点C在1的什么位置时,AC与CB的和最小?工追问3:对于问题2,如何将点B移”到1 的另一侧B处,满足直线1上的任意一点C, 都保持CB与CB 的长度相等?追问4:你能利用轴对称的有关知识,找到上问中符合条件的点B吗?展示点评:作法:(1)作点B关于直线1的对称点B;(2)连接AB ',与直线1交于点C. 则点C即为所求.追问5、你能用所学的知识证明AC + BC最短吗?让学生将实际问题抽象为数学问题,即将最短路径问题抽象为“线段和最小问题”学生尝试回答,并互相补充,最后达成共识:教师引导学生,联想轴对称知识解决,尝试作法,师生共同矫正,教师引导学生通过合作交流完成证明;学生证明后,教师提出下面问题,引导学生小组讨论解决:证明AC + BC最短时,为什么要在直线I上任取一点C(与点C不重合),师生共总结方法:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题•利用三角形的三边关系,若直线I上任意一点(与点C 不重合)与A,B两点的距离和都大于AC + BC就说明AC + BC最小.C的代表的是除点C以外直线I上的任意一点.展示点评:从A到B要走的路线是A T M TN T B,如图所示,而MN是定值,于是要使路程最短,只要AM + BN最短即可.解:在直线a上取任意一点M ',作M N丄b 于点N',平移AM,使点M移动到点N的位置,点A移动到点A的位置,连接AB交直线b于点N,过点N作MN丄a于点M,则路径AMNB最短.理由如下:如图,点M为直线a上任意一点(不与点M重合),•••线段A N是线段AM平移得到的•AA = MN ', A N '= AM•AM '+ MN '+ BN = A 'N '+ AA '+ BN '•/ MN 平行AA 且MN = AA '证明:如图,在直线I上任取一点C '与点C不重合),连接AC', BC', B'C'由轴对称的性质知,BC = B 'C, BC = BC••• AC + BC= AC + B C = AB ',AC '+ BC '= AC '+ B C '.在厶AB C '中,AB 'V AC '+ B C :• AC + BC V AC '+ BC '.即AC + BC最短.探究点二选址造桥问题如图,A和B两地在一条河的两岸,现要在河上造一座桥MN ,桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直.)教师引导学生自主、合作探寻解题思路,展示;方法总结:解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法将河的宽度为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.由两点之间线段最短(或三角形两边••• MN 可以看作是 AA'经过平移得到的 ••• A 'N = AM• AM + NB = A N + NB•••根据两点之间线段最短,得 A N + NB =A B<A N '+ BN '• AM + NB = A N + NB•••根据两点之间线段最短,得 A N + NB =A B<A N '+ BN '• AM + NB<AM '+ BN ' •/ MN = MN '• AM + MN + NB <AM '+ M N '+ N 'B ,即路 径AMNB 最短.4、如图所示, M N 是厶ABC 边AB 与AC 上两 点,在BC 边上求作一点P ,使厶PMN 的周长最 小。

八年级数学人教版上册13.4最短路径问题教学设计

八年级数学人教版上册13.4最短路径问题教学设计
八年级数学人教版上册13.4最短路径问题教学设计
一、教学目标
(一)知识与技能
1.了解最短路径问题的背景和应用,知道其在现实生活中的重要性。
2.掌握图形中两点间线段最短的性质,能够运用这一性质解决实际问题。
3.学会使用三角形两边之和大于第三边的原理,解决最短路径问题。
4.掌握运用数学符号和表达式来描述最短路径问题,并能运用相关公式进行计算。
因此,在教学过程中,教师需要关注学生的个体差异,针对不同学生的学习情况,提供适当的引导和帮助。同时,注重启发式教学,激发学生的兴趣和思考,引导学生主动探究,培养他们解决问题的能力。通过师生互动、生生互动,促进学生之间的交流与合作,使他们在探索最短路径问题的过程中,不断提高自己的数学素养和思维能力。
三、教学重难点和教学设想
5.能够运用所学的最短路径知识,解决一些简单的实际问题。
(二)过程与方法
在本章节的学习过程中,学生将通过以下方法培养解决问题的能力:
1.通过观察和分析实际生活中的最短路径问题,激发学生的学习兴趣,培养学生从生活中发现数学问题的意识。
2.通过自主探究、合作交流的方式,引导学生从简单问题入手,逐步深入,掌握解决最短路径问题的方法。
c.教师介绍三角形两边之和大于第三边的原理,并解释其在解决最短路径问题中的应用。
(三)学生小组讨论
1.教学内容:让学生分组讨论,共同探究解决最短路径问题的方法。
2.教学过程:
a.教师给出几个具有挑战性的最短路径问题,要求学生分组讨论。
b.学生在小组内分享思路,共同寻找解决问题的方法。
c.教师巡回指导,给予提示和建议,帮助学生解决问题。
五、作业布置
为了巩固学生对最短路径问题的理解,提高学生运用数学知识解决实际问题的能力,特布置以下作业:

人教版数学八年级上册13.4课题学习最短路径造桥选址实验教学探究优秀教学案例

人教版数学八年级上册13.4课题学习最短路径造桥选址实验教学探究优秀教学案例
3.教师对学生的学习过程和成果进行全面评价,关注学生的成长和进步。
4.鼓励学生积极参与评价,培养学生的评价能力和批判性思维。
四、教学内容与过程
(一)导入新课
1.教师通过一个有趣的现实生活中的选址问题,如“如何在两个村庄之间建一座桥,使得两地之间的距离最短?”引起学生的兴趣。
2.学生尝试用自己的知识解决此问题,教师引导学生思考问题的方法论。
人教版数学八年级上册13.4课题学习最短路径造桥选址实验教学探究优秀教学案例
一、案例背景
人教版数学八年级上册13.4课题学习“最短路径造桥选址实验教学”探究优秀教学案例,是基于学生在学习了平面直角坐标系、一次函数和二次函数等知识的基础上,对“线性规划”的初步认识。此章节内容旨在让学生通过实验探究,掌握线性规划的基本方法,解决实际问题。
在教学过程中,我以“最短路径造桥选址”为例,让学生结合生活实际,探讨如何在一个城市中选择最佳的桥梁建设位置,以达到连接两个区域、节省路程、提高效率的目的。通过对问题的探究,引导学生运用所学的数学知识,解决实际问题,提高学生的实践能力和创新能力。
在教学设计上,我充分考虑了学生的认知规律和兴趣,将抽象的数学知识与具体的生活情境相结合,以实验教学为主线,让学生在动手操作、观察分析、合作交流的过程中,掌握线性规划的方法。同时,我注重引导学生进行思考,激发学生的学习兴趣,培养学生的自主学习能力。
4.全面提高学生的数学素养:通过对实际问题的解决,本节课不仅使学生掌握了线性规划的基本方法,还培养了学生的观察力、动手能力、思维能力、沟通能力和团队协作能力,全面提高了学生的数学素养。
5.教学策略灵活多样:教师根据学生的认知规律和兴趣,采用了情景创设、问题导向、小组合作等多种教学策略,使学生在轻松愉快的氛围中学习,提高了教学效果。

人教版八年级数学上册13.4《最短路径问题》教案

人教版八年级数学上册13.4《最短路径问题》教案

第十三章轴对称13.4课题学习《最短路径问题》一、教学目标让学生能够利用轴对称、平移变换解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.二、教学重点及难点重点:利用轴对称、平移等变换将最短路径问题转化为“两点之间,线段最短”问题.难点:如何利用轴对称、平移将最短路径问题转化为线段(或线段的和)最短问题.三、教学用具电脑、多媒体、课件、刻度尺、直尺四、相关资源微课,动画,图片.五、教学过程(一)引言导入前面我们研究过一些关于“两点的所有连线中,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及选择最短路径的问题,本节课我们将利用数学知识探究“将军饮马”和“造桥选址”两个极值问题.设计意图:直接通过引言导入新课,让学生明确本节课所要探究的内容和方向.(二)探究新知问题1如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?1.将实际问题抽象为数学问题学生尝试回答,并相互补充,最后达成共识.(1)把A,B两地抽象为两个点;(2)把河边l近似地看成一条直线,C为直线l上的一个动点,那么,上面的问题可以转化为:当点C在l的什么位置时,AC与CB的和最小.2.解决数学问题(1)由这个问题,我们可以联想到下面的问题:如图,点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A、点B的距离的和最短?利用已经学过的知识,可以很容易地解决上面的问题,即:连接AB,与直线l相交于一点C,根据“两点之间,线段最短”,可知这个交点C即为所求.(2)现在要解决的问题是:点A,B分别是直线l同侧的两个点,如何在l上找到一个点,使得这个点到点A、点B的距离和最短?(3)如何能把点B移到l的另一侧B′处,同时对直线l上的任一点C,都保持CB与CB′的长度相等,就可以把问题转化为“上图”的情况,从而使问题得到解决.(4)你能利用轴对称的有关知识,找到符合条件的点B′吗?学生独立思考后,尝试画图,完成问题.小组交流,师生共同补充得出:作法:①作点B关于直线l的对称点B′;②连接AB′,与直线l相交于点C.则点C即为所求.3.证明“最短”师生共同分析,证明“AC+BC”最短.证明:如图,在直线l上任取一点C′(与点C不重合),连接AC′,BC′,B′C′,由轴对称的性质知:BC=B′C,BC′=B′C′,∴AC+BC=AC+B′C=AB′,AC′+BC′=AC′+B′C′.在△AB′C′中,AB′<AC′+B′C′,∴AC+BC<AC′+BC′.即AC+BC最短.思考:证明AC+BC最短时,为什么要在直线l上任取一点C′(与点C不重合),证明AC+BC<AC′+BC′?这里“C′”的作用是什么?学生相互交流,教师适时点拨,最后达成共识.若直线l上任意一点(与点C不重合)与A,B两点的距离都大于AC+BC,就说明AC +BC最小.问题2(造桥选址问题)如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直.)1.将实际问题抽象为数学问题把河的两岸看成两条平行线a和b(下图),N为直线b上的一个动点,MN垂直于直线b,交直线a于点M,这样,上面的问题可以转化为下面的问题:当点N在直线b的什么位置时,AM+MN+NB最小?2.解决数学问题(1)由于河岸宽度是固定的,因此当AM+NB最小时,AM+MN+NB最小.这样,问题就进一步转化为:当点N在直线b的什么位置时,AM+NB最小?(2)如图,将AM沿与河岸垂直的方向平移,点M移动到点N,点A移动到点A′,则AA′=MN,AM+NB=A′N+NB.这样,问题就转化为:当点N在直线b的什么位置时,A′N +NB最小?(3)如图,在连接A′,B两点的线中,线段A′B最短.因此,线段A′B与直线b的交点N的位置即为所求.3.证明“最小”为了证明点N的位置即为所求,我们不妨在直线b上另外任意取一点N′,过点N′作N′M′⊥a,垂足为M′,连接AM′,A′N′,N′B,证明AM+MN+NB<AM′+M′N′+N′B.你能完成这个证明吗?证明:如图,在△A′N′B中,∵A′B<A′N′+BN′,∴A′N+BN+MN<AM′+BN′+M′N′.∴AM+MN+BN<AM′+M′N′+BN′.即AM+MN+BN最小.设计意图:通过“将军饮马问题”和“造桥选址问题”的解决,增强学生探究问题的信心,让学生通过轴对称、平移变换把复杂问题进行转化,有效突破难点,感悟转化思想的重要价值.六、课堂小结1.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.2.利用平移确定最短路径选址解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.设计意图:通过小结,使学生梳理本节所学内容,体会轴对称、平移在解决最短路径问题中的作用,感悟转化思想的重要价值.七、板书设计13.4 最短路径问题运用轴对称解决距离最短问题利用平移确定最短路径选址。

人教版八年级数学上册13.4课题学习最短路径问题优秀教学案例

人教版八年级数学上册13.4课题学习最短路径问题优秀教学案例
3.课堂小结,教师引导学生总结本节课的学习内容,使学生对最短路径问题有一个全面的认识。
4.鼓励学生在课后进行深入研究,不断提高自己的数学素养。
五、案例亮点
1.生活实例引入:通过引入实际生活中的最短路径问题,如旅行路线规划、物流配送等,使学生能够直观地理解最短路径问题的意义和应用,提高学生的学习兴趣。
3.教师引导学生运用坐标系、函数、图论等知识,分析问题、解决问题。
(三)小组合作
1.学生分组进行讨论,培养学生的团队合作意识。
2.教师组织小组间的交流与分享,促进学生间的互帮互助。
3.教师巡回指导,针对不同小组的特点进行针对性指导。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,总结最短路径问题的解决方法。
人教版八年级数学上册13.4课题学习最短路径问题优秀教学案例
一、案例背景
本节内容为“人教版八年级数学上册13.4课题学习最短路径问题”,是在学生已经掌握了平面直角坐标系、一次函数和二次函数等基础知识的基础上进行学习的。通过对最短路径问题的探究,旨在培养学生的逻辑思维能力、空间想象能力和解决问题的能力。
3.组织学生探讨、交流最短路径问题的解决方法,培养学生合作学习的能力。
4.引导学生运用图论中的最短路径算法解决实际问题,提高学生运用所学知识解决实际问题的能力。
5.对学生进行评价,了解学生对最短路径问题的理解和运用程度,及时进行教学调整。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的积极性。
2.设计具有挑战性和吸引力的数学问题,激发学生的求知欲。
3.创设轻松、愉快的学习氛围,使学生在课堂上敢于发表自己的观点,培养学生的创新精神。
(二)问题导向
1.引导学生提出问题,如“如何找到两点之间的最短路径?”、“最短路径问题在实际生活中有哪些应用?”等。

人教版数学八年级上册13.4最短路径问题优秀教学案例

人教版数学八年级上册13.4最短路径问题优秀教学案例
结合课程内容,本节课的主要任务是让学生掌握利用坐标系求解两点间最短路径的方法,并能够运用到实际问题中。为了达到这个目标,我设计了一系列具有层次性的教学活动,如自主探究、合作交流、教师讲解等,旨在激发学生的学习兴趣,培养他们的动手操作能力和解决问题的能力。同时,我还将结合学生的学情,对教学内容进行适当的拓展,以提高学生的思维品质和创新能力。
2.组织学生进行课堂展示,让他们分享自己的学习心得和解决问题的方法,培养他们的表达能力和沟通能力。
3.教师对学生的学习过程和结果进行评价,关注他们的进步和成长,激发他们的学习动力。
(五)作业小结
1.布置具有实践性和拓展性的作业,让学生运用所学知识解决实际问题,提高他们的应用能力。
2.要求学生在作业中总结最短路径问题的解决方法,培养他们的归纳总结能力。
3.教师对学生的学习过程和结果进行评价,关注他们的进步和成长,激发他们的学习动力。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示实际,激发他们的学习兴趣。
2.设计具有挑战性和趣味性的实例,让学生在解决问题的过程中,自然引入最短路径问题的概念和方法。
3.创设合作交流的氛围,让学生在小组内共同探讨问题,激发他们的思考和创造力。
(二)讲授新知
1.引导学生关注最短路径问题的本质,即寻找两点间的最优路径,让学生在解决问题的过程中,自然而然地掌握相关知识。
2.通过提问、设疑等方式,引导学生思考最短路径问题的解决方法,激发他们的求知欲和好奇心。
3.讲解最短路径问题的解决方法,如坐标系法、动态规划法、图论等,让学生了解多种解决思路。
3.教师及时批改作业,给予学生反馈,帮助他们发现不足,提高学习效果。
本节课的教学内容与过程注重知识的传授、方法的训练和情感的培养,充分体现了教育的人文关怀和学生的全面发展。通过本节课的学习,学生将更好地掌握最短路径问题的解决方法,提高他们的数学素养和实际应用能力,为未来的学习和生活打下坚实基础。

人教版八年级数学上册13

人教版八年级数学上册13
-针对重点内容,通过讲解、示例、练习等多种形式,反复巩固,确保学生掌握。
-针对难点内容,采用分步教学,由浅入深,逐步引导学生理解并掌握。
-鼓励学生提问,及时解答学生的疑惑,关注学生的个体差异,因材施教。
3.教学评价:
-采用过程性评价与终结性评价相结合的方式,全面评估学生的学习效果。
-设计具有层次性和挑战性的练习题,让学生在课后巩固所学知识,提高问题解决能力。
3.解决最短路径问题时,如何将实际问题抽象为数学模型。
(三)教学设想
1.教学方法:
-采用启发式教学法,引导学生从实际问题中发现最短路径问题,激发学生的学习兴趣。
-结合具体案例,采用任务驱动法,让学生在实践中掌握求解最短路径的方法。
-利用小组合作学习,培养学生的团队合作精神和交流沟通能力。
2.教学策略:
三、教学重难点和教学设想
(一)教学重点
1.理解最短路径问题的基本概念,掌握求解最短路径的基本方法。
2.能够运用数学知识解决实际生活中的最短路径问题,提高问题解决能力。
3.培养学生的空间想象能力和逻辑思维能力。
(二)教学难点
1.理解并区分欧几里得距离和曼哈顿距离在实际问题中的应用。
2.掌握Dijkstra算法和Floyd算法的原理及求解步骤,能够灵活运用。
4.应用意识:让学生意识到数学知识在实际生活中的广泛应用,提高数学学习的实用价值。
二、学情分析
八年级学生在前两年的数学学习过程中,已经积累了基本的几何知识、代数运算能力和问题分析能力。在此基础上,他们对最短路径问题的学习具备了一定的基础。然而,最短路径问题涉及到一定的抽象思维和算法理解,对学生来说仍具有一定的挑战性。因此,在教学过程中,需要关注以下几点:
5.小组合作题:以小组为单位,讨论以下问题,并在课堂上进行分享:

人教版八年级数学上册13.4最短路径问题优秀教学案例

人教版八年级数学上册13.4最短路径问题优秀教学案例
3.小组合作学习:教师将学生分成小组,鼓励学生进行合作交流,共同探讨最短路径问题的解决方法。通过小组合作,学生可以互相学习、互相借鉴,提高解决问题的能力,同时培养团队合作精神和沟通能力。
4.多媒体教学手段:利用多媒体教学手段,如图片、视频等,展示实际问题情境,让学生更直观地感受到问题的背景和意义,提高学习效果。
在现实生活中,最短路径问题具有广泛的应用,如道路规划、网络路由等。因此,本节课的教学案例将以实际问题为背景,引导学生运用数学知识解决实际问题,培养学生的数学应用意识。
为了提高教学效果,本节课将采用小组合作、讨论交流的教学方法,让学生在探讨最短路径问题的过程中,提高自主学习能力和合作意识。同时,教师将以引导者、组织者的角色参与教学,为学生提供必要的帮助和指导,确保教学活动的顺利进行。
(三)小组合作
1.教师将学生分成小组,鼓励学生进行合作交流,共同探讨最短路径问题的解决方法。
2.教师引导学生进行小组讨论,鼓励学生分享自己的思路和观点,培养学生的合作意识和团队精神。
3.教师巡回指导,参与小组讨论,为学生提供必要的帮助和指导,确保每个学生都能参与到教学活动中来。
(四)反思与评价
1.教师引导学生进行自我反思,总结自己在解决最短路径问题过程中的思路和方法,找出自己的不足之处。
3.教师介绍迪杰斯特拉算法和贝尔曼-福特算法,讲解这两种算法的原理和步骤,并通过示例进行演示。
4.教师引入动态规划思想,讲解如何运用动态规划解决最短路径问题,并给出动态规划解决最短路径问题的步骤。
(三)学生小组讨论
1.教师将学生分成小组,并提出讨论问题,如“比较迪杰斯特拉算法和贝尔曼-福特算法的优缺点”、“如何运用动态规划解决最短路径问题?”等。
2.利用多媒体教学手段,展示实际问题情境,让学生直观地感受到最短路径问题的重要性和实用性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章轴对称
13.4 课题学习最短路径问题【教材分析】
【教学流程】
前面我们研究过一些关于“两点的所有连
线段最短”、“连接直线外一点与直线上
各点的所有线段中,垂线段最短”等的问题,
我们称它们为最短路径问题.现实生活中经常
涉及到选择最短路径的问题,本节将利用数学
知识探究数学史中著名的“将军饮马问题”
探索最短路径问题
相传,古希腊亚历山大里亚城里
有一位久负盛名的学者,名叫海伦.有一天,
一位将军专程拜访海伦,求教一个百思不得其
地出发,到一条笔直的河边
地.到河边什么地方饮马可
精通数学、物理学的海伦稍加思索,
你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?
从A地出发,到河边l饮马,然
(2)在河边饮马的地点有无穷多
把这些地点与A,B连接起来的两条线段的长度之和,就是从A地到饮马地,再回到地的路程之和;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线
为直线上的一个动点,上面的问题
当点C在l的什么位置时,
(如图).
对于问题2,如何将点
处,满足直线l上的任意一点
CB′的长度相等?
:你能利用轴对称的有关知识,到上问中符合条件的点B′吗?
作法:
关于直线l的对称点
,与直线l交于点
即为所求.
你能用所学的知识证明
展示点评:从A到B要走的路线是
,如图所示,而MN
是要使路程最短,只要AM+BN最短即可.
a上取任意一点M′,作
AM,使点M′移动到点
移动到点A′的位置,连接
,过点N作MN⊥a于点
最短.
理由如下:如图,点M′为直线
重合),
N′是线段AM平移得到的
MN′,A′N′=AM
MN′+BN′=A′N′+AA′
平行AA′且MN=AA′
2.如图,牧童在A处放马,其家在B处,A
B到河岸的距离分别为AC和BD,且AC=BD,
若点A到河岸CD的中点的距离为500米,
则牧童从A处把马牵到河边饮水再回家,所
走的最短距离是米.
P点就是所求做的点4、如图所示,M、N是△ABC边AB与AC上两
本节课你有什么收获?
①学习了利用轴对称解决最短路径问题
②感悟和体会转化的思想
教材第91页复习题13第15题.。

相关文档
最新文档