广东省广州市普通高中2017高考高三数学第一次模拟试题精选:直线和圆02 Word版含答案
2017年广州市一模理科数学试题及标准答案

2017年广州市一模理科数学试题及标准答案2017年广州市普通高中毕业班综合测试(一)理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的。
(1)复数()221i 1i+++的共轭复数是(A )1i + (B )1i - (C )1i-+ (D )1i --(2)若集合}{1M x x =≤,}{2,1N y y x x ==≤,则(A )M N = (B )M N ⊆ (C )N M ⊆ (D )M N =∅I(3)已知等比数列{}na 的各项都为正数, 且35412a ,a ,a 成等差数列,则3546aa aa ++的值是(A 51- (B 51+(C )35- (D 35+(4)阅读如图的程序框图. 若输入5n =, 则输出k 的值为(A )2(B )3 (C )4(D )5(5)已知双曲线C 222:14x y a -=的一条渐近线方程为230+=x y ,1F ,2F 分别是双曲线C 的左,右焦点, 点P 在双曲线C 上, 且17PF=, 则2PF 等于(A )1 (B )13 (C )4或10 (D )1或13 (6)如图, 网格纸上小正方形的边长为1, 粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83, 则该几何体的俯视图可以是(7)五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币. 若硬币正面朝上, 则这个人站起来; 若硬币正面朝下, 则这个人继续坐着. 那么, 没有相邻的两个人站起来的概率为(A )12 (B )1532 (C )1132(D )516(8)已知1F ,2F 分别是椭圆C ()2222:10x y a b a b+=>>的左, 右焦点, 椭圆C 上存在点P使12F PF ∠为钝角, 则椭圆C 的离心率的取值范围是(A)2⎛⎫⎪⎪⎝⎭(B )1,12⎛⎫⎪⎝⎭(C)0,2⎛ ⎝⎭(D )10,2⎛⎫⎪⎝⎭(9)已知:0,1xp x eax ∃>-<成立,:q 函数()()1xf x a =--是减函数, 则p 是q 的(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件(10)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四 个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥-P ABC 为鳖臑, PA ⊥平面ABC ,2PA AB ==,4AC =,三棱锥-P ABC 的四个顶点都在球O 的球面上, 则球O 的表 面积为(A )8π (B )12π (C )20π(D )24π (11)若直线1y =与函数()2sin 2f x x =的图象相交于点()11,P x y ,()22,Q x y ,且12x x-=23π,则线段PQ 与函数()f x 的图象所围成的图形面积是(A)23π+ (B)3π+ (C )223π+ (D)23π(12)已知函数()32331248f x x x x =-++, 则201612017k k f =⎛⎫⎪⎝⎭∑的值为(A ) 0 (B )504 (C )1008(D )2016第Ⅱ卷本卷包括必考题和选考题两部分。
广东省广州市普通高中2017高考高三数学第一次模拟试题精选:圆锥曲线02 含答案

圆锥曲线0223、已知抛物线24y x =的焦点与圆2240x y mx ++-=的圆心重合,则m 的值是 【答案】2-【解析】抛物线的焦点坐标为(1,0)。
圆的标准方程为222()424m m x y ++=+,所以圆心坐标为(,0)2m -,所以由12m-=得2m =-。
24、双曲线2213x y -=的两条渐近线的夹角的大小等于_______ 【答案】3π【 解析】双曲线的渐近线为3y x =±。
3y x =的倾斜角为6π,所以两条渐近线的夹角为263ππ⨯=。
25、设点P 在曲线22y x =+上,点Q 在曲线y =PQ 的最小值为_______【答案】427 【 解析】在第一象限内,曲线22+=x y 与曲线2-=x y 关于直线y =x 对称,设P 到直线y =x 的距离为d ,则|PQ |=2d ,故只要求d 的最小值d =2)(2|2|2||472212+--+-==x x x x y ,当12x =时,d min ,所以|PQ |min4=26、若双曲线2221(0)4x y b b-=>的一条渐近线过点P (1, 2),则b 的值为_________.【答案】4【 解析】双曲线的渐近线方程为2by x =±,因为点P (1, 2)在第一象限,所以点P (1, 2)在渐近线2b y x =上,所以有22b=,所以4b =。
27、已知抛物线22(0)y px p =>上一点(1,)M m (m >0)到其焦点F 的距离为5,该抛物线的顶点在直线MF 上的射影为点P ,则点P 的坐标为 . 【答案】6448(,)2525【 解析】抛物线的焦点坐标(,0)2p F ,准线方程为2p x =-。
因为1()52pMF =--=,所以解得8p =。
所以抛物线方程为216y x =,即216m =,所以4m =。
即(1,4)M ,则直线MF 的方程为43160x y +-=,斜率为43-。
2017年广州市高三一模文科数学试卷及答案

2017年广州市普通高中毕业班文科数学综合测试(一)第Ⅰ卷一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.复数21i+的虚部是( )A .2- B .1- C .1 D .22.已知集合}{}{2001x x ax ,+==,则实数a 的值为( )A .1-B .0C .1D .2 3.已知tan 2θ=,且θ∈0,2π⎛⎫⎪⎝⎭,则c o s 2θ=( ) A .45 B .35 C .35- D .45-4.阅读如图的程序框图. 若输入5n =,则输出k 的值为( )A .2B .3C .4D .55.已知函数()122,0,1l o g,0,+⎧≤=⎨->⎩x x f x x x 则()()3=f f ( )A .43 B .23 C .43-D .3- 6.已知双曲线C 222:14x y a -=的一条渐近线方程为230+=x y ,1F ,2F 分别是双曲线C 的左、右焦点,点P 在双曲线C 上, 且12=PF , 则2PF 等于( )A .4B .6C .8D .10 7.四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为( )A .14 B .716C .12 D .9168.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )9.设函数()32f x x ax =+,若曲线()=y f x 在点()()00,P x f x 处的切线方程为0+=x y ,则点P 的坐标为( )A .()0,0B .()1,1-C .()1,1-D .()1,1-或()1,1-10.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥-P ABC 为鳖臑,PA ⊥平面ABC ,2PA AB ==,4AC =,三棱锥-P ABC 的四个顶点都在球O 的球面上,则球O 的表面 积为( )A .8πB .12πC .20πD .24π11.已知函数()()()()s in co =+++ωϕωϕfx x x是奇函数,直线y =与函数()f x 的图象的两个相邻交点的横坐标之差的绝对值为2π,则( )A .()f x 在0,4π⎛⎫⎪⎝⎭上单调递减B .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递减C .()f x 在0,4π⎛⎫⎪⎝⎭上单调递增D .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递增12.已知函数()1cos 212x f x x x π+⎛⎫=+- ⎪-⎝⎭, 则201612017k k f =⎛⎫ ⎪⎝⎭∑的值为( ) A .2016 B .1008 C .504 D .0 第Ⅱ卷二、填空题:本小题共4题,每小题5分 13.已知向量a ()1,2=,b (),1=-x ,若a //()a b -,则a b ⋅= 14.若一个圆的圆心是抛物线24=x y 的焦点,圆的标准方_____15.满足不等式组⎩⎨⎧≤≤≥-++-a x y x y x 00)3)(1(的点(),x y 组成的图形的面积是5,则实数a 的值是_____ 16.在ABC ∆中,160,1,2ACB BC AC AB ︒∠=>=+,当ABC ∆的周长最短时,BC 的长是 三、解答题:解答应写出文字说明、证明过程或演算步骤 17. 已知数列{}n a 的前n 项和为n S ,且22n n S a =-(*N n ∈)(Ⅰ)求数列{}n a 的通项公式; (Ⅱ) 求数列{}n S 的前n 项和n T18.(本小题满分12分)某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在(]195,210内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,图1是乙流水线样本的频率分布直方图(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的中位数;(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲、乙两条流水线分别生产出不合格品约多少件? (Ⅲ)根据已知条件完成下面22⨯列联表,并回答是否有85%的把握认为“该企业生产的这种产品的质量指标值与甲,乙两条流水线的选择有关”?附:()()()()()22n ad bc K a b c d a c b d -=++++(其中=+++n a b cd 为样本容量) 19.(本小题满分12分)如图1,在直角梯形ABCD 中,AD //BC ,AB⊥BC ,BD ⊥DC ,点E 是BC 边的中点,将ABD ∆沿BD 折起,使平面ABD ⊥平面BCD ,连接AE ,AC ,DE ,得到如图2所示的几何体 (Ⅰ)求证:AB ⊥平面ADC ; (Ⅱ)若1=AD ,AC 与其在平面ABD 内的正投影所成角的正切值为6,求点B 到平面ADE 的距离 20.(本小题满分12分)已知椭圆)0(1:2222>>=+b a b y a x C 的离心率为23,且过点)1,2(A (Ⅰ)求椭圆C 的方程;(Ⅱ)若Q P ,是椭圆C 上的两个动点,且使PAQ ∠的角平分线总垂直于x 轴,试判断直线PQ 的斜率是否为定值?若是,求出该值;若不是,说明理由 21.(本小题满分12分) 已知函数)0(ln )(>+=a xax x f (Ⅰ)若函数)(x f 有零点,求实数a 的取值范围;(Ⅱ)证明:当e a 2≥时,xex f ->)(请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为B3,(1,=-⎧⎨=+⎩x t t y t 为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中, 曲线:2c o s .4⎛⎫=- ⎪⎝⎭πρθC(Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)求曲线C 上的点到直线l 的距离的最大值 23.(本小题满分10分)选修4-5:不等式选讲已知函数()12=+-+-f x x a x a .(Ⅰ)若()13<f ,求实数a 的取值范围;(Ⅱ)若1,≥∈a x R ,求证:()2≥f x .2017年广州市普通高中毕业班文科数学综合测试(一)答案评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题不给中间分. 一、选择题(1)B (2)A (3)C (4)B (5)A (6)C(7)B (8)D (9)D (10)C (11)D (12)B 二、填空题(13)52- (14)()2212x y +-= (15)3 (16)12+三、解答题 (17) 解:(Ⅰ)当1n =时,1122S a =-,即1122a a =-, (1)分 解得12a =. ………………………………………………………2分当2n ≥时,11(22)n n n n a S S a --=-=-, ………………3分即12n n a a -=, ………………………………………………………4分所以数列{}n a 是首项为2,公比为2的等比数列.……………………………………5分所以122n nn a -=⨯=(n ∈N *). ………………………………………………6分 (Ⅱ) 因为12222n n n S a +=-=-, ………………………………………………8分所以12n n T S S S =++⋅⋅⋅+ ………………………………………………9分2312222n n +=++⋅⋅⋅+- ………………………………………………10分()412212n n ⨯-=-- ………………………………………………11分2242n n +=--. ………………………………………………12分 (18) 解:(Ⅰ)设乙流水线生产产品的该项质量指标值的中位数为x ,因为()(0.480.0120.0320.05250.50.0=++⨯<<+,………………………………………1分 则()()0.0120.0320.05250.0762050.5,x ++⨯+⨯-= ……………………………3分 解得390019x =. ………………………………………4分 (Ⅱ)由甲,乙两条流水线各抽取的50件产品可得,甲流水线生产的不合格品有15件,则甲流水线生产的产品为不合格品的概率为153,5010P ==甲 ………………………5分乙流水线生产的产品为不合格品的概率为()10.0120.02855P =+⨯=乙, ………6分 于是,若某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两条流水线生产的不合格品件数分别为:315000=1500,5000=1000105⨯⨯. …………………………8分(Ⅲ)列联表:…………………………10分 则()2210035060041.3505075253K ⨯-==≈⨯⨯⨯, ……………………………………………11分 因为1.3 2.072,<所以没有85%的把握认为“该企业生产的这种产品的该项质量指标值与甲,乙两条流水线 的选择有关”. ……………………………………………………12分 (19) 解:(Ⅰ) 因为平面ABD ⊥平面BCD ,平面ABD 平面BCD BD =,又BD ⊥DC ,所以DC ⊥平面ABD . …………………………………1分因为AB ⊂平面ABD ,所以DC ⊥AB .......................................2分 又因为折叠前后均有AD ⊥AB ,DC ∩AD D =, (3)分所以AB ⊥平面A D. …………………………………4分(Ⅱ) 由(Ⅰ)知DC ⊥平面ABD ,所以AC 在平面ABD 内的正投影为AD ,即∠CAD 为AC 与其在平面ABD 内的正投影所成角. ……………………………5分 依题意6tan ==∠AD CDCAD , 因为1A D ,=所以6=CD . …………………………6分设()0AB x x =>,则12+=x BD ,因为△ABD ~△BDC ,所以BDDCAD AB =, ………………………………7分即1612+=x x ,=,故3. …………………,AB ⊥AC , E 为BC 由平面几何知识得AE 322BC ==, 同理DE 322==BC ,所以22=∆ADS .…………………………9分因为DC ⊥平面ABD ,所以3331=⋅=-AB DBC D A S CD V . ………………………10分设点B 到平面ADE 的距离为d , 则632131====⋅---BCD A BDE A ADE B ADE V V V S d ,…………………………11分 所以26=d ,即点B 到平面ADE 的距离为26. …………………………12分 (20) 解:(Ⅰ) 因为椭圆C, 且过点()2,1A ,所以22411a b +=,2c a =. ………………………………………………2分因为222a b c =+, 解得28a =, 22b =, ………………………………………………3分 所以椭圆C 的方程为22182x y +=. ……………………………………………4分(Ⅱ)法1:因为PAQ ∠的角平分线总垂直于x 轴, 所以PA 与AQ 所在直线关于直线2x =对称. 设直线PA 的斜率为k , 则直线AQ 的斜率为k -. ………………………………5分所以直线PA 的方程为()12y k x -=-,直线AQ 的方程为()12y k x -=--.设点(),P P P x y , (),Q Q Q x y ,由()2212,1,82y k x x y -=-⎧⎪⎨+=⎪⎩消去y ,得()()222214168161640k x k k x k k +--+--=. ①因为点()2,1A 在椭圆C 上, 所以2x =是方程①的一个根, 则2216164214P k k x k --=+,……………………………………………6分所以2288214P k k x k --=+. ……………………………………………7分同理2288214Q k k x k +-=+. ……………………………………………8分所以21614P Q kx x k-=-+. ……………………………………………9分又()28414P Q P Q ky y k x x k -=+-=-+. ……………………………………………10分所以直线PQ 的斜率为12P Q PQ P Qy y k x x -==-. …………………………………………11分所以直线PQ 的斜率为定值,该值为12. ……………………………………………12分 法2:设点()()1122,,,P x y Q x y , 则直线PA 的斜率1112PA y k x -=-, 直线QA 的斜率2212QA y k x -=-. 因为PAQ ∠的角平分线总垂直于x 轴, 所以PA 与AQ 所在直线关于直线2x =对称. 所以P A Q k k=-, 即1112y x --22102y x -+=-,① ………………………………………5分 因为点()()1122,,,P x y Q x y 在椭圆C 上,所以2211182x y +=,② 2222182x y +=. ③ 由②得()()22114410x y -+-=, 得()111112241y x x y -+=--+, ④ ………………………6分 同理由③得()222212241y x x y -+=--+,⑤ (7)分由①④⑤得()()12122204141x x y y +++=++,化简得()()12211212240x y x y x x y y ++++++=, ⑥ ……………………………8分 由①得()()12211212240x y x y x x y y +-+-++=, ⑦ ……………………………9分⑥-⑦得()12122x x y y +=-+. …………………………………………10分 ②-③得22221212082x x y y --+=,得()12121212142y y x x x x y y -+=-=-+. …………………11分所以直线PQ 的斜率为121212PQy y k x x -==-为定值. …………………………………12分法3:设直线PQ 的方程为y k x b=+,点()()1122,,,P x y Q x y , 则1122,y kx b y kx b =+=+, 直线PA 的斜率1112PAy k x -=-, 直线QA 的斜率2212QAy k x -=-. ………………………5分 因为PAQ ∠的角平分线总垂直于x 轴, 所以PA 与AQ 所在直线关于直线2x =对称. 所以P Ak k =-, 即1112y x --2212y x -=--, ……………………………………………6分 化简得()()12211212240x y x y x x y y +-+-++=.把1122,y kx b y kx b =+=+代入上式, 并化简得 ()()1212212440k x x bk x x b +--+-+=.(*) …………………………………7分由22,1,82y kx b x y =+⎧⎪⎨+=⎪⎩消去y 得()222418480k x kbx b +++-=, (**)则2121222848,4141kb b x x x x k k -+=-=++, ……………………………………………8分代入(*)得()()2222488124404141k b kb b k b k k -----+=++, ……………………………9分整理得()()21210k b k -+-=, 所以12k =或12b k =-. ……………………………………………10分若12b k =-, 可得方程(**)的一个根为2,不合题意. ………………………………11分 若12k =时, 合题意. 所以直线PQ 的斜率为定值,该值为12. ……………………………………………12分 (21) 解:(Ⅰ)法1: 函数()ln af x x x =+的定义域为()0,+∞. 由()ln af x x x=+, 得()221a x af x x x x-'=-=. ……………………………………1分因为0a >,则()0,x a ∈时,()0f x '<;(),x a ∈+∞时, ()0f x '>.所以函数()f x 在()0,a 上单调递减, 在(),a +∞上单调递增. ………………………2分当x a =时,()minln 1f x a =+⎡⎤⎣⎦. …………………………………………………3分当ln 10a +≤, 即0a <≤1e时, 又()1ln10=+=>f a a , 则函数()f x 有零点. …4分所以实数a 的取值范围为10,e ⎛⎤ ⎥⎝⎦. ……………………………………………………5分法2:函数()ln af x x x =+的定义域为()0,+∞. 由()ln 0af x x x=+=, 得ln a x x =-. …………………………………………………1分令()ln g x x x =-,则()()ln 1g x x '=-+.当10,x e ⎛⎫∈ ⎪⎝⎭时, ()0g x '>; 当1,x e ⎛⎫∈+∞ ⎪⎝⎭时, ()0g x '<.所以函数()g x 在10,e ⎛⎫ ⎪⎝⎭上单调递增, 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减. ……………………2分 故1x e=时, 函数()g x 取得最大值1111ln g e e e e ⎛⎫=-= ⎪⎝⎭. …………………………3分因而函数()ln af x x x=+有零点, 则10a e<≤. ………………………………………4分所以实数a 的取值范围为10,e ⎛⎤ ⎥⎝⎦. …………………………………………………5分(Ⅱ) 要证明当2a e≥时, ()->x f x e , 即证明当0,x >2a e ≥时, ln x ax e x-+>, 即ln x x x a xe -+>.………………………6分 令()ln h x x x a =+, 则()ln 1h x x '=+.当10x e <<时, ()0f x '<;当1x e >时,()0f x '>.所以函数()h x 在10,e ⎛⎫ ⎪⎝⎭上单调递减, 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增. 当1x e=时,()min1h x a e=-+⎡⎤⎣⎦. ……………………………………………………7分于是,当2a e≥时, ()11.h x a e e ≥-+≥ ① ……………………………………8分 令()xx xe ϕ-=, 则()()1x x x x e xe e x ϕ---'=-=-.当01x <<时,()0f x '>;当1x >时,()0f x '<. 所以函数()x ϕ在()0,1上单调递增, 在()1,+∞上单调递减.当1x =时,()max1x eϕ=⎡⎤⎣⎦. ……………………………………………………9分于是,当0x >时,()1.x e ϕ≤② ……………………………………………………10分显然, 不等式①、②中的等号不能同时成立. …………………………………11分 故当2a e≥时,()->x f x e . ……………………………………………………12分 (22)解: (Ⅰ)由3,1,=-⎧⎨=+⎩x t y t消去t 得40+-=x y , ………………………………………1分所以直线l 的普通方程为40+-=x y . ………………………………………2分由4⎛⎫=-⎪⎝⎭πρθcos cos sin sin 2cos 2sin 44⎫=+=+⎪⎭ππθθθθ,……3分得22cos 2sin =+ρρθρθ. ………………………………………4分将222,cos ,sin =+==ρρθρθx y x y 代入上式,得曲线C 的直角坐标方程为2222+=+x y x y , 即()()22112-+-=x y . ………5分(Ⅱ)法1:设曲线C上的点为()1c o ,12s i nααP , ………………………………6分 则点P 到直线l的距离为2s i n 4-=d …………………………7分=………………………………………8分当sin 14⎛⎫+=- ⎪⎝⎭πα时, max =d , ………………………………………9分所以曲线C 上的点到直线l 的距离的最大值为分法2: 设与直线l 平行的直线为:0l x y b '++=, ………………………………………6分当直线l '与圆C 相切时,得=, ………………………………………7分解得0b =或4b =-(舍去), 所以直线l '的方程为0x y +=. ………………………………………8分所以直线l 与直线l '的距离为d ==. …………………………………9分所以曲线C 上的点到直线l 的距离的最大值为分(23)解: (Ⅰ)因为()13<f ,所以123+-<a a . ………………………………………1分① 当0≤a 时,得()123-+-<a a ,解得23>-a ,所以203-<≤a ; ……………2分② 当102<<a 时,得()123+-<a a ,解得2>-a ,所以102<<a ; ……………3分③ 当12a ≥时,得()123--<a a ,解得43<a ,所以1423a ≤<; ……………4分综上所述,实数a 的取值范围是24,33⎛⎫- ⎪⎝⎭. ………………………………………5分(Ⅱ) 因为1,≥∈a x R , 所以()()()121=+-fxx……………………………7分31=-a ……………………………………………………………………8分31=-a ……………………………………………………………………9分2≥. ……………………………………………………………………10分。
广东省广州市重点学校备战2017高考数学一轮复习 直线和圆试题精选10

欢迎广大教师踊跃来稿,稿酬丰厚。
qq:2355394557直线和圆101、直线1l :kx +(1-k )y -3=0和2l :(k -1)x +(2k +3)y -2=0互相垂直,则k =A. -3或-1B. 3或1C. -3或1D. -1或32、直线l 与圆x 2+y 2+2x -4y +1=0相交于A ,B 两点,若弦AB 的中点(-2,3),则直线l 的方程为:(A )x +y -3=0 (B )x +y -1=0 (C )x -y +5=0 (D )x -y -5=3、若直线100ax by (a,b (,))+-=∈+∞平分圆222220x y x y +---=,则12a b+的最小值是( )A. B.3+.2 D .5 答案:B解析:圆方程化为:(x -1)2+(y -1)2=4,圆心坐标为(1,1),因为直线平分圆,所以它必过圆心,因此,有:a +b =1,12a b +=121()a b +⨯=12()(a b )a b++=3+2b a a b +≥3+3+,故选B 。
欢迎广大教师踊跃来稿,稿酬丰厚。
qq:2355394557- 2 -4、直线l 过点)04(,且与圆25)2()1(22=-+-y x 交于B A 、两点,如果8=AB ,那么直线l 的方程为____________。
【答案】020125=--y x 或4=x5、设圆222x y +=的切线l 与x 轴的正半轴、y 轴的正半轴分别交于点A B 、,当AB 取最小值时,切线l 的方程为________________。
6、函数y =则以下- 3 -不可能成为该等比数列的公比的数是A .34BCD【答案】D【解析】函数等价为0,9)5(22≥=+-y y x ,表示为圆心在)0,5(半径为3的上半圆,圆上点到原点的最短距离为2,最大距离为8,若存在三点成等比数列,则最大的公比q 应有228q =,即2,42==q q ,最小的公比应满足282q =,所以21,412==q q ,所以公比的取值范围为221≤≤q ,所以选D. 7、已知直线y x a =+与圆224x y +=交于A 、B 两点,且0OA OB ⋅=,其中O 为坐标原点,则正实数a 的值为.8、已知圆222()()x a y b r -+-=的圆心为抛物线24y x =的焦点,且与直线3420x y ++=相切,则该圆的方程为A.2264(1)25x y -+=B.2264(1)25x y +-= C. 22(1)1x y -+= D.22(1)1x y +-=9、直线kx y =与函数)10(<<=a a y x 的图象交与A ,B 两点(点B 在A 上方),过B 点欢迎广大教师踊跃来稿,稿酬丰厚。
2017年广东省广州市高考数学一模试卷(理科)(解析版)

2017年广东省广州市高考数学一模试卷(理科)一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数(1+i)2+的共轭复数是()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i2.若集合M={x||x|≤1},N={y|y=x2,|x|≤1},则()A.M=N B.M⊆N C.N⊆M D.M∩N=∅3.已知等比数列{a n}的各项都为正数,且a3,成等差数列,则的值是()A.B.C.D.4.阅读如图的程序框图.若输入n=5,则输出k的值为()A.2 B.3 C.4 D.55.已知双曲线C的一条渐近线方程为2x+3y=0,F1,F2分别是双曲线C的左,右焦点,点P在双曲线C上,且|PF1|=7,则|PF2|等于()A.1 B.13 C.4或10 D.1或136.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为,则该几何体的俯视图可以是()A.B.C.D.7.五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为()A.B.C.D.8.已知F1,F2分别是椭圆C: +=1(a>b>0)的左、右焦点,椭圆C上存在点P使∠F1PF2为钝角,则椭圆C的离心率的取值范围是()A.(,1)B.(,1)C.(0,)D.(0,)9.已知p:∃x>0,e x﹣ax<1成立,q:函数f(x)=﹣(a﹣1)x是减函数,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件10.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P﹣ABC为鳖臑,PA⊥平面ABC,PA=AB=2,AC=4,三棱锥P﹣ABC的四个顶点都在球O的球面上,则球O的表面积为()A.8πB.12πC.20πD.24π11.若直线y=1与函数f(x)=2sin2x的图象相交于点P(x1,y1),Q(x2,y2),且|x1﹣x2|=,则线段PQ与函数f(x)的图象所围成的图形面积是()A.B.C.D.12.已知函数f(x)=x3﹣,则的值为()A.0 B.504 C.1008 D.2016二、填空题:本小题共4题,每小题5分.13.已知||=1,||=,且⊥(﹣),则向量与向量的夹角是.14.(3﹣x)n的展开式中各项系数和为64,则x3的系数为(用数字填写答案)15.已知函数f(x)=,若|f(a)|≥2,则实数a的取值范围是.=a p+a q,16.设S n为数列{a n}的前n项和,已知a1=2,对任意p、q∈N*,都有a p+q则f(n)=(n∈N*)的最小值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.如图,在△ABC中,点P在BC边上,∠PAC=60°,PC=2,AP+AC=4.(Ⅰ)求∠ACP;(Ⅱ)若△APB的面积是,求sin∠BAP.18.近年来,我国电子商务蓬勃发展.2016年“618”期间,某网购平台的销售业绩高达516亿元人民币,与此同时,相关管理部门推出了针对该网购平台的商品和服务的评价系统.从该评价系统中选出200次成功交易,并对其评价进行统计,网购者对商品的满意率为6,对服务的满意率为0.75,其中对商品和服务都满意的交易为80次.(Ⅰ)根据已知条件完成下面的2×2列联表,并回答能否有99%的把握认为“网购者对商品满意与对服务满意之间有关系”?对服务满意对服务不满意合计对商品满意80对商品不满意合计200(Ⅱ)若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和服务都满意的次数为随机变量X,求X的分布列和数学期望EX.附:K2=(其中n=a+b+c+d为样本容量)P(K2≥k)0.150.100.050.0250.010k 2.072 2.706 3.841 5.024 6.63519.如图1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E是BC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.(Ⅰ)求证:AB⊥平面ADC;(Ⅱ)若AD=1,二面角C﹣AB﹣D的平面角的正切值为,求二面角B﹣AD ﹣E的余弦值.20.过点P(a,﹣2)作抛物线C:x2=4y的两条切线,切点分别为A(x1,y1),B(x2,y2).(Ⅰ)证明:x1x2+y1y2为定值;(Ⅱ)记△PAB的外接圆的圆心为点M,点F是抛物线C的焦点,对任意实数a,试判断以PM为直径的圆是否恒过点F?并说明理由.21.已知函数f(x)=lnx+.(Ⅰ)若函数f(x)有零点,求实数a的取值范围;(Ⅱ)证明:当a≥,b>1时,f(lnb)>.选修4-4:坐标系与参数方程22.在直角坐标系xOy中,直线l的参数方程为(t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ=2cos(θ﹣).(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.选修4-5:不等式选讲23.已知函数f(x)=|x+a﹣1|+|x﹣2a|.(Ⅰ)若f(1)<3,求实数a的取值范围;(Ⅱ)若a≥1,x∈R,求证:f(x)≥2.2017年广东省广州市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数(1+i)2+的共轭复数是()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:(1+i)2+=2i+=2i+1﹣i=1+i的共轭复数是1﹣i.故选:B.2.若集合M={x||x|≤1},N={y|y=x2,|x|≤1},则()A.M=N B.M⊆N C.N⊆M D.M∩N=∅【考点】集合的表示法.【分析】化简N,即可得出结论.【解答】解:由题意,N={y|y=x2,|x|≤1}={y|0≤y≤1},∴N⊆M,故选C.3.已知等比数列{a n}的各项都为正数,且a3,成等差数列,则的值是()A.B.C.D.【考点】等比数列的通项公式.【分析】设等比数列{a n}的公比为q,且q>0,由题意和等差中项的性质列出方程,由等比数列的通项公式化简后求出q,由等比数列的通项公式化简所求的式子,化简后即可求值.【解答】解:设等比数列{a n}的公比为q,且q>0,∵a3,成等差数列,∴,则,化简得,q2﹣q﹣1=0,解得q=,则q=,∴====,故选A.4.阅读如图的程序框图.若输入n=5,则输出k的值为()A.2 B.3 C.4 D.5【考点】程序框图.【分析】根据已知中的程序框图可得,该程序的功能是计算并输出变量k,n的值,模拟程序的运行过程,可得答案.【解答】解:第一次执行循环体,n=16,不满足退出循环的条件,k=1;第二次执行循环体,n=49,不满足退出循环的条件,k=2;第三次执行循环体,n=148,不满足退出循环的条件,k=3;第四次执行循环体,n=445,满足退出循环的条件,故输出k值为3,故选:B5.已知双曲线C的一条渐近线方程为2x+3y=0,F1,F2分别是双曲线C的左,右焦点,点P在双曲线C上,且|PF1|=7,则|PF2|等于()A.1 B.13 C.4或10 D.1或13【考点】双曲线的简单性质.【分析】由双曲线的方程、渐近线的方程求出a,由双曲线的定义求出|PF2|.【解答】解:由双曲线的方程、渐近线的方程可得=,∴a=3.由双曲线的定义可得||PF2|﹣7|=6,∴|PF2|=1或13,故选C.6.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为,则该几何体的俯视图可以是()A.B.C.D.【考点】简单空间图形的三视图.【分析】该几何体为正方体截去一部分后的四棱锥P﹣ABCD,作出图形,可得结论.【解答】解:该几何体为正方体截去一部分后的四棱锥P﹣ABCD,如图所示,该几何体的俯视图为D.故选:D.7.五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】求出基本事件的个数,即可求出没有相邻的两个人站起来的概率.【解答】解:五个人的编号为1,2,3,4,5.由题意,所有事件,共有25=32种,没有相邻的两个人站起来的基本事件有(1),(2),(3),(4),(5),(1,3),(1,4),(2,4),(2,5),(3,5),再加上没有人站起来的可能有1种,共11种情况,∴没有相邻的两个人站起来的概率为,故选:C.8.已知F1,F2分别是椭圆C: +=1(a>b>0)的左、右焦点,椭圆C上存在点P使∠F1PF2为钝角,则椭圆C的离心率的取值范围是()A.(,1)B.(,1)C.(0,)D.(0,)【考点】椭圆的简单性质.【分析】由∠F1PF2为钝角,得到•<0有解,转化为c2>x02+y02有解,求出x02+y02的最小值后求得椭圆离心率的取值范围.【解答】解:设P(x0,y0),则|x0|<a,又F1(﹣c,0),F2(c,0),又∠F1PF2为钝角,当且仅当•<0有解,即(﹣c﹣x0,﹣y0)•(c﹣x0,﹣y0)=(﹣c﹣x0)(c﹣x0)+y02<0,即有c2>x02+y02有解,即c2>(x02+y02)min.又y02=b2﹣x02,∴x02+y02=b2+x02∈[b2,a2),即(x02+y02)min=b2.故c2>b2,c2>a2﹣c2,∴>,即e>,又0<e<1,∴<e<1.故选:A.9.已知p:∃x>0,e x﹣ax<1成立,q:函数f(x)=﹣(a﹣1)x是减函数,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】利用导数研究p的单调性可得a>0.q:函数f(x)=﹣(a﹣1)x是减函数,则a﹣1>1,解得a>2.即可判断出结论.【解答】解:p:∃x>0,e x﹣ax<1成立,则a,令f(x)=,则f′(x)=.令g(x)=e x x﹣e x+1,则 g(0)=0,g′(x)=xex>0,∴g(x)>0,∴f′(x)>0,∴a>0. q:函数 f(x)=﹣(a﹣1)x 是减函数,则 a﹣1>1,解得 a>2. 则 p 是 q 的必要不充分条件. 故选:B.10.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥 P﹣ABC 为鳖臑,PA⊥平面 ABC,PA=AB=2,AC=4,三棱锥 P﹣ABC 的四个顶点都在球 O 的球面上,则球 O 的表面积为( )A.8π B.12π C.20π D.24π【考点】球的体积和表面积.【分析】由题意,PC 为球 O 的直径,求出 PC,可得球 O 的半径,即可求出球 O的表面积.【解答】解:由题意,PC 为球 O 的直径,PC==2 ,∴球 O 的半径为 ,∴球 O 的表面积为 4π•5=20π,故选 C.11.若直线 y=1 与函数 f(x)=2sin2x 的图象相交于点 P(x1,y1),Q(x2,y2), 且|x1﹣x2|= ,则线段 PQ 与函数 f(x)的图象所围成的图形面积是( )A.B.C.D.【考点】正弦函数的图象. 【分析】根据直线 y=1 与函数 f(x)=2sin2x 的图象相交于点 P(x1,y1),Q(x2, y2),求解 x1,x2 的值,利用定积分即可求解线段 PQ 与函数 f(x)的图象所围成 的图形面积. 【解答】解:函数 f(x)=2sin2x, 周期 T=π,令 2sin2x=1,解得:x=或,直线 y=1 与函数 (f x)=2sin2x 的图象相交于点从左向右依次是 , , …,∵|x1﹣x2|=令 x1= ,x2=,可得:线段 PQ 与函数 f(x)的图象所围成的图形面积S=﹣2﹣2=.故选 A12.已知函数 f(x)=x3﹣,则的值为( )A.0 B.504 C.1008 【考点】数列的求和.D.2016【分析】使用二项式定理化简得 (f x)═(x﹣ )3+ .根据与互为相反数便可得出答案.【解答】解:f(x)=x3﹣=x3﹣ x2+ x﹣ + =(x﹣ )3+ .∵+=0,k=1,2,…2016.∴(﹣ )3+()3=0,k=1,2,…2016.∴=故选:B.=504.二、填空题:本小题共 4 题,每小题 5 分.13.已知| |=1,| |= ,且 ⊥( ﹣ ),则向量 与向量 的夹角是.【考点】数量积表示两个向量的夹角. 【分析】由条件利用两个向量垂直的性质、两个向量的数量积的定义求得 cosθ的值,可得向量 与向量 的夹角 θ 的值.【解答】解:设向量 与向量 的夹角是 θ,则由题意可得 •( ﹣ )= ﹣ =1 ﹣1× ×cosθ=0, 求得 cosθ= ,可得 θ= , 故答案为: .14.(3﹣x)n 的展开式中各项系数和为 64,则 x3 的系数为 ﹣540 (用数字填 写答案) 【考点】二项式系数的性质. 【分析】令 x=1,则 2n=64,解得 n=6.再利用通项公式即可得出. 【解答】解:令 x=1,则 2n=64,解得 n=6.(3﹣x)6 的通项公式为:Tr+1==(﹣1)r •36﹣r•xr,令 r=3,则 x3 的系数为﹣=﹣540.故答案为:﹣540.15.已知函数 f(x)=,若|f(a)|≥2,则实数 a 的取值范围是.【考点】函数的值. 【分析】根据解析式对 a 分类讨论,分别列出不等式后,由指数、对数函数的性 质求出实数 a 的取值范围.【解答】解:由题意知,f(x)=,①当 a≤0 时,不等式|f(a)|≥2 为|21﹣a|≥2, 则 21﹣a≥2,即 1﹣a≥1,解得 a≤0;②当 a>0 时,不等式|f(a)|≥2 为,则或,即或,解得 0<a综上可得,实数 a 的取值范围是故答案为:.或 a≥8; ,16.设 Sn 为数列{an}的前 n 项和,已知 a1=2,对任意 p、q∈N*,都有 ap+q=ap+aq,则 f(n)=(n∈N*)的最小值为.【考点】数列的求和. 【分析】对任意 p、q∈N*,都有 ap+q=ap+aq,令 p=n,q=1,可得 an+1=an+a1,则﹣an=2,利用等差数列的求和公式可得 Sn.f(n)===n+1+ ﹣1,令 g(x)=x+ (x≥1),利用导数研究函数的单调性极值与最值即可得出.【解答】解:∵对任意 p、q∈N*,都有 ap+q=ap+aq,令 p=n,q=1,可得 an+1=an+a1,则 ﹣an=2,∴数列{an}是等差数列,公差为 2.∴Sn=2n+=n+n2.则 f(n)===n+1+ ﹣1,令 g(x)=x+ (x≥1),则 g′(x)=1﹣ =,可得 x∈[1, 时,函数 g(x)单调递减;x∈时,函数 g(x)单调递增.又 f(7)=14+ ,f(8)=14+ . ∴f(7)<f(8).∴f(n)=(n∈N*)的最小值为 .故答案为: .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.如图,在△ABC 中,点 P 在 BC 边上,∠PAC=60°,PC=2,AP+AC=4. (Ⅰ) 求∠ACP; (Ⅱ) 若△APB 的面积是 ,求 sin∠BAP.【考点】余弦定理;正弦定理. 【分析】(Ⅰ) 在△APC 中,由余弦定理得 AP2﹣4AP+4=0,解得 AP=2,可得△ APC 是等边三角形,即可得解. (Ⅱ) 法 1:由已知可求∠APB=120°.利用三角形面积公式可求 PB=3.进而利用余弦定理可求 AB,在△APB 中,由正弦定理可求 sin∠BAP=的值.法 2:作 AD⊥BC,垂足为 D,可求:,利用三角形面 积 公 式 可 求 PB , 进 而 可 求 BD , AB , 利 用 三 角 函 数 的 定 义 可 求,.利用两角差的正弦函数公式可求 sin∠BAP=sin(∠BAD﹣30°)的值. 【解答】(本题满分为 12 分) 解:(Ⅰ) 在△APC 中,因为∠PAC=60°,PC=2,AP+AC=4, 由余弦定理得 PC2=AP2+AC2﹣2•AP•AC•cos∠PAC,… 所以 22=AP2+(4﹣AP)2﹣2•AP•(4﹣AP)•cos60°, 整理得 AP2﹣4AP+4=0,… 解得 AP=2.… 所以 AC=2.… 所以△APC 是等边三角形.… 所以∠ACP=60°.… (Ⅱ) 法 1:由于∠APB 是△APC 的外角,所以∠APB=120°.…因为△APB 的面积是 ,所以.…所以 PB=3.…在△APB 中,AB2=AP2+PB2﹣2•AP•PB•cos∠APB=22+32﹣2×2×3×cos120°=19,所以.…在△APB 中,由正弦定理得,…所以 sin∠BAP==.…法 2:作 AD⊥BC,垂足为 D, 因为△APC 是边长为 2 的等边三角形,所以.…因为△APB 的面积是 ,所以.…所以 PB=3.… 所以 BD=4.在 Rt△ADB 中,,…所以,.所以 sin∠BAP=sin(∠BAD﹣30°)=sin∠BADcos30°﹣cos∠BADsin30°…==.…18.近年来,我国电子商务蓬勃发展.2016 年“618”期间,某网购平台的销售业绩 高达 516 亿元人民币,与此同时,相关管理部门推出了针对该网购平台的商品和 服务的评价系统.从该评价系统中选出 200 次成功交易,并对其评价进行统计,网购者对商品的满意率为 6,对服务的满意率为 0.75,其中对商品和服务都满意的交易为 80 次.(Ⅰ) 根据已知条件完成下面的 2×2 列联表,并回答能否有 99%的把握认为“网购者对商品满意与对服务满意之间有关系”?对服务满意 对服务不满 合计意对商品满意80对商品不满意合计200(Ⅱ) 若将频率视为概率,某人在该网购平台上进行的 3 次购物中,设对商品和服务都满意的次数为随机变量 X,求 X 的分布列和数学期望 EX.附:K2=(其中 n=a+b+c+d 为样本容量)P(K2≥k) 0.15 0.10 0.05 0.025 0.010k2.072 2.706 3.841 5.024 6.635【考点】独立性检验的应用.【分析】(Ⅰ)利用数据直接填写联列表即可,求出 X2,即可回答是否有 95%的把握认为性别和对手机的“认可”有关;(Ⅱ)由题意可得 X 的可能值,分别可求其概率,可得分布列,进而可得数学期望..【解答】解:(Ⅰ) 2×2 列联表:对服务满意 对服务不满意 合计对商品满意8040120对商品不满意701080合计15050200…,…因为 11.111>6.635,所以能有 99%的把握认为“网购者对商品满意与对服务满意之间有关系”.…(Ⅱ) 每次购物时,对商品和服务都满意的概率为 ,且 X 的取值可以是 0,1,2,3.…;;.…X 的分布列为:X0123P…所以.…19.如图 1,在直角梯形 ABCD 中,AD∥BC,AB⊥BC,BD⊥DC,点 E 是 BC 边的 中点,将△ABD 沿 BD 折起,使平面 ABD⊥平面 BCD,连接 AE,AC,DE,得到如 图 2 所示的几何体. (Ⅰ) 求证:AB⊥平面 ADC; (Ⅱ) 若 AD=1,二面角 C﹣AB﹣D 的平面角的正切值为 ,求二面角 B﹣AD ﹣E 的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定. 【分析】(Ⅰ)证明 DC⊥AB.AD⊥AB 即可得 AB⊥平面 ADC. (Ⅱ) 由(Ⅰ)知 AB⊥平面 ADC,即二面角 C﹣AB﹣D 的平面角为∠CAD 二面 角 C﹣AB﹣D 的平面角的正切值为 ,解得 AB,如图所示,建立空间直角坐标系 D﹣xyz,求出平面 BAD 的法向量,平面 ADE 的法向量,即可得二面角 B﹣AD﹣E 的余弦值 【解答】解:(Ⅰ) 因为平面 ABD⊥平面 BCD,平面 ABD∩平面 BCD=BD, 又 BD⊥DC,所以 DC⊥平面 ABD.… 因为 AB⊂ 平面 ABD,所以 DC⊥AB.… 又因为折叠前后均有 AD⊥AB,DC∩AD=D,… 所以 AB⊥平面 ADC.… (Ⅱ) 由(Ⅰ)知 AB⊥平面 ADC,所以二面角 C﹣AB﹣D 的平面角为∠CAD.… 又 DC⊥平面 ABD,AD⊂ 平面 ABD,所以 DC⊥AD.依题意.…因为 AD=1,所以.设 AB=x(x>0),则.依题意△ABD~△BDC,所以,即.…解得 ,故.…如图所示,建立空间直角坐标系 D﹣xyz,则 D(0,0,0),,,,,所以,.由(Ⅰ)知平面 BAD 的法向量.…设平面 ADE 的法向量由得令 ,得 所以 所以, .….…由图可知二面角 B﹣AD﹣E 的平面角为锐角, 所以二面角 B﹣AD﹣E 的余弦值为 .…20.过点 P(a,﹣2)作抛物线 C:x2=4y 的两条切线,切点分别为 A(x1,y1), B(x2,y2). (Ⅰ) 证明:x1x2+y1y2 为定值; (Ⅱ) 记△PAB 的外接圆的圆心为点 M,点 F 是抛物线 C 的焦点,对任意实数 a,试判断以 PM 为直径的圆是否恒过点 F?并说明理由. 【考点】直线与抛物线的位置关系.【分析(】Ⅰ)求导,求得直线 PA 的方程,将 P 代入直线方程,求得,同理可知.则 x1,x2 是方程 x2﹣2ax﹣8=0 的两个根,则由韦达定理求得 x1x2,y1y2 的值,即可求证 x1x2+y1y2 为定值;设切线方程,代入抛物线方 程,由△=0,则 k1k2=﹣2,分别求得切线方程,代入即可求证 x1x2+y1y2 为定值;(Ⅱ) 直线 PA 的垂直平分线方程为,同理求得直线PB 的垂直平分线方程,求得 M 坐标,抛物线 C 的焦点为 F(0,1),则,则.则以 PM 为直径的圆恒过点 F.【解答】解:(Ⅰ)证明:法 1:由 x2=4y,得,所以.所以直线PA 的斜率为 .因为点 A(x1,y1)和 B(x2,y2)在抛物线 C 上,所以,.所以直线PA的方程为.…因为点P(a,﹣2)在直线PA上,所以,即.…同理,.…所以x1,x2是方程x2﹣2ax﹣8=0的两个根.所以x1x2=﹣8.…又,…所以x1x2+y1y2=﹣4为定值.…法2:设过点P(a,﹣2)且与抛物线C相切的切线方程为y+2=k(x﹣a),…,消去y得x2﹣4kx+4ka+8=0,由△=16k2﹣4(4ak+8)=0,化简得k2﹣ak﹣2=0.…所以k1k2=﹣2.…由x2=4y,得,所以.所以直线PA的斜率为,直线PB的斜率为.所以,即x1x2=﹣8.…又,…所以x1x2+y1y2=﹣4为定值.…(Ⅱ)法1:直线PA的垂直平分线方程为,…由于,,所以直线PA的垂直平分线方程为.①…同理直线PB的垂直平分线方程为.②…由①②解得,,所以点.…抛物线C的焦点为F(0,1),则.由于,…所以.所以以PM为直径的圆恒过点F.…另法:以PM为直径的圆的方程为.…把点F(0,1)代入上方程,知点F的坐标是方程的解.所以以PM为直径的圆恒过点F.…法2:设点M的坐标为(m,n),则△PAB的外接圆方程为(x﹣m)2+(y﹣n)2=(m﹣a)2+(n+2)2,由于点A(x1,y1),B(x2,y2)在该圆上,则,.两式相减得(x1﹣x2)(x1+x2﹣2m)+(y1﹣y2)(y1+y2﹣2n)=0,①…由(Ⅰ)知,代入上式得,…当x1≠x2时,得8a﹣4m+a3﹣2an=0,②假设以PM为直径的圆恒过点F,则,即(﹣m,n﹣1)•(﹣a,﹣3)=0,得ma﹣3(n﹣1)=0,③…由②③解得,…所以点.…当x1=x2时,则a=0,点M(0,1).所以以PM为直径的圆恒过点F.…21.已知函数f(x)=lnx+.(Ⅰ)若函数f(x)有零点,求实数a的取值范围;(Ⅱ)证明:当a≥,b>1时,f(lnb)>.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)法一:求出函数f(x)的导数,得到函数的单调区间,求出f(x)的最小值,从而求出a的范围即可;法二:求出a=﹣xlnx,令g(x)=﹣xlnx,根据函数的单调性求出g(x)的最大值,从而求出a的范围即可;(Ⅱ)令h(x)=xlnx+a,通过讨论a的范围,根据函数的单调性证明即可.【解答】解:(Ⅰ)法1:函数的定义域为(0,+∞).由,得.…因为a>0,则x∈(0,a)时,f'(x)<0;x∈(a,+∞)时,f'(x)>0.所以函数f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.…当x=a时,[f(x)]min=lna+1.…当lna+1≤0,即0<a≤时,又f(1)=ln1+a=a>0,则函数f(x)有零点.…所以实数a的取值范围为.…法2:函数的定义域为(0,+∞).由,得a=﹣xlnx.…令g(x)=﹣xlnx,则g'(x)=﹣(lnx+1).当时,g'(x)>0;当时,g'(x)<0.所以函数g(x)在上单调递增,在上单调递减.…故时,函数g(x)取得最大值.…因而函数有零点,则.…所以实数a的取值范围为.…(Ⅱ)证明:令h(x)=xlnx+a,则h'(x)=lnx+1.当时,f'(x)<0;当时,f'(x)>0.所以函数h(x)在上单调递减,在上单调递增.当时,.…于是,当a≥时,.①…令φ(x)=xe﹣x,则φ'(x)=e﹣x﹣xe﹣x=e﹣x(1﹣x).当0<x<1时,f'(x)>0;当x>1时,f'(x)<0.所以函数φ(x)在(0,1)上单调递增,在(1,+∞)上单调递减.当x=1时,.…于是,当x>0时,.②…显然,不等式①、②中的等号不能同时成立.故当x>0,时,xlnx+a>xe﹣x.…因为b>1,所以lnb>0.所以lnb•ln(lnb)+a>lnb•e﹣lnb.…所以,即.…选修4-4:坐标系与参数方程22.在直角坐标系xOy中,直线l的参数方程为(t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ=2cos(θ﹣).(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)将直线l的参数方程消去t参数,可得直线l的普通方程,将ρcosθ=x,ρsinθ=y,ρ2=x2+y2,带入ρ=2cos(θ﹣)可得曲线C的直角坐标方程.(Ⅱ)法一:设曲线C上的点为,点到直线的距离公式建立关系,利用三角函数的有界限可得最大值.法二:设与直线l平行的直线为l':x+y+b=0,当直线l'与圆C相切时,得,点到直线的距离公式可得最大值.【解答】解:(Ⅰ)由直线l的参数方程消去t参数,得x+y﹣4=0,∴直线l的普通方程为x+y﹣4=0.由=.得ρ2=2ρcosθ+2ρsinθ.将ρ2=x2+y2,ρcosθ=x,ρsinθ=y代入上式,得:曲线C的直角坐标方程为x2+y2=2x+2y,即(x﹣1)2+(y﹣1)2=2.(Ⅱ)法1:设曲线C上的点为,则点P到直线l的距离为==当时,∴曲线C上的点到直线l的距离的最大值为;法2:设与直线l平行的直线为l':x+y+b=0.当直线l'与圆C相切时,得,解得b=0或b=﹣4(舍去).∴直线l'的方程为x+y=0.那么:直线l与直线l'的距离为故得曲线C上的点到直线l的距离的最大值为.选修4-5:不等式选讲23.已知函数f(x)=|x+a﹣1|+|x﹣2a|.(Ⅰ)若f(1)<3,求实数a的取值范围;(Ⅱ)若a≥1,x∈R,求证:f(x)≥2.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(Ⅰ)通过讨论a的范围得到关于a的不等式,解出取并集即可;(Ⅱ)基本基本不等式的性质证明即可.【解答】解:(Ⅰ)因为f(1)<3,所以|a|+|1﹣2a|<3.①当a≤0时,得﹣a+(1﹣2a)<3,解得,所以;②当时,得a+(1﹣2a)<3,解得a>﹣2,所以;③当时,得a﹣(1﹣2a)<3,解得,所以;综上所述,实数a的取值范围是.(Ⅱ)因为a≥1,x∈R,所以f(x)=|x+a﹣1|+|x﹣2a|≥|(x+a﹣1)﹣(x﹣2a)|=|3a﹣1|=3a﹣1≥2.2017年3月25日。
广东省广州市普通高中2017高考高三数学第一次模拟试题精选:数列02 含答案

数列0211、数列{}n a 满足121a a ==,122cos()3n n n n a a a n N π*++++=∈,若数列{}n a 的前n 项和为n S ,则2013S 的值为 [答] ( ) (A )2013 (B )671 (C )671- (D )6712- 【答案】D 【解析】因为3231332321322n n n n n n a a a a a a ----+-+++=++,所以3231332n n n nn n a a a aa a ----+-+++=++2(32)441c o s co s (2)c o s ()3332n n ππππ-==-=-=-,所以20131231671671()671()22S a a a =⨯++=⨯-=-,选D12、等差数列{}n a 的前n 项和为n S ,若211210,38m m m m a a a S -+-+-==,则m =_______【答案】10【 解析】由2110m m m a a a -++-=得220m m a a -=,即0m a =(舍去)或2m a =又21(21)2(21)38m m S m a m -=-=-=,所以解得10m =。
13、数列{}n a 满足()*,21,2n k n n k a k N a n k=-⎧=∈⎨=⎩,设()12212n n f n a a a a -=++++ ,则()()20132012f f -=( )A 20122B 20132C 20124D 20134【答案】C【 解析】2013201321221)2013(a a a a f ++++=- (都有222013项) )()(201320132421231a a a a a a +++++++=-)()]12(31[20122212013a a a ++++-+++= )2012(2201221212013f +⋅=-+=()2012()2(22012f +=()2012(42012f +⇒20124)2012()2013(=-f f ,所以选C14、在等差数列}{n a 中,101-=a ,从第9项开始为正数,则公差d 的取值范围是___________ 【答案】510(,]47【 解析】由题意知8900a a ≤⎧⎨>⎩,即117080a d a d +≤⎧⎨+>⎩,所以10701080d d -+≤⎧⎨-+>⎩,解得10754d d ⎧≤⎪⎪⎨⎪>⎪⎩,所以51047d <≤,即公差d 的取值范围是510(,]47。
广东省广州市普通高中2017高考高三数学第一次模拟试题精选:三角函数03 Word版含答案

三角函数0331、在ABC ∆中,若60,2,B AB AC =︒==∆则ABC 的面积是 . 【答案】32【 解析】由正弦定理sin sin AC AB B C =得sin 1sin 2AB B C AC ===,因为AC AB >,所以C B <,所以030C =。
所以90A =,所以11222ABC S AB AC ∆=⋅=⨯⨯32、已知函数()sin()(f x A x A ωϕ=+>0,ω>0,||ϕ<π)2的图像与y 轴的交点为(0,1),它在y 轴右侧的第一个最高点和第一个最低点的坐标分别为0(,2)x 和0(2π,2).x +- (1)求()f x 的解析式及0x 的值;(2)若锐角θ满足1cos 3θ=,求(4)f θ 的值【答案】解:(1)由题意可得2π2,2π,=4π,4π2T A T ω===即12ω=,………………………3分1()2sin(),(0)2sin 1,2f x x f ϕϕ=+==由||ϕ<π2,π.6ϕ∴=1π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭………………………………………………………………………5分001π()2sin()2,26f x x =+=所以001ππ2π2π+,4π+(),2623x k x k k +==∈Z又 0x 是最小的正数,02π;3x ∴=……………………………………………………7分(2)π1(0,),cos ,sin 23θθθ∈=∴=27cos 22cos 1,sin 22sin cos 9θθθθθ∴=-=-==………………………………10分π77(4)2sin(2)2cos 2699f θθθθ=+=+==.…………………14分33、在△ABC 中,角A , B , C 的对边分别为a , b , c ,且A , B , C 成等差数列.(1)若3AB BC ⋅=-,且b =,求a c +的值;(2)若sin cos AM A,求M 的取值范围.【答案】解:(1)A 、B 、C 成等差数列,∴2,B A C =+又A B C π++=,∴3B π=, …………………………2分由3AB BC ⋅=-得,2cos33c a π⋅=-,∴6ac = ① ………………………4分 又由余弦定理得2222cos,3b ac ac π=+-∴2218a c ac =+-,∴2224a c += ② ………………………6分 由①、②得,6a c += ……………………………………8分(2)sin sin cos AM A A A==-2sin()3A π=- ……………………………………11分由(1)得3B π=,∴23A C π+=, 由203C A π=->且0A >,可得20,3A π<<故333A πππ-<-<,所以2sin()(3A π-∈,即M 的取值范围为(. …………………………14分34、已知c b a ,,分别为△ABC 三个内角A 、B 、C 所对的边长,且c A b B a 53cos cos =-. (1)求:BAtan tan 的值;(2)若060=A ,5=c ,求a 、b .【答案】解:(1)由正弦定理C c B b A a sin sin sin ==得C A B B A sin 53cos sin cos sin =-,2分又B A B A B A C sin cos cos sin )sin(sin +=+=,所以A B B A cos sin 58cos sin 52=, · 5分可得4cos sin cos sin tan tan ==AB BA B A . ······························································································ 7分 (2)若060=A ,则23sin =A ,21cos =A ,3tan =A ,得43t a n =B ,可得19194cos =B ,19193sin ⨯=B . ······················································································ 10分381935sin cos cos sin )sin(sin ⨯=+=+=B A B A B A C , 由正弦定理C cB b A a sin sin sin ==得 19sin sin =⋅=AC c a ,2sin sin =⋅=B Cc b 14分35、已知)1,sin 32cos 2(x x +=,),(cos y x -=,满足0=⋅. (1)将y 表示为x 的函数)(x f ,并求)(x f 的最小正周期;(2)已知c b a ,,分别为ABC ∆的三个内角C B A ,,对应的边长,若)2()(Af x f ≤对所有R x ∈恒成立,且2=a ,求c b +的取值范围.【答案】(I )由0=⋅得0cos sin 32cos 22=-+y x x x ………2分 即x x x y cos sin 32cos 22+=1)62sin(212sin 32cos ++=++=πx x x … …4分所以1)62sin(2)(++=πx x f ,其最小正周期为π. ………6分(II )因为)2()(Af x f ≤对所有R x ∈恒成立 所以3)2(=A f ,且Z k k A ∈+=+,226πππ…………8分因为A 为三角形内角,所以π<<A 0,所以3π=A . ……………9分由正弦定理得B b sin 334=,C c sin 334=,C B c b sin 334sin 334+=+ )32sin(334sin 334B B -+=π)6sin(4π+=B ……………………………………12分)32,0(π∈B ,]1,21()6sin(∈+∴πB ,]4,2(∈+c b 所以c b +的取值范围为]4,2( ………… ……………………14分36、已知函数)cos (sin cos )(x x x x f +=,R ∈x .(1)请指出函数)(x f 的奇偶性,并给予证明;(2)当⎥⎦⎤⎢⎣⎡∈2,0πx 时,求)(x f 的取值范围.【答案】解:2142sin 22)(+⎪⎭⎫ ⎝⎛+=πx x f (3分) (1)⎪⎭⎫ ⎝⎛±=+±≠=⎪⎭⎫ ⎝⎛-8212218ππf f ,)(x f ∴是非奇非偶函数. (3分)注:本题可分别证明非奇或非偶函数,如01)0(≠=f ,)(x f ∴不是奇函数.(2)由⎥⎦⎤⎢⎣⎡∈2,0πx ,得45424πππ≤+≤x ,142sin 22≤⎪⎭⎫ ⎝⎛+≤-πx . (4分) 所以2122142sin 220+≤+⎪⎭⎫ ⎝⎛+≤πx .即⎥⎦⎤⎢⎣⎡+∈212,0)(x f . (2分)。
广东广州市2017届高三数学下学期第一次模拟考试试题 理

广东省广州市2017届高三数学下学期第一次模拟考试试题 理注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自 己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应 位置填涂考生号。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑, 如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的。
(1)复数()221i 1i+++的共轭复数是 (A )1i + (B )1i - (C )1i -+ (D )1i -- (2)若集合}{1M x x =≤,}{2,1N y y x x ==≤,则(A )M N = (B )M N ⊆ (C )N M ⊆ (D )M N =∅(3)已知等比数列{}n a 的各项都为正数, 且35412a ,a ,a 成等差数列,则3546a a a a ++的值是(A)12 (B)12 (C )32- (D)32+ (4)阅读如图的程序框图. 若输入5n =, 则输出k 的值为(A )2 (B )3 (C )4 (D )5(5)已知双曲线C 222:14x y a -=的一条渐近线方程为230+=x y ,1F ,2F 分别 是双曲线C 的左,右焦点, 点P 在双曲线C 上, 且17PF =, 则2PF等于(A )1 (B )13 (C )4或10 (D )1或13 (6)如图, 网格纸上小正方形的边长为1, 粗线画出的是 某几何体的正视图(等腰直角三角形)和侧视图, 且该几何体的体积为83, 则该几何体的俯视图可以是(7)五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币. 若硬币正面朝上, 则这个人站起来; 若硬币正面朝下, 则这个人继续坐着. 那么, 没有相邻的两个人站起来的概率为 (A )12 (B )1532 (C )1132(D )516 (8)已知1F ,2F 分别是椭圆C ()2222:10x y a b a b+=>>的左, 右焦点, 椭圆C 上存在点P使12F PF ∠为钝角, 则椭圆C 的离心率的取值范围是(A )2⎛⎫ ⎪ ⎪⎝⎭ (B )1,12⎛⎫ ⎪⎝⎭ (C )0,2⎛ ⎝⎭(D )10,2⎛⎫ ⎪⎝⎭ (9)已知:0,1xp x e ax ∃>-<成立, :q 函数()()1xf x a =--是减函数, 则p 是q 的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件(10)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四 个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥-P ABC 为鳖臑, PA ⊥平面ABC , 2PA AB ==,4AC =, 三棱锥-P ABC 的四个顶点都在球O 的球面上, 则球O 的表 面积为(A )8π (B )12π (C )20π (D )24π (11)若直线1y =与函数()2sin 2f x x =的图象相交于点()11,P x y ,()22,Q x y ,且12x x -=23π,则线段PQ 与函数()f x 的图象所围成的图形面积是 (A)23π+(B)3π+(C )223π+ (D)23π(12)已知函数()32331248f x x x x =-++, 则201612017k k f =⎛⎫⎪⎝⎭∑的值为 (A ) 0 (B )504 (C )1008 (D )2016第Ⅱ卷本卷包括必考题和选考题两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线和圆02
10、在平面直角坐标系内,设),(11y x M 、),(22y x N 为不同的两点,直线l 的方程为
0=++c by ax ,c by ax ++=111δ,c by ax ++=222δ.有四个命题:①若021>δδ,
则点M 、N 一定在直线l 的同侧;②若021<δδ,则点M 、N 一定在直线l 的两侧;
③若021=+δδ,则点M 、N 一定在直线l 的两侧;④若2
221δδ>,则点M 到直线l 的距离
大于点N 到直线l 的距离.上述命题中,全部真命题的序号是……………………( ) A .① ② ③ B .① ② ④ C .② ③ ④ D .① ② ③ ④ 【答案】B
【.解析】①若021>δδ,则120,0δδ>>或120,0δδ<<,所以点M 、N 一定在直线l 的同侧所以①正确。
②若021<δδ,则120,0δδ><或120,0δδ<>,所以点M 、N 一定在直线l 的异侧,所以②正确。
③若021=+δδ,则12δδ=-,当120δδ==,也成立,但此时,点M 、N 在直线l 上,所以③错误。
④若2
22
1δδ>,则2
2
12δδ>,即12δδ>,则点M 到
直线l
的距离为1d =
=
,点N 到直线l
的距离
2d =
=
12d d >,所以④正确。
所以全部正确的是① ② ④,
选B.
11、若直线l :y=kx 经过点)3
2cos ,32(sin π
πP ,则直线l 的倾斜角为α = . 【答案】
56
π
【.解析】因为直线过点)32cos ,32(sin
ππP ,所以22sin cos 33k ππ=
,即122
=-
,所以3k =-
,由tan 3
k α==-,得56π
α=。
12、若实数a 、b 、c 成等差数列,点P (–1, 0)在动直线l :ax+by+c =0上的射影为M ,点N (0, 3),则线段MN 长度的最小值是 . 【答案】24-
【.解析】a 、b 、c 成等差数列⇒a -2b +c =0⇒ a ⋅1+b ⋅(-2)+c =0,∴直线l :ax+by+c =0过定点Q (1,-2),
又P (–1, 0)在动直线l :ax+by+c =0上的射影为M ,∴∠PMQ =90︒,∴M 在以PQ 为直径的
圆上,圆心为C (0, -1),半径r =222||222
12
1=+=PQ ,
线段MN 长度的最小值即是N (0, 3)与圆上动点M 距离的最小值=|NC |-r =4-2.
13、过点(1,1)P -,且与直线:10l x y -+=垂直的直线方程是
.
【答案】+=0x y
【.解析】直线:10l x y -+=的斜率为1,所以过点(1,1)P -,且与直线:10l x y -+=垂直的直线的斜率为1-,所以对应方程为(1)(1)y x --=--,即+=0x y 。
14、设直线1l :02=+y ax 的方向向量是1d ,直线l 2 :()041=+++y a x 的法向量是2n ,
若1d 与2n 平行,则=a _________. 【答案】3
2
-
【解析】因为1d 与2n 平行,所以直线1l 垂直2l 。
1l 的斜率为2
a -,直线2l 的斜率为11a -+,
由1()112a a -⋅-=-+,解得2
3
a =-。
15、已知园22:4O x y +=
(1)直线10l y +-=与圆O 相交于,A B 两点,求AB ;
(2)如图,设()()1122,,M x y P x y ,是圆O 上的两个动点,点M 关于原点的对称点为1M ,
点M 关于x 轴的对称点为2M ,如果直线1PM ,2PM 与y 轴分别交于()0,m 和()0,n .问m n ⋅是否为定值?若是,求出定值,若不是,说明理由.
【答案】解:(1)圆心)0,0(O 到直线0323=-+y x 的距离3=d .
圆的半径2=r ,∴222
2
=-=d r AB .………………4分 (2)),
(11y x M ,),(22y x P ,则),(111y x M --,),(112y x M -,42
121=+y x ,
42
222=+y x .………………8分
1PM :))(())((212212y y x x x x y y -+=-+,得1
21
221x x y x y x m +-=
.
2PM :))(())((212212y y x x x x y y --=-+,得1
21
221x x y x y x n ---=
.…………12分
∴4)
4()4(2
1
2222212122212222212122=----=--=⋅x x x x x x x x y x y x n m ………………14分。