北师大版八年级上册数学期末质量检测试题附参考答案
北师大版数学八年级上学期《期末考试题》附答案

甲
乙
丙
丁
方差(s2)
0.020
0.019
0.021
0.022
A.甲B.乙C.丙D.丁
[答案]B
[解析]
分析]
方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
[详解]解:∵s2丁>s2丙>s2甲>s2乙,
方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
(1)求点 的坐标;
(2)点 在直线 上,且位于 轴的上方,将 沿直线 翻折得到 ,若点 恰好落在直线 上,求点 的坐标和直线 的解析式;
(3)设点 在直线 上,点 在直线 上,当 为等边三角形时,求点 坐标.
答案与解析
A卷(100分)
一、选择题.(每小题3分,共30分)
1.下列各数中,是无理数的是()
(1)求证: ;
(2)如图2,若 , ,折叠纸片,使点 与点 重合,折痕为 ,且 .
①求证: ;
②点 是线段 上一点,连接 ,一动点 从点 出发,沿线段 以每秒1个单位的速度运动到点 ,再沿线段 以每秒 个单位的速度运动到 后停止,点 在整个运动过程中用时最少多少秒?
28.如图,点 ,过点 做直线 平行于 轴,点 关于直线 对称点 .
[分析]
平移时k的值不变,只有b发生变化.
[详解]解:原直线的k=-3,b=0;向上平移5个单位得到了新直线,那么新直线的k=-3,b=0+5=5.
∴新直线的解析式为y=-3x+5.
故答案为y=-3x+5.
[点睛]求直线平移后的解析式时要注意平移时k和b的值的变化,掌握这点很重要.
(完整版)北师大版八年级上册数学期末测试卷及含答案(高分练习)

北师大版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s(千米)与行驶时间t(小时)的函数关系用图象表示为()A. B. C.D.2、在△ABC中,∠B=30°,点D在BC边上,点E在AC边上,AD=BD,DE=CE,若△ADE为等腰三角形,则∠C的度数为()A.20°B.20°或30°C.30°或40°D.20°或40°3、以下列各组数为边的三角形中,是直角三角形的有()( 1 )3,4,5;(2),,;(3),,;(4)0.03,0.04,0.05.A.1个B.2个C.3个D.4个4、若一个正方形的面积是12,则它的边长是()A. B.3 C. D.45、为了筹备班级元旦联欢晚会,班长对全班同学爱吃什么水果进行民意调查,再决定买哪种水果.下面的调查数据中,他最应该关注的是()A.众数B.平均数C.中位数D.加权平均数6、下列说法:①无理数都是无限小数;②的算术平方根是3;③数轴上的点与实数一一对应;④平方根与立方根等于它本身的数是0和1;⑤若点A(-2,3)与点B关于x轴对称,则点B的坐标是(-2,-3).其中正确的个数是()A.1个B.2个C.3个D.4个7、我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题,意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分一个,正好分完,试问大、小和尚各几人?若设大、小和尚各有x,y人,下列方程组正确的是( )A. B. C. D.8、12的负的平方根介于()A.﹣5与﹣4之间B.﹣4与﹣3之间C.﹣3与﹣2之间D.﹣2与﹣1之间9、要从甲、乙、丙三名学生中选出一名学生参加数学竞赛,对这三名学生进行了10次数学测试,经过数据分析,3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是()A.甲B.乙C.丙D.无法确定10、如图,一棵大树在离地面3米处折断,树的顶端落在离树干底部4米处,那么这棵树折断之前的高度是()A.8米B.12米C.5米D.5或7米11、如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l 于点B1,过点B1作直线l的垂线交y轴于点A2;;按此作法继续下去,则点A4的坐标为()A.(0,64)B.(0,128)C.(0,256)D.(0,512)12、如图,AB∥CD,AD=CD,∠1=70°,则∠2的度数是()A.20°B.35°C.40°D. 70°13、下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定14、如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于()A.8B.4C.10D.515、若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7B.5C.4D.3二、填空题(共10题,共计30分)16、如图,在周长为16,面积为6的矩形纸片中,是的中点. 是上一动点,将沿直线折叠,点落在点处.在上任取一点,连接,,则的最小值为________.17、如图,在⊿中,, 点在边上,;,则等于 ________ .18、如图,已知点A(x1, y1)、B(x2, y2)在一次函数y=kx+b(k<0)的图像上,则y1________y2。
2023-2024学年北师大版数学八年级上册期末测试卷(含答案)

期末测试卷(满分120分,时间90分钟)题号一二三总分得分一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的)1.4 的算术平方根是( )A.2B.-2C.±2 D .±22.如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的边长为( )A.4 B.8 C.16 D.643.在实数 ―15,3―27,π2,16,8,中,无理数的个数为( )A.1B.2C.3D.44.将直角坐标系中的点(-1,-3)向上平移4个单位,再向右平移2个单位后的点的坐标为( )A.(3,-1) B.(-5,-1) C.(-3,1) D.(1,1)5.某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( ) A. y=2x+4 B. y=3x--1 C. y=-3x+1 D. y=-2x+46.估算 24+3的值是( )A.在5与6之间B.在6与7 之间C.在7 与8之间D.在8 与9之间7.如图,将直尺与含 30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( )A.30° B.40° C.50° D.60°8.小明家1至 6月份的用水量统计图如图所示,关于这组数据,下列说法错误的是( ) A.众数是6 B.中位数是5 C.平均数是5 D.方差是 439.如果点P(x-4,x+3)在平面直角坐标系的第二象限内,那么x 的取值范围在数轴上可表示为( )10.下列命题中,是真命题的是( )A.算术平方根等于自身的数只有1B.斜边和一条直角边分别相等的两个直角三角形全等C.只有一个角等于60°的三角形是等边三角形 D .12是最简二次根式11.关于x,y 的方程组 {x +my =0,x +y =3的解是 {x =1y =,其中y 的值被盖住了.不过仍能求出m ,则m 的值是( )A .―12 B. 12 C .―14 D .1412.如图,正方形网格中的△ABC,若每个小方格边长都为1,则 △ABC 的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.以上答案都不对二、填空题(本大题共6小题,每小题4分,共24分.本题要求把正确结果填在规定的横线上,不需要解答过程)13.若点 M(a,-1)与点 N(2,b)关于y 轴对称,则a+b 的值是 .14.若关于x ,y 的二元一次方程组 {x +y =3k ,x ―y =k 的解也是二元一次方程 x +2y =8的解,则 k 的值为15.已知一组数据1,2,3,5,x ,它的平均数是3,则这组数据的方差是 .16.写出“全等三角形的面积相等”的逆命题 .17.如图,Rt△OA ₀A ₁ 在平面直角坐标系内, ∠OA₀A₁=90°,∠A₀OA₁=30°,以 OA₁为直角边向外作Rt△OA ₁A ₂,使 ∠OA₁A₂=90°,∠A₁OA₂=30°,,以OA ₂为直角边向外作 Rt △OA₂A₃,使 ∠OA₂A₃=90°, ∠A₂OA₃=30°,,按此方法进行下去,得到 RtOA 3A 4,RtOA 4A 5,⋯,RtOA 2017A 2018,若点 A₀(1,0),则 点 A ₂₀₁₈的横坐标为 .18.如图,在 △ABC 中, AB =AC ,D 、E 两点分别在AC 、BC 上,BD 是 ∠ABC 的平分线, DE‖AB ,若 BE = 5cm ,CE=3c m,则 △CDE 的周长是 .三、解答题(本大题共8小题,满分60分.解答应写出文字说明、证明过程或演算步骤)19.(6分)计算: (1)48―27+13; (2)8+182―(32―1)220.(6分)若a,b为实数,且b=a2―1+1―a2+aa+1,求―a+b―3的值.21.(8分)阅读理解,补全证明过程及推理依据.已知:如图,点 E 在直线DF 上,点 B 在直线AC 上,∠1=∠2,∠3=∠4.求证:∠A=∠F.证明:∵∠1=∠2(已知),∠2=∠DGF( ),∴∠1=∠DGF(等量代换),∴∥ ( ),∴∠3+∠=180°(),又∵∠3=∠4(已知),∴∠4+∠C=180°(等量代换),∴∥ ( ),∴∠A=∠F( ).22.(8分)解方程组:(1){2x+5y=30,2x―5y=―10;(2){3x―y=5, x+2y=11.23.(8分)如图,一条直线分别与直线 BE、直线CE、直线 CF、直线 BF 相交于点A,G,D,H且∠1=∠2,∠B=∠C.(1)找出图中相互平行的线,说说它们之间为什么是平行的;(2)证明:∠A=∠D.24.(8分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲837990乙858075丙809073(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.25.(8分))某大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在“十一黄金周”期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费 1 510 元.普通间/(元/人/天)豪华间/(元/人/天)贵宾间/(元/人/天)三人间50100500双人间70150800单人间1002001500(1)三人间、双人间普通客房各租了多少间?(2)设三人间共住了x人,则双人间住了人,一天一共花去住宿费用y元表示,写出y与x的函数关系式;(3)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?26.(8分)如图,在平面直角坐标系中,过点 B(6,0)的直线AB 与直线OA 相交于点A(4,2),动点 M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的14时,求出这时点 M的坐标.期末测试卷1. A2. B3. B4. D5. D6. C7. C8. B9. C 10. B11. A 12. B 13.-3 14.2 15.2 16.面积相等的三角形全等 17.―220173102918.13 cm 19.解(1)原式 =433;(2).原式 =62―14.20.解因为a,b 为实数,且 a ²―1≥0,1―a ²≥0,所以 a ²―1= 1―a ²=0.所以a=±1.又因为a+1≠0,所以a=1.代入原式,得 b =12,所以 ―a +b ―3=―3.21.解∵∠1=∠2(已知),∠2=∠DGF(对顶角相等),∴∠1=∠DGF(等量代换),∴BD ∥C E(同位角相等,两直线平行),∴∠3+∠C=180°(两直线平行,同旁内角互补).又∵∠3=∠4(已知),∴∠4+∠C =180°(等量代换),∴DF ∥AC(同旁内角互补,两直线平行),∴∠A=∠F(两直线平行,内错角相等).22.解(1){x=5,4,(2,y ₁=3,23.解 (1)CE‖BF ,AB‖CD .理由:∵∠1=∠2, ∴CE‖FB , ∴∠C =∠BFD . ∵∠B =∠C , ∴∠B =∠BFD ,∴AB∥CD;(2)由(1)可得AB∥CD,∴∠A=∠D.24.解 (1)x g =(83+79+90)÷3=84, x 2=(85+80+75)÷3=80,x y 3=(80+90+73)÷3=81.从高到低确定三名应聘者的排名顺序为:甲,丙,乙;(2)由该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,则甲淘汰.乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3.故乙将被录取.25.解(1)设三人间普通客房租了x 间,双人间普通客房租了y 间.根据题意得{3x +2y =50,50×50%×3x +70×50%×2y =1510,解得 {x =8,y =13.因此,三人间普通客房租了8间,双人间普通客房租了13间.(2)(50-x)根据题意得:y=25x+35(50-x),即y=-10x+1750.(3)不是,由上述一次函数可知,y 随x 的增大而减小,当三人间住的人数大于24人时,所需费用将少于1510元.26.解(1)设直线AB 的解析式是y=kx+b,根据题意得: {4k +b =2,6k +b =0,解得: {k =―1,b =6.则直线的解析式是:y=-x+6.(2)在y=-x+6 中,令x=0,解得:y=6,S AAC =12×6×4=12.(3)设OA 的解析式是y=mx,则4m=2,解得: m =12,则直线的解析式是: y =12x ,∵当△OMC 的面积是△OAC 的面积的 14时,∴M 的横坐标是 14×4=1,在 y =12x 中,当x=1时, y =12,则M 的坐标是 (1,12);在y=-x+6中,x=1则y=5,则M 的坐标是(1,5).则M 的坐标是: M 1(1,12)或M ₂(1,5).。
北师大版数学八年级上学期《期末检测试题》含答案解析

故选D.
[点睛]此题主要考查三角形的角度求解,解题的关键是熟知三角形的外角定理与等腰三角形的性质.
11.我国明代数学家程大位所著的《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完,大和尚1人分3个馒头,小和尚3人分一个馒头,问大、小和尚各有多少人?若大和尚有 人,小和尚有 人,则下列方程或方程组中:① ② ③ ④ 正确的是()
故选:C.
[点睛]本题考查了实数的大小比较法则的应用,主要考查学生的理解能力和比较能力,题目是一道比较好的题目,难度不大.
2.下列实数是无理数的是()
A. B. C. D.0.1010010001
[答案]C
[解析]
[分析]
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
9.下列命题是真命题的是()
A.如果 ,那么
B.0的平方根是0
C.如果 与 是内错角,那么
D.三角形 一个外角等于它的两个内角之和
10.如图,在△ 中, 为 边上一点,以点 为圆心, 为半径画弧,交 的延长线于点 ,连接 .若 , ,则 的度数为()
A. B. C. D.
11.我国明代数学家程大位所著的《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完,大和尚1人分3个馒头,小和尚3人分一个馒头,问大、小和尚各有多少人?若大和尚有 人,小和尚有 人,则下列方程或方程组中:① ② ③ ④ 正确的是()
北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题1.下列各数中,是无理数的是()AB C .227D .3.14152.在﹣3,0,2,这组数中,最小的数是()A .B .﹣3C .0D .23.如图,不能推出a ∥b 的条件是()A .∠4=∠2B .∠3+∠4=180°C .∠1=∠3D .∠2+∠3=180°4.甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是90分,方差分别是S 甲2=5,S 乙2=20,S 丙2=23,S 丁2=32,则这四名学生的数学成绩最稳定的是()A .甲B .乙C .丙D .丁5.下列各组数据中,能构成直角三角形的三边的长的一组是()A .1,2,3B .4,5,6C .5,12,13D .13,14,156.下列运算正确的是()A 2=±B 2=-C .224-=D .22--=7.已知23x y =-⎧⎨=⎩是方程22kx y +=-的解,则k 的值为()A .﹣2B .2C .4D .﹣48.如图,在△ABC 中,∠C =90°,AC =3,BC =2.以AB 为一条边向三角形外部作正方形,则正方形的面积是()A .5B .6C .12D .139.在平面直角坐标系中,点A 的坐标是(3a ﹣5,a+1).若点A 到x 轴的距离与到y 轴的距离相等,且点A 在y 轴的右侧,则a 的值为()A .1B .2C .3D .1或310.若直线y kx b =+经过第一、二、四象限,则函数y bx k =-的大致图像是()A .B .C .D .二、填空题11.9的算术平方根是.12.方程组43139x y x y +=-⎧⎨+=⎩的解是:_____.13.一组数据:2,5,7,3,5的众数是________.14.请写出“两直线平行,同位角相等”的结论:_____.15.如图,把一张三角形纸片(△ABC )进行折叠,使点A 落在BC 上的点F 处,折痕为DE ,点D ,点E 分别在AB 和AC 上,DE ∥BC ,若∠B =70°,则∠BDF 的度数为____.16.如图,已知直线y =x+3与x 轴交于点A ,与y 轴交于点B ,以点A 为圆心,AB 为半径画弧,交x 轴正半轴于点C ,则点C 坐标为_____.17.如图,直角坐标平面xoy 内,动点P 按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),…按这样的运动规律,动点P 第2022次运动到点的坐标是_____.三、解答题1802021π(-)19.如图,AB ∥DG ,∠1+∠2=180°.(1)试说明:AD ∥EF ;(2)若DG 是∠ADC 的平分线,∠2=142°,求∠B 的度数.20.如图所示,在平面直角坐标系中,已知A (0,1),B (3,0),C (3,4).(1)在图中画出△ABC ,△ABC 的面积是;(2)在(1)的条件下,延长线段CA ,与x 轴交于点M ,则M 点的坐标是.(作图后直接写答案)21.若实数b的立方根为2,且实数a,b,c(a﹣c+4)2=8.(1)求2a﹣3b+c的值;(2)若a,b,c是△ABC的三边,试判断三角形的形状.22.为了解某校八年级体育科目训练情况,从八年级学生中随机抽取了部分学生进行了一次体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:∠的度数是__________,并把图2条形统计图补充完整.(1)图1中α(2)抽取的这部分的学生的体育科目测试结果的中位数是在__________级;(3)依次将优秀、良好、及格、不及格记为90分、80分、70分、50分,请计算抽取的这部分学生体育的平均成绩.23.某小区为了绿化环境,计划分两次购进A,B两种树苗,第一次购进A种树苗40棵,B种树苗15棵,共花费1750元;第二次购进A种树苗20棵,B种树苗6棵,共花费860元.(两次购进的A,B两种树苗各自的单价均不变)(1)A,B两种树苗每棵的价格分别是多少元?(2)因受季节影响,A种树苗价格下降10%,B种树苗价格上升20%,计划购进A种树苗25棵,B种树苗20棵,问总费用是多少元?24.如图,在平面直角坐标系中,过点C(0,6)的直线AB与直线OA相交于点A(4,2),动点M在直线OA和射线AC上运动.(1)求直线AB的解析式;(2)求△OAB的面积;(3)是否存在点M,使△OMC的面积是△OAB的面积的1若存在,求出此时点M的坐标;2若不存在,说明理由.25.甲、乙两人从同一点出发,沿着跑道训练400米速度跑,乙比甲先出发,并且匀速跑完全程,甲出发一段时间后速度提高为原来的3倍.设乙跑步的时间为x(s),甲、乙跑步的路程分别为y1(米)、y2(米),y1、y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲比乙晚出发s,甲提速前的速度是每秒米,m=,n=;(2)当x为何值时,甲追上了乙?(3)在甲提速后到甲、乙都停止的这段时间内,当甲、乙之间的距离不超过30米时,请你直接写出x的取值范围.参考答案1.A2.B3.B4.A5.C6.B7.C8.D9.C 10.B 11.312.285395 xy⎧=⎪⎪⎨⎪=-⎪⎩【分析】②×3-①求出x的值,再把x的值代入②求出y的值即可.【详解】解:431 39x yx y+=-⎧⎨+=⎩①②②×3-①,得5x=28∴x=28 5把x=285代入②得,283+95y⨯=∴395 y=-∴方程组的解为285395 xy⎧=⎪⎪⎨⎪=-⎪⎩故答案为:285395 xy⎧=⎪⎪⎨⎪=-⎪⎩【点睛】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.13.5【分析】根据众数的概念求解.【详解】解:这组数据5出现的次数最多.故众数为5.故答案为:5,【点睛】本题考查了众数的知识,一组数据中出现次数最多的数据叫做众数.14.同位角相等【分析】命题是由题设和结论两部分组成的,将这个命题改写成“如果⋯那么⋯”的形式即可得出答案.【详解】解:将命题改写成“如果⋯那么⋯”的形式为:如果两直线平行,那么同位角相等,则此命题的结论为:同位角相等,故答案为:同位角相等.【点睛】本题考查了命题,熟练掌握命题的概念是解题关键.15.40°【分析】利用平行线的性质求出∠ADE=70°,再由折叠的性质推出∠ADE=∠EDF=70°即可解决问题.【详解】解:∵DE∥BC,∴∠ADE=∠B=70°,由折叠的性质可得∠ADE=∠EDF=70°,∴∠BDF=180°﹣∠ADE-∠EDF=40°,故答案为:40°.【点睛】本题综合考查了平行线以及折叠的性质,熟练掌握两性质定理是解答关键.16.(3,0)【分析】先求出直线与坐标轴的交点坐标A(﹣3,0),B(0,3),再利用勾股定理计算出AB=AC=AB=OC的长,即可得出点C的坐标.【详解】解:当y=0时,x+3=0,解得x=﹣3,则A(﹣3,0);当x=0时,y=x+3=3,则B(0,3),所以AB=因为以点A为圆心,AB为半径画弧,交x轴于点C,所以AC=AB=所以OC=AC﹣AO=3,所以的C的坐标为(3,0),故答案为(3,0).【点睛】本题考查了一次函数图象与坐标轴的交点问题,关键是求出一次函数图象与x轴、y轴的交点坐标,也考查了勾股定理.17.(2021,0)【分析】由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2022除以4,再由商和余数的情况确定运动后点的坐标.【详解】由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,∵2022÷4=505余2,∴第2022次运动为第505循环组的第2次运动,-+⨯+=,纵坐标为0,横坐标为1505422021∴点P运动第2022次的坐标为(2021,0).故答案为:(2021,0).【点睛】考查了点的坐标规律,解题关键是观察点的坐标变化,并寻找规律.18.2【分析】直接利用二次根式的性质及零指数幂的性质解题即可.-+1=32=2.19.(1)见解析;(2)∠B=38°.【分析】(1)由AB∥DG,得到∠BAD=∠1,再由∠1+∠2=180°,得到∠BAD+∠2=180°,由此即可证明;(2)先求出∠1=38°,由DG是∠ADC的平分线,得到∠CDG=∠1=38°,再由AB∥DG,即可得到∠B=∠CDG=38°.【详解】(1)∵AB∥DG,∴∠BAD=∠1,∵∠1+∠2=180°,∴∠BAD+∠2=180°.∵AD∥EF.(2)∵∠1+∠2=180°且∠2=142°,∴∠1=38°,∵DG是∠ADC的平分线,∴∠CDG=∠1=38°,∵AB∥DG,∴∠B=∠CDG=38°.20.(1)见解析;6;(2)作图见解析;(-1,0).【分析】(1)根据A(0,1),B(3,0),C(3,4)在坐标系中描点即可;(2)根据题意作图,由图知点M的坐标.【详解】(1)如图,△ABC的面积=1436 2⨯⨯=,故答案为:6;(2)如图,设经过点A ,C 的直线为y kx b =+,代入A (0,1),C (3,4)得,134b k b =⎧⎨+=⎩11k b =⎧∴⎨=⎩1y x ∴=+令0y =,则1x =-点M 的坐标(-1,0),故答案为:(-1,0).21.(1)-2(2)直角三角形【分析】(1)立方根为2的数是8,把b=86a -+(a ﹣c+4)2=0,根据非负数的性质可以求出a 和b 的值,然后代入计算可得答案.(2)根据abc 的数量关系得出三角形为直角三角形.(1)解:∵实数b 的立方根为2,∴b=86a -(a ﹣c+4)2=0,∴a-6=0;a-c+4=0解得:a=6;c=10.∴2a﹣3b+c=2×6-3×8+10=-2(2)解:∵a2+b2=62+82=100,c2=102=100∴a2+b2=c2∴△ABC是直角三角形.22.(1)54°,图形见解析;(2)C;(3)72.【分析】(Ⅰ)根据B级的人数除以B级所占的百分比,可以计算出本次抽查的学生数,根据圆周角乘以A及所占的比例,可得扇形的圆心角;根据抽测人数乘以C级所占的比例,从而可以将条形统计图补充完整;(Ⅱ)根据(Ⅰ)中补充完整的条形统计图和中位数的定义可以解答本题;(Ⅲ)根据统计图中的数据,再利用加权平均数的定义计算出抽取的这部分学生体育的平均成绩即可.【详解】解:(Ⅰ)本次抽查的学生有:12÷30%=40(人),∠α的度数是:360°×640=54°,故答案为54;C级学生有:40-6-12-8=14(人),补全的条形统计图如图所示,(Ⅱ)由统计图可得,抽取的这部分的学生的体育科目测试结果的中位数是在C级,故答案为C;(Ⅲ)∵90680127014508x 7240⨯+⨯+⨯+⨯==,∴抽取的这部分学生体育的平均成绩为72分.【点睛】本题考查了条形统计图、扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)A 种树苗每棵的价格40元,B 种树苗每棵的价格10元;(2)总费用需1140元.【分析】(1)设A 、B 两种树苗每棵的价格分别是x 元、y 元,根据题意列二元一次方程组,解方程组求出x 、y 的值即可得答案;(2)根据(1)所求得结果进行求解即可.【详解】解:(1)设A 种树苗每棵的价格x 元,B 种树苗每棵的价格y 元,根据题意得:40151750206860x y x y +=⎧⎨+=⎩,解得:4010x y =⎧⎨=⎩,答:A 种树苗每棵的价格40元,B 种树苗每棵的价格10元;(2)40(110%)2510(120%)20⨯-⨯+⨯+⨯=1140元。
北师大版八年级上册数学期末考试试题及答案

北师大版八年级上册数学期末考试试卷一、单选题1.在ABC 中,90C A B C ∠=︒∠∠∠,,,的对应边分别是a b c ,,,则下列式子成立的是 A .222+=a b c B .222a c b += C .222a c b -= D .222b c a +=2.如图,在ABC 中,90ACB ∠=︒,CD AB ⊥,垂足为D .若3AC =,4BC =,则CD 的长为( )A .2.4B .2.5C .4.8D .53.估计3 )A .在6和7之间B .在7和8之间C .在8和9之间D .在9和10之间 4.下列各组二次根式中,属于同类二次根式的是( )A .B C .D5.在平面直角坐标系中,若点()P m m n -,与点()21Q ,关于原点对称,则点()M m n ,在( ) A .第一象限B .第二象限C .第三象限D .第四象限6.已知点A 的坐标为()23,,直线AB y ∥轴,且5AB =,则点B 的坐标为( ) A .()28,B .()28,或()22-,C .()73,D .()73,或()33-, 7.一次函数1y ax b 与正比例函数2y bx =-在同一坐标系中的图象大致是( )A .B .C .D .8.如图,某电信公司手机的收费标准有A B ,两类,已知每月应缴费用S (元)与通话时间t (分)之间的关系如图所示,当通话时间为50分钟时,按这两类收费标准缴费的差为( )A .30元B .20元C .15元D .10元9.八(1)班同学参加社会实践活动,在王伯伯的指导下,要围一个如图所示的长方形菜园ABCD ,莱园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为12m ,设边BC的长为x m ,边AB 的长为y m ()x y >.则y 与x 之间的函数表达式为( )A .212(012)y x x =-+<<B .()164122y x x =-+<< C .212(012)y x x =-<< D .16(412)2y x x =-<< 10.下列方程组中是二元一次方程组的是( )A .23124x y x y ⎧+=⎨-=⎩ B .225xy x y =⎧⎨+=⎩ C .63a b b c -=⎧⎨+=⎩ D .310521m n m n +=⎧⎨-=⎩11.古代数学问题:“今有木,不知长短,引绳度之,余绳五尺四寸:屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余5.4尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为( )A . 5.412y x x y -=⎧⎪⎨-=⎪⎩B . 5.412x y y x -=⎧⎪⎨-=⎪⎩C . 5.412y x y x -=⎧⎪⎨-=⎪⎩D . 5.412x y xy -=⎧⎪⎨-=⎪⎩12.若324432a ba b x y ++--=是关于x ,y 的二元一次方程,则2a b +的值为( )A .0B .-3C .3D .413.在一次投篮训练中,甲、乙、丙、丁四人各进行10次投篮,每人投篮成绩的平均数都是8,方差分别为S 甲2=0.24,S 乙2=0.42,S 丙2=0.56,S 丁2=0.75,成绩最稳定的是() A .甲.B .乙C .丙D .丁14.如图,在ABC 中,1268AD BC C ⊥∠=∠∠=︒,,.则BAC ∠的度数为( )A .68°B .67°C .77°D .78°15.如图,AB CD ∥,EF BD ⊥于点E ,50ABM ∠=︒,则CFE ∠的度数为( )A .130︒B .140︒C .145︒D .150︒二、填空题16______,338的算术平方根是______.17.已知Rt△ABC 中,AB =8,BC =10,△BAC =90°,则图中阴影部分面积为 _____.18.已知()115P a -,和()221P b -,关于x 轴对称,则()2022a b +的值为______.19.若点()()1232A y B y -,,,都在一次函数1yx =-+的图象上,则1y ______2y .(填“>”或“<”)20.一个三位数,十位数字比个位数字大1,百位数字是个位数字的2倍,把百位数字与个位数字对调,得到的三位数比原来的三位数小297,则原三位数为______.三、解答题21.用适当的方法解下列方程组:(1)524x yx y+=⎧⎨-=⎩;(2)12343314312 x yx y++⎧=⎪⎪⎨--⎪-=⎪⎩22.学校运动会开设了“抢收抢种”项目,八(5)班甲、乙两个小组都想代表班级参赛,为了选择一个比较好的队伍,八(5)班的班委组织了一次选拔赛,甲、乙两组各10人的比赛成绩如下表:(1)甲组的平均成绩是____分;(2)计算乙组的平均成绩和方差;(3)已知甲组成绩的方差是1.4,如果你是老师,你将选择哪组代表八(5)班参加学校比赛?说说你的理由.23.如图,在四边形ABCD中,20AB=,15AD=,7CD=,24BC=,90A∠=︒,求证:△C=90°.24.某移动公司设了两类通讯业务,A类收费标准为不管通话时间多长使用者都应缴50元月租费,然后每通话1分钟,付0.4元,B类收费标准为用户不缴月租费,每通话1分钟,付话费0.6元,若一个月通讯x分钟,两种方式费用分别是A y,B y元.(1)分别写出A y ,B y 与x 之间的函数关系式.(2)某人估计一个月通话时间为300分钟,应选哪种通讯方式合算些,请书写计算过程. (3)小明用的A 卡,他计算了一下,若是B 卡,他本月话费将会比现在多100元,请你算一下小明实际话费是多少元?25.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:|P|表示点P 到x 、y 轴的距离中的最大值,|Q|表示点Q 到x 、y 轴的距离中的最大值,若P Q =,则称P ,Q 两点为“等距点”.例如:如图中的P (3,3),Q (﹣3,﹣2)两点,有|P|=|Q|=3,所以P 、Q 两点为“等距点”.(1)已知点A 的坐标为(﹣3,1),△则点A 到x 、y 轴的距离中的最大值|A|= ;△在点E (0,3),F (3,﹣3),G (2,﹣5)中,为点A 的“等距点”的是 ; △若点B 的坐标为B (m ,m+6),且A ,B 两点为“等距点”,则点B 的坐标为 ;(2)若()113T k --,-,()2443T k -,且|4k ﹣3|≤4,两点为“等距点”,求k 的值.261==;==2==.请解决下列问题: (1)=______; (2)=______;(3)....27.如图,已知12AB CD ∠=∠∥,.(1)求证:EF NP ∥;(2)若FH 平分EFG ∠,交CD 于点H ,交NP 于点O ,且14010FHG ∠=︒∠=︒,,求FGD ∠的度数.参考答案1.A【分析】根据题意,可得c 为斜边,,a b 为直角边,根据勾股定理即可求解. 【详解】解:△在ABC 中,90C A B C ∠=︒∠∠∠,,,的对应边分别是a b c ,,, △c 为斜边,,a b 为直角边, △222+=a b c ,故选:A .【点睛】本题考查了勾股定理,掌握勾股定理是解题的关键. 2.A【分析】先由勾股定理求出AB 的长,再运用等面积法求得CD 的长即可. 【详解】解:△在Rt ABC △中,90ACB ∠=︒,3AC =,4BC =,△AB 5==,CD AB ⊥△1122AB CD AC BC ⋅=⋅,即342.45AC BC CD AB ⋅⨯===. 故选A .【点睛】本题主要考查了勾股定理、等面积法等知识点,掌握运用等面积法求三角形的高是解题的关键. 3.B3 【详解】解:△161725<<,△45<,△738<+,△37和8之间, 故选:B .【点睛】此题考查了无理数的估算,正确掌握各平方数及无理数估算的方法是解题的关键. 4.B【分析】将各项先化为最简二次根式,再根据同类二次根式的定义逐项判断即可.【详解】A. ,不是同类二次根式,故该选项不符合题意;B. =C. =D.=故选:B .【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式,掌握同类二次根式的定义是解题的关键. 5.C【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,求得,m n 的值,即可求解.【详解】解:△点()P m m n -,与点()21Q ,关于原点对称, △2,1m m n =--=-,△()2,1M --在第三象限, 故选:C .【点睛】本题考查了关于原点对称的两个点,横坐标、纵坐标分别互为相反数,判断点所在的象限,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键. 6.B【分析】根据平行于y 轴的直线上的点的横坐标相等求出点B 的纵坐标,再分点B 在点A 的上面与下面两种情况求出点B 的纵坐标,即可得解.【详解】解:△AB y ∥轴,点A 的坐标为()23,, △点B 的横坐标为2, △5AB =,△点B 在点A 的下面时,纵坐标为352-=-, 点B 在点A 的上面时,纵坐标为358+=,△点B 的坐标为()28,或()22-,. 故选:B .【点睛】本题考查了平面直角坐标系中点的坐标特点,利用了平行于y 轴的直线是上的点的横坐标相等的性质,难点在于要分情况讨论. 7.C【分析】根据一次函数和正比例函数的性质逐一判断即可得答案. 【详解】A.△一次函数经过一、二、三象限, △a >0,b >0, △-b <0,△正比例函数应经过二、四象限,故本选项不符合题意, B.△一次函数经过一、三、四象限, △a >0,b <0, △-b >0,△正比例函数应经过一、三象限,故本选项不符合题意, C.△一次函数经过二、三、四象限, △a <0,b <0,△正比例函数应经过一、三象限,故本选项符合题意, D.△一次函数经过二、三、四象限, △a <0,b <0, △-b >0,△正比例函数经过一、三象限,故本选项不符合题意, 故选:C .【点睛】本题考查一次函数和正比例函数的性质,对于一次函数y=kx+b ,当k >0时,图象经过一、三象限,当k <0时,图象经过二、四象限;当b >0时,图象与y 轴交于正半轴;当b <0时,图象与y 轴交于负半轴;熟练掌握相关性质是解题关键. 8.D【分析】根据题意,待定系数法求得解析式,分别令50x =,求得S 是的值,进而即可求解. 【详解】解:设A 类收费的解析式为AS ax b =+,代入()0,20 ,()100,30,得2010030b a b =⎧⎨+=⎩, 解得11020a b ⎧=⎪⎨⎪=⎩, △12010A S x =+, B 类收费的解析式为BS kx =,代入()100,30,得30100k =, 解得310k =, △310B S x =, △当50x =时,150202510A S =⨯+=,3501510B S =⨯=, △251510-=(元), 故选:D .【点睛】本题考查了一次函数的应用,待定系数法求解析式,求得解析式是解题的关键.9.B【分析】根据菜园的三边的和为12m ,即可得出一个x 与y 的关系式. 【详解】解:根据题意得,菜园三边长度的和为12m ,212y x ∴+=,162y x ∴=-+,0y >,x y >,∴1602162x x x ⎧-+>⎪⎪⎨⎪>-+⎪⎩,解得412x <<,16(412)2y x x ∴=-+<<,故选:B .【点睛】本题考查一次函数的应用,理解题目中的数量关系,即菜园三边的长度和为12m ,列出关于x ,y 的方程是解决问题的关键. 10.D【分析】二元一次方程组是指含有两个未知数,且未知数的次数都是1的一次整式方程组成的方程组,据此求解即可.【详解】解:A 、23124x y x y ⎧+=⎨-=⎩未知数的最高次不是1,不是二元一次方程组,不符合题意;B 、225xy x y =⎧⎨+=⎩xy 的次数不是1,不是二元一次方程组,不符合题意; C 、63a b b c -=⎧⎨+=⎩含有3个未知数,不是二元一次方程组,不符合题意;D 、310521m n m n +=⎧⎨-=⎩是二元一次方程组,符合题意;故选D .【点睛】本题主要考查了二元一次方程组的定义,熟知二元一次方程组的定义是解题的关键. 11.C【分析】设木条长x 尺,绳子长y 尺,根据用一根绳子去量一根木条,绳子剩余5.4尺;将绳子对折再量木条,木条剩余1尺,列出二元一次方程组,即可求解.【详解】设木条长x 尺,绳子长y 尺,可列方程组为5.412y x y x -=⎧⎪⎨-=⎪⎩, 故选:C .【点睛】本题考查了列二元一次方程组,根据题意列出方程组是解题的关键.12.D【分析】根据二元一次方程的定义,得出1a b +=,3241a b +-=,解出a b 、的值,然后把a b 、的值代入2a b +,计算即可得出结果.【详解】解:△324432a b a b x y ++--=是关于x ,y 的二元一次方程,△可得:13241a b a b +=⎧⎨+-=⎩, 解得:32a b =⎧⎨=-⎩, 把32a b =⎧⎨=-⎩代入2a b +, 可得:22324a b +=⨯-=.故选:D【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.13.A【分析】根据方差的意义,即可求解.【详解】解:△S 甲2=0.24,S 乙2=0.42,S 丙2=0.56,S 丁2=0.75△2222甲乙丁丙<<<S S S S△成绩最稳定的是甲故选A【点睛】此题考查了方差的意义,方差反应一组数据的波动情况,方差越小数据越稳定,理解方差的意义是解题的关键.14.B【分析】根据垂直的定义,直角三角形的两个锐角互余,可得145,22DAC ∠=︒∠=︒,即可求解.【详解】解:△1268AD BC C ⊥∠=∠∠=︒,,,△90ADB ADC ∠=∠=︒,△1245∠=∠=°,90906822DAC C ∠=︒-∠=︒-︒=︒,△1452267BAC DAC ∠=∠+∠=︒+︒=︒,故选:B .【点睛】本题考查了直角三角形的两个锐角互余,求得145,22DAC ∠=︒∠=︒是解题的关键.15.B【分析】根据题意和平行线的性质得=50D ABM ∠∠=︒,根据垂直得=90DEF ∠︒,运用三角形内角和定理求出=40EFD ∠︒,即可得.【详解】解:△AB CD ∥,50ABM ∠=︒,△=50D ABM ∠∠=︒,△EF BD ⊥,△=90DEF ∠︒,△=180=1805090=40EFD D DEF ∠︒∠∠︒︒︒︒----,△180=18040=140CFE EFD ∠=︒-∠︒-︒︒,故选:B .【点睛】本题考查了平行线的性质,三角形内角和定理,解题的关键是掌握这些知识点.16. 2± 【分析】根据平方根和算术平方根的定义求解即可.【详解】4,△4的平方根是2±,,即338故答案为:2± 【点睛】本题考查的是平方根、算术平方根的计算,如果一个数的平方等于a ,这个数就叫a 的平方根,如果一个正数的平方等于a ,这个数就叫a 的算术平方根,0的算术平方根是0.掌握定义是解题的关键.17.24【分析】根据阴影部分面积等于以,AB AC 为直径的半圆的面积与ABC 的面积的和减去以BC 为直径的半圆面积即可求解.【详解】解:Rt△ABC 中,AB =8,BC =10,△BAC =90°,6AC ∴==,222111111=+222222ABC S AB AC BC S πππ⎛⎫⎛⎫⎛⎫∴+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭△阴影部分 ABC S =△1862=⨯⨯ =24.故答案为:24.【点睛】本题考查了勾股定理,掌握勾股定理是解题的关键.18.1【分析】根据关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数,求得,a b 的值,进而代入代数式即可求解.【详解】解:△()115P a -,和()221P b -,关于x 轴对称, △12,510a b -=+-=,解得3,4a b ==-,△()2022a b +()2022341=-=,故答案为:1.【点睛】本题考查了关于x 轴对称的两个点的坐标特征,掌握关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数是解题的关键.19.>【分析】根据解析式中10k =-<,可得y 随x 的增大而减小,即可求解.【详解】解:△在1y x =-+中,10k =-<,△y 随x 的增大而减小,△32-<,点()()1232A y B y -,,,都在一次函数1yx =-+的图象上, △12y y >,故答案为:>.【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小.20.643【分析】设原三位数的个位数字为x ,十位数字为y ,则百位数字为2x ,由题意:十位数字比个位数字大1,把百位数字与个位数字对调,得到的三位数比原来的三位数小297,列出二元一次方程组,解方程组即可.【详解】解:设原三位数的个位数字为x ,十位数字为y ,则百位数字为2x ,由题意得:1100210(100102)297y x x y x x y x =+⎧⎨⨯++-++=⎩, 解得:34x y =⎧⎨=⎩, △26x =,即原三位数为643,故答案为:643.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.(1)32x y =⎧⎨=⎩(2)22x y =⎧⎨=⎩【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】(1)解:524x y x y +=⎧⎨-=⎩①②△+△得: 3x=9,解得: x=3,把x=3代入△得:3+y=5得 y=2,则方程组的解为32x y =⎧⎨=⎩ ; (2)12343314312x y x y ++⎧=⎪⎪⎨--⎪-=⎪⎩ 方程组整理得:432342x y x y -=⎧⎨-=-⎩①② 由△×4-△×3得: 7x=14,解得: x=2,把x=2代入△得:4×2-3y=2得 y=2,则方程组的解为22x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(1)9(2)乙组的平均成绩为9,方差为1(3)选择乙组,理由见解析【分析】(1)根据平均数的计算公式求得平均数即可求解;(2)一组数据:123n x x x x ⋯,,,,,则它们的平均数1232n x x x x x ++++=,方差是()()()()2222212312n s x x x x x x x x ⎡⎤=-+-+-+++-⎣⎦; (3)根据一组数据的方差越大,则数据的波动就越大,进行判断即可.【详解】(1)甲组的平均成绩是:()1789710109101010910+++++++++=, (2)乙组的平均成绩是:()110879810109109910+++++++++=, 方差是:()()()()22221109897999110⎡⎤-+-+-++-=⎣⎦; (3)选择乙组,理由如下,△1.41>,且平均成绩都为9,△乙组的方差较小,应该选择乙组.【点睛】本题考查了求平均数,求方程,以及根据方差做决策,掌握平均数,方差是解题的关键.23.见解析【分析】连接BD ,勾股定理求得BD 的值,进而根据222CD BC BD +=,即可得证.【详解】解:如图,连接BD ,△20AB =,15AD =,90A ∠=︒,△25BD =,△7CD =,24BC =,△22224957662525CD BC BD +=+===,△CDB △是直角三角形,且90C ∠=︒.【点睛】本题考查了勾股定理及其逆定理,掌握勾股定理及其逆定理是解题的关键. 24.(1)500.4A y x =+,0.6B y x =(2)选择A 类(3)350元【分析】(1)A 类应缴50元月租费,每通话1分钟,付0.4元,则费用是月租费加上通话费;B 类不缴月租费,每通话1分钟,付话费0.6元,则费用是通话费与时间的乘积,通讯x 分钟,由此即可求解;(2)由(1)的结论可知,当300x =时,170A y =元,180B y =元,由此即可求解; (3)由题意可知选择A 卡的费用比选择B 卡的费用少100元,由此可列出等量关系100A B y y +=,由此即可求解.【详解】(1)解:根据题意得,A 类的费用是月租费加上通话费,即500.4Ay x =+; B 类的费用是通话费与时间的乘积,即0.6B y x =,△500.4A y x =+,0.6B y x =.(2)解:通话时间为300分钟,根据(1)中的结论得,500.4500.4300170A y x =+=+⨯=(元),0.60.6300180B y x ==⨯=(元) △A B y y <,△选择A 类.(3)解:根据题意得,100A B y y +=,△500.41000.6x x ++=,解方程得,750x =,即小明打电话的时间为750分钟, △500.4500.4750350A y x =+=+⨯=(元),△小明实际话费是350元.【点睛】本题主要考查一次函数在实际中的运用,解题的关键是理解两类缴费的方式,A 类的费用是月租费加上通话费,B 类的费用是通话费与时间的乘积.25.(1)△3;△E ;F ;△(−3,3)(2)k 的值是1【分析】(1)△找到x 、y 轴距离最大为3的点即可;△先分析出直线上的点到x 、y 轴距离中有3的点,再根据“等距点”概念进行解答即可; △根据A ,B 两点为“等距点”得出点B 的坐标即可;(2)根据“等距点”概念对4k−3分类讨论,进行解答即可.【详解】(1)解:△点A (−3,1)到x 、y 轴的距离中最大值为|A|=3,故答案为:3.△△点A (−3,1)到x 、y 轴的距离中最大值为3,△与点A 的“等距点”的是E ,F ,故答案为:E ;F .△当点B 坐标中到x 、y 轴距离其中至少有一个为3的点有(3,9)、(−3,3)、(−9,−3),这些点中与A 符合“等距点”的是(−3,3).故答案为:(−3,3).(2)解:()113T k --,-,()2443T k -,两点为“等距点”, △4=−k−3或−4=−k−3,解得:k =−7或k =1,△当k =−7时,43314k -=>,△k =−7不符合题意舍去,根据“等距点”的定义知,k =1符合题意,△k 的值是1.【点睛】:本题主要考查了平面直角坐标系的知识,此题属于阅读理解类型题目,解题的关键是读懂“等距点”的定义,而后根据概念解决问题.26.(1)21【分析】(1)先找出有理化因式2,根据平方差公式求出即可;(2(3)先分母有理化,再合并即可.【详解】(1-故答案为:2;(2(3...+⋅⋅⋅1.【点睛】本题考查了分母有理化,能正确分母有理化是解此题的关键.27.(1)见解析(2)60︒【分析】(1)根据平行线的性质及等量代换得出1BNP ∠=∠,即可判定EF NP ∥; (2)过点F 作FM AB ∥,根据平行公理得出AB FM CD ∥∥,根据平行线的性质及角平分线定义得到50GFH EFH ∠=∠=︒,根据三角形外角性质求解即可.【详解】(1)证明:△AB CD ∥,50GFH EFH ∠=∠=︒△2BNP ∠=∠,△12∠=∠,△1BNP ∠=∠,△EF NP ∥;(2)解:如图,过点F 作FM AB ∥,△AB CD ∥,△AB FM CD ∥∥,△14010EFM HFM FHG ∠=∠=︒∠=∠=︒,,△50EFH EFM HFM ∠=∠+∠=︒,△FH 平分EFG ∠,△50GFH EFH ∠=∠=︒,△60FGD GHF HFG ∠=∠+∠=︒.。
北师大版八年级(上)数学期末测试试题及答案一

北师大版八年级(上)数学期末测试试题及答案一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.(3分)若取1.442,计算﹣3﹣98的结果是()A.﹣100B.﹣144.2C.144.2D.﹣0.014422.(3分)如图,在平面直角坐标系中,点A、B的坐标分别为(﹣3,0)、(0,4),以点A为圆心,以AB长为半径画弧交x轴上点C,则点C的坐标为()A.(5,0)B.(2,0)C.(﹣8,0)D.(2,0)或(﹣8,0)3.(3分)商店准备确定一种包装袋来包装大米,经市场调查后,做出如下统计图,请问选择什么样的包装最合适()A.2kg/包B.3kg/包C.4kg/包D.5kg/包4.(3分)某品牌鞋子的长度ycm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16cm,44码鞋子的长度为27cm,则38码鞋子的长度为()A.23cm B.24cm C.25cm D.26cm5.(3分)解方程组的下列解法中,不正确的是()A.代入法消去a,由②得a=b+2B.代入法消去b,由①得b=7﹣2aC .加减法消去a ,①﹣②×2得2b =3D .加减法消去b ,①+②得3a =96.(3分)葛藤是一种多年生草本植物,为获得更多的雨露和阳光,其常绕着附近的树干沿最短路线盘旋而上.现有一段葛藤绕树干盘旋2圈升高为2.4m ,如果把树干看成圆柱体,其底面周长是0.5m ,如图是葛藤盘旋1圈的示意图,则这段葛藤的长是( )m .A .1.3B .2.5C .2.6D .2.87.(3分)对于一次函数y =﹣x +5,下列结论正确的是( ) A .函数的图象不经过第三象限B .函数的图象与x 轴的交点坐标是(2,0)C .函数的图象向下平移4个单位长度得y =﹣2x 的图象D .若两点A (1,y 1),B (3,y 2)在该函数图象上,则y 1<y 2 8.(3分)已知,都是关于x ,y 的方程y =﹣3x +c 的一个解,则下列对于a ,b 的关系判断正确的是( ) A .a ﹣b =3B .a ﹣b =﹣3.C .a +b =3D .a +b =﹣39.(3分)定理:三角形的一个外角等于和它不相邻的两个内角的和.下面给出该定理的两种证法. 已知:如图,∠ACD 是△ABC 的外角.求证:∠ACD =∠A +∠B . 证法1:如图,∵∠A +∠B +∠ACB =180(三角形内角和定理), 又∵∠ACD +∠ACB =180°(平角定义),∴∠ACD +∠ACB =∠A +∠B +∠ACB (等量代换).∴∠ACD =∠A +∠B (等式性质). 证法2:如图,∵∠A =76°,∠B =59°,且∠ACD =135°(量角器测量所得),又∵135°=76°+59°(计算所得), ∴∠ACD =∠A +∠B (等量代换).下列说法正确的是( )A.证法1还需证明其他形状的三角形,该定理的证明才完整B.证法2只要测量够一百个三角形进行验证,就能证明该定理C.证法2用特殊到一般法证明了该定理D.证法1用严谨的推理证明了该定理10.(3分)描述一组数据的离散程度,我们还可以用“平均差”.在一组数x1、x2、x3、…、x n中,各数据与它们的平均数x的差的绝对值的平均数,即T=(|x1﹣x|+|x2﹣x|+…+|x n﹣x|)叫做这组数据的“平均差”.“平均差”也能描述一组数据的离散程度,“平均差”越大说明数据的离散程度越大,稳定性越小.现有甲、乙两组数据,如表所示,则下列说法错误的是()甲121311151314乙10161018177A.甲、乙两组数据的平均数相同B.乙组数据的平均差为4C.甲组数据的平均差是2D.甲组数据更加稳定二、填空题(每小题3分,共15分)11.(3分)如图,AB、BC、CD、DE是四根长度均为5cm的火柴棒,点A、C、E共线.若AC=6cm,CD⊥BC,则线段CE的长度是cm.12.(3分)在我国新冠疫情虽然得到了有效的控制,但防范意识仍不能松懈,小丽去药店购买口罩和酒精消毒湿巾,若买150只一次性口罩和10包酒精消毒湿巾,需付75元;若买200只一次性口罩和12包酒精消毒湿巾,需付96元.设一只一次性医用口罩x元,一包酒精消毒湿巾y元,根据题意可列二元一次方程组:.13.(3分)一次考试中,某题的得分情况如下表所示,则该题的平均分是.得分01234百分率15%10%25%40%10%14.(3分)某人购进一批苹果到集贸市场零售,已经卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚得元.15.(3分)如图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°,则图中∠D应减少度.三、解答题(本大题共8个小题,满分75分)16.(10分)(1)计算与化简:()()+6﹣(﹣2)2.(2)解方程组:.17.(9分)“欲穷千里目,更上一层楼”,说的是登得高看得远,如图,若观测点的高度为h(单位km),观测者能看到的最远距离为d(单位km),则d≈,其中R是地球半径,通常取6400km.(1)小丽站在海边的一块岩石上,眼睛离海平面的高度h为20m,她观测到远处一艘船刚露出海平面,求此时d的值.(2)判断下面说法是否正确,并说明理由;泰山海拔约为1500m,泰山到海边的最小距离约230km,天气晴朗时站在泰山之巅可以看到大海.18.(9分)“三等分一个任意角”是数学史上一个著名问题,经过无数人探索,现在已经确信,仅用圆规和直尺是不可能作出的.在探索过程中,我们发现,可以利用一些特殊的图形,把一个角三等分.如图:在∠MAN的边上任取一点B,过点B作BC⊥AN于点C,并作BC的垂线BF,连接AF,E是AF上一点,并且∠BAE=∠BEA,∠EBF=∠EFB,请你证明∠F AN=∠MAN.19.(9分)“惜餐为荣,殄物为耻”,为了解落实“光盘行动”的情况,某校数学兴趣小组的同学调研了七、八年级部分班级某一天的餐厨垃圾质量.从七、八年级中各随机抽取10个班的餐厨垃圾质量的数据(单位:kg),进行整理和分析(餐厨垃圾质量用x表示,共分为四个等级:A.x<1,B.1≤x<1.5,C.1.5≤x<2,D.x≥2),下面给出了部分信息.七年级10个班的餐厨垃圾质量:0.8,0.8,0.8,0.9,1.1,1.1,1.6,1.7,1.9,2.3.八年级10个班的餐厨垃圾质量中B等级包含的所有数据为:1.0,1.0,1.0,1.0,1.2.七、八年级抽取的班级餐厨垃圾质量统计表年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.1a0.2640%八年级 1.3b 1.00.23m%根据以上信息,解答下列问题:(1)直接写出上述表中a,b,m的值;(2)该校八年级共30个班,估计八年级这一天餐厨垃圾质量符合A等级的班级数;(3)根据以上数据,你认为该校七、八年级的“光盘行动”,哪个年级落实得更好?请说明理由(写出一条理由即可).20.(9分)如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求出点A、点B的坐标;(2)求△COB的面积;(3)在x轴上是否存在一点P,使得△POC为等腰三角形?若存在,请直接写出点P坐标,若不存在,请说明理由.21.(9分)张氏包装厂承接了一批纸盒加工任务,用如图1所示的长方形和正方形纸板作侧面和底面,做成如图2所示的竖式与横式两种无盖的长方体纸盒(加工时接缝材料不计).(1)做1个竖式纸盒和2个横式纸盒,需要正方形纸板张,长方形纸板张.(2)若该厂购进正方形纸板162张,长方形纸板338张,问竖式纸盒、横式纸盒各加工多少个,恰好能将购进的纸板全部用完?(3)该厂某一天使用的材料清单上显示,这天一共使用正方形纸板162张,长方形纸板a张,全部加工成上述两种纸盒,且290<a<310.试求在这一天加工两种纸盒时,a的所有可能值.22.(10分)如图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点P)始终以3km/min的速度在离地面5km高的上空匀速向右飞行,2号试飞机(看成点Q)一直保持在1号机P的正下方.2号机从原点O处沿45°仰角爬升,到4km高的A处便立刻转为水平飞行,再过1min到达B处开始沿直线BC降落,要求1min后到达C (10,3)处.(1)求OA的h关于s的函数解析式,并直接写出2号机的爬升速度;(2)求BC的h关于s的函数解析式,并预计2号机着陆点的坐标;(3)通过计算说明两机距离PQ不超过3km的时长是多少.[注:(1)及(2)中不必写s的取值范围]23.(10分)已知AB∥CD,点P在直线AB、CD之间,连接AP、CP.(1)探究发现:(填空)填空:如图1,过P作PQ∥AB,∴∠A+∠1=°()∵AB∥CD(已知)∴PQ∥CD()∴∠C+∠2=180°结论:∠A+∠C+∠APC=°;(2)解决问题:①如图2,延长PC至点E,AF、CF分别平分∠P AB、∠DCE,试判断∠P与∠F存在怎样的数量关系并说明理由;②如图3,若∠APC=100°,分别作BN∥AP,DN∥PC,AM、DM分别平分∠P AB,∠CDN,则∠M的度数为(直接写出结果).参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
北师大版八年级数学上册期末测试题(附参考答案)

北师大版八年级数学上册期末测试题(附参考答案)一、选择题:本题共12个小题,每小题3分,共36分。
每小题只有一个选项符合题目要求。
1.下列各数中为无理数的是( )A.√2B.1.5C.0 D.-12.△ABC的三边长a,b,c满足(a-b)2+√2a−b−3+|c-3√2|=0,则△ABC 是( )A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形3.如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为点D,E是边BC上的中点,AD=ED=3,则BC的长为( )A.3√2B.3√3C.6 D.6√24.下列说法错误的是( )A.1的平方根是1B.4的算术平方根是2C.√2是2的平方根D.-√3是√(−3)2的平方根−√45,则实数m所在的范围是( )5.若实数m=5√15A.m<-5 B.-5<m<-4C.-4<m<-3 D.m>-36.甲、乙两位同学放学后走路回家,他们走过的路程s(km)与所用的时间t(min)之间的函数关系如图所示.根据图中信息,下列说法错误的是( )A.前10 min,甲比乙的速度慢B.经过20 min,甲、乙都走了1.6 kmC.甲的平均速度为0.08 km/minD.经过30 min,甲比乙走过的路程少7.某油箱容量为60升的汽车,加满汽油后行驶了100千米时,油箱中的汽油大约消耗了15.若加满汽油后汽车行驶的路程为x千米,油箱中剩余油量为y升,则y与x之间的函数表达式是( )A.y=0.12xB.y=60+0.12xC.y=-60+0.12xD.y=60-0.12x8.在同一平面直角坐标系中,一次函数y1=ax+b(a≠0)与y2=mx+n(m≠0)的图象如图所示,则下列结论错误的是( )A.y1随x的增大而增大B.b<nC.当x<2时,y1>y2D.关于x,y的方程组{ax−y=−b,mx−y=−n的解为{x=2,y=39.已知方程组{2x+y=1,kx+(k−1)y=19的解满足x+y=3,则( )A.k=-8 B.k=2C.k=8D.k=-210.甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及其方差如表:A.甲B.乙C.丙D.丁11.如图,直线AB∥CD,GE⊥EF于点E.若∠BGE=60°,则∠EFD的度数是( )A.60°B.30°C.40°D.70°12.如图,在平面直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P为位似中心作正方形P A1A2A3,正方形P A4A5A6,…,按此规律作下去,所作正方形的顶点均在格点上,其中正方形P A1A2A3的顶点坐标分别为P(-3,0),A1(-2,1),A2(-1,0),A3(-2,-1),则顶点A100的坐标为( )A.(31,34) B.(31,-34)C.(32,35) D.(32,0)二、填空题:本题共6个小题,每小题3分,共18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010-2011学年度上期期末八年级数学试题
亲爱的同学,时间过得真快啊!转眼又一个学期了,相信你在原有的基础上又掌握了许多新的数学知识与能力,变得更加聪明了,更加懂得应用数学来解决实际问题了。
现在让我们一起走进考场,仔细思考,认真作答,成功将属于你——数学学习的主人!
一、选择题——看谁的命中率高(每小题3分,共30分)
1.为筹备班级的联欢会,班长对全班学生爱吃哪几种水果作了民意调查.那么最终买什么水果,下面的调查数据中最值得关注的是( )
A .中位数
B .平均数
C .众数
D .加权平均数 2.若点P (a +1,2
2b --),则点P 所在的象限是
( )
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限
3.若2x 5a y b+4与-x 1-
2b y 2a 是同类项,则b a 的值是( ).
A .2
B .-2
C .1
D .-1 4.若函数y =2x +3与y =3x -2b 的图象交x 轴于同一点,则b 的值为( ) A .-3
B .-
2
3 C .9 D .-
4
9 5. 从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为1.5、1.6、1.4、1.3、1.5、1.2、1.7、1.8(单位:千克),那么可估计这240条鱼的总质量大约为( ) A. 300千克 B. 360千克 C. 36千克 D. 30千克 6.小明在外地从一个景点回宾馆,在一个岔路口迷了路,问了4个人得到下面四种回答,其中能确定宾馆
位置的是( )
A .离这儿还有3km ;
B .沿南北路一直向南走;
C .沿南北路走3km ;;
D .沿南北路一直向南走3km 。
7.一次函数y= -x+3的图像上有两点A (x 1,y 1)、B(x 2,y 2),若y 1<y 2,则x 1与x 2的大小关系是 ( ) A .x 1 < x 2 B . x 1> x 2 C . x 1 =x 2 D .无法确定 8.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么() A .0k >,0b > B .0k >,0b < C .0k <,0b > D .0k <,0b <
9.如图,O A 、B A 分别表示甲、乙两名学生运动的路程s 和时间t
关系的图象,根据图象判断甲、乙两名学生谁的速度快( ) A .乙快 B .甲快
C .一样快
D .无法判断
10. 若某四边形顶点的横坐标变为原来的相反数, 而纵坐标
不变,
此时图形位置也不变,则这四边形不是( )
A.矩形
B. 直角梯形
C. 正方形
D. 菱形. 二、填空题——看谁填得既快又准确(每小题3分,共18分)
11.点P (-3,2)到点P′(2,2),它向______(方向)平移了_______单位长度得出. 12.若3-a +(b +2)2=0,则点M (a ,b )关于y 轴的对称点的坐标为______
13.如果函数2-=x y 与42+-=x y 的图象的交点坐标是(2,0),那么二元一次方程组⎩
⎨⎧=+=-422y x y x 的解
是___________.
14.若函数y=(2k -4)x +3中,y 随着x 的增大而增大,则k
15.数据6、8、9、8、10、8、9、6的平均数为 ,众数是 ,中位数是 。
16. 一正三角形ABC, A(0,0),B(-4,0),C(-2,23),将三角形ABC 绕原点顺时针旋转1200得到的三角形的三个顶点坐标分别是
三、解答题——看谁写得既全面又整洁(共72分)
17.(本题8分)在平面直角坐标系中,已知点A )82(--,
b a 与点B )32(b a +-,关于原点对称,求a 、b 的值.
18.
(1) 若按三项的平均值取第一名,谁是第一名?
(2) 若三项测试得分按3:6:1的比例确定个人的测试成绩,谁是第一名?
O
t / 秒
19.(本题9分)画出函数y=2x+1的图象,利用图象求:
(1)方程2x+1=0的根;
(2)不等式2x+1≥0的解;
(3)求图象与坐标轴的两个交点之间的距离.
20.(本题9分)某公园的门票价格如下表:
实验学校初二(1)、二(2)两个班的学生共104人去公园游玩,其中二(1)班的人数不到50人,二(2)班的人数有50多人,经估算,如果两个班都以班为单位分别购票,则一共应付1240元,如果两班联合起来,作为一个团体购票,则可节省不少钱,你能否求出两个班各有多少名学生?联合起来购票能省多少钱?
21.(本题9分)设一次函数y=3x-4与y=-x+3的交点为P,它们与x轴分别交于点A、B,试求△PAB 的面积.22.(本题9分)某公司销售部有营业员15人,销售部为了制定某种商品有月销售定额,统计了这15人某
若销售部把每位营业员的月销售额定为320件,你认为合理吗?如果不合理,你认为月销售额应定为多少?为什么?
23.(本题9分)如图所示,求ΔCDE的面积.
24.(本题10分)甲、乙两辆汽车同时从相距280km的A、B两地相向而行,s(km)•表示汽车与A地的距离,t(min)表示汽车行驶的时间,如图所示,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到A地的距离与行驶时间的关系;
(2)汽车乙的速度是多少?
(3)1h后,甲、乙两辆汽车相距多少千米?
(4)行驶多长时间,甲、乙两辆汽车相遇?
参考答案
一、选择题——看谁的命中率高(每小题3分,共30分)
1.C 2.D 3.B 4.D 5.B 6.D 7.B 8.B 9.B 10.B 二、填空题——看谁填得既快又准确(每小题3分,共18分)
11. 右 5 12. (-3,-2) 13. 20x y =⎧⎨
=⎩ 14.K >2 15.8 8 8 16.A′(0,0)
B′ (2, C′(4,0)
三、解答题——看谁写得既全面又整洁(共72分) 17.⎩⎨
⎧==2
2
b a 18.
解:(1)甲的平均成绩为31
(72+62+88)= 74分
乙的平均成绩为31(85+77+45)= 69分
丙的平均成绩为3
1
(67+76+67)= 70分
因此甲将得第一名。
(2)甲的平均成绩为1
63188662372++⨯+⨯+⨯=67.6分
乙的平均成绩为1
63145677385++⨯+⨯+⨯= 76.2分
丙的平均成绩为1
631
67676367++⨯+⨯+⨯= 72.4分
因此乙将得第一名。
19. 解:列表:
描点,过(0,1)和(-
1
2,0)两点作直线即可得函数y=2x+1的图象 (1)由图象看出当x=-12
时,y=0,即2x+1=0,所以x=-1
2
是方程2x+1=0的解;
(2)不等式2x+1≥0的解应为函数图象上不在x 轴下方的点的横坐标,
所以x≥-1
2
是不等式2x+1≥0的解;
(3)由勾股定理得它们之间的距离为
2
20. 解:设二(1)班有x 人,二(2)班有y 人,则 104
13111240
x y x y +=⎧⎨
+=⎩
解之得⎩
⎨⎧==5648y x
节省钱数为1240—104×9=304元。
答:二(1)班有48人,二(2)班有56人
节省钱数为304元。
21. 解:
解:7,34,4
3,5.
4
x y x y x y ⎧=⎪=-⎧⎪⎨⎨=-+⎩⎪=⎪⎩方程组的解为
∴P (
74,5
4
),又一次函数y=3x -4与x 轴的交点A 的坐标为(43,0),y=-x+3与x 轴的交点
B 的坐标为(3,0),∴AB=3-
43=5
3
,过P 作PE ⊥AB 于E , 所以PE=
54,∴S △APB =12×AB×PE=12×53×54=25
24
.
22.解:不合理.应定为240件(答案不惟一),理由:因为320件以上的只有2人达到标准,定为240件后,
就至少有5人达到标准,210件中的5人,通过努力,就有一部分人会达到240件,这样可提高大多数人的积极性.
23.解:S △CDF =OC·DF=
12
×3×5=7.5, S △DFE =12×│-1│×DF=1
2
×1×5=2.5,
∴S CDE=S△CDF +S△DFE =7.5+2.5=10.
24.解:(1)L1表示汽车乙到A地的距离与时间之间的关系;•(2)•汽车乙的速度是80km/h;
(3)1h后,甲、乙两辆汽车相距140km;
(4)280÷(60+80)=2,即行驶2h,甲、乙两辆汽车相遇。