四年级下册数学知识总结
四年级下册知识点归纳总结数学

四年级下册知识点归纳总结数学
四年级下册数学主要包括以下知识点:
1.数的读写和数的大小比较:认识千以内的整数,掌握数码的
读写和数的大小比较。
2.加减法:熟练掌握加减法基本算法和口算,能够灵活运用各
种算法进行简单的加减法运算。
3.乘法:认识乘法的概念和符号,掌握各位数相乘的口诀,熟
练进行小数乘以整数的运算。
4.数的分解与组合:熟悉同一整数的不同分解方式,能够进行
数的简单组合和拆分运算。
5.单位换算:理解长度、重量和容量的基本单位,掌握不同单
位之间的转换。
6.图形的认识和性质: 能够认识和描述平面图形的属性和特点,并了解3D立体图形的基本概念。
7.时间、日期:掌握用钟面和日历表示时间和日期,能够计算
时间间隔和日期差值。
8.数据统计:了解数据的基本统计概念和方法,能够绘制简单
的数据图表并进行分析。
以上就是四年级下册数学的主要知识点,需要通过多练习来加深理解和掌握。
四年级数学下册重点归类(知识点、重点、典型例题)

新人教版四年级下册数学总复习资料归类整理第一部分数与代数第一单元:四则运算【知识要点1】加减法的意义和各部分间的关系。
【重点内容】★把两个数合并成一个数的运算,叫做加法。
★相加的两个数叫做加数,加得的数叫做和。
★已知两个数的和与其中一个加数,求另一个加数的运算叫做减法。
★在减法中,已知的和叫做被减数,减得的数叫做差。
减法是加法的逆运算。
和=加数+加数加数=和-另一个加数差=被减数-减数减数=被减数-差被减数=加数+差【典型例题】根据864+325=1189直接写出下面两道题的得数。
1189-864= 1189-325=【知识要点2】乘除法的意义和各部分间的关系。
【重点内容】★求几个相同加数的和的简便运算,叫做乘法。
★相乘的两个数叫做因数,乘得的数叫做积。
★已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
★在除法中,已知的积叫做被除数,除得的数叫做商。
除法是乘法的逆运算。
积=因数×因数因数=积÷另一个因数商=被除数÷除数除数=被除数÷商被减数=商×除数有余数的除法各部分间的关系:被除数÷除数=商……余数被除数=商×除数+余数除数=(被除数-余数)÷商商=(被除数-余数)÷除数余数=被除数-除数×商【典型例题】根据36×14=504直接写出下面两道题的得数。
504÷14= 504÷36=【知识要点3】有关0的运算【重点内容】★一个数加上0,还得原数。
★被减数等于减数,差是0。
★一个数减去0,还得原数。
★一个数和0相乘,仍得0。
★0除以一个非0的数,得0。
★两个不等于0的相同数相除,商一定是1。
★0不能作除数,0可以作被除数。
【典型例题】计算0÷27+5×0+4【知识要点4】四则运算顺序【重点内容】★加、减、乘、除四种运算统称四则运算。
★在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
四年级下册数学知识梳理

四年级下册数学知识梳理四年级下册数学知识梳理第一单元:加法和减法本单元主要介绍了加法和减法的基本概念和运算方法。
1. 加法加法是一种基本的数学运算,用于求两个或多个数的总和。
加法的特点是交换律和结合律。
2. 减法减法是加法的逆运算,用于求一个数与另一个数之间的差。
减法的特点是不满足交换律和结合律。
3. 加减混合运算加减混合运算是指在一个算式中同时包含加法和减法运算。
在进行这种运算时,需要先进行加法运算,然后再进行减法运算。
4. 定位数轴定位数轴是一种表示数值大小和相对关系的工具。
通过定位数轴,我们可以清楚地看到数值之间的大小关系。
第二单元:乘法与除法本单元主要介绍了乘法和除法的基本概念和运算方法。
乘法是一种基本的数学运算,用于求两个或多个数的积。
乘法的特点是交换律和结合律。
2. 乘数、被乘数和积在乘法中,两个或多个数中的一个数叫做乘数,另一个数叫做被乘数,两个数的积叫做积。
3. 乘法口诀乘法口诀是学习乘法的基础,通过反复背诵和练习乘法口诀,可以提高计算的速度和准确性。
4. 除法除法是乘法的逆运算,用于求一个数被另一个数除的商。
除法的特点是不满足交换律和结合律。
第三单元:图形与空间本单元主要介绍了图形和空间的相关概念和性质。
1. 平面图形平面图形是在平面上存在的一些有界的图形,如圆、正方形、长方形、三角形等。
学习平面图形可以提高观察、分辨和绘制图形的能力。
2. 立体图形立体图形是三维空间中存在的一些带有厚度的图形,如立方体、长方体、圆柱体、圆锥体等。
学习立体图形可以培养空间想象3. 线对称图形线对称图形是指与某条直线对称的图形,对于线对称图形,将图形沿对称轴折叠,两边完全重合。
4. 角的认识和测量角是由两条线段或线段与平面的交点形成的,角的大小可以用角度来度量,角的大小范围从0度到360度。
第四单元:容量和质量本单元主要介绍了容量和质量的相关概念和单位。
1. 容量容量是指物体所能容纳物质的多少。
容量的基本单位是毫升(mL),1升等于1000毫升。
四年级下册数学知识点归纳总结

四年级下册数学知识点归纳总结1.整数加法1把两个数合并成一个数的运算叫做加法。
2在加法里,相加的数叫做加数,加得的数叫做和。
加数是部分数,和是总数。
3加数+加数=和,一个加数=和-另一个加数2.整数减法1已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
2在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。
被减数是总数,减数和差分别是部分数。
3加法和减法互为逆运算。
3.整数乘法1求几个相同加数的和的简便运算叫做乘法。
2在乘法里,相同的加数和相同加数的个数都叫做因数。
相同加数的和叫做积。
3在乘法里,0和任何数相乘都得0。
41和任何数相乘都的任何数。
5一个因数×一个因数=积;一个因数=积÷另一个因数4.整数除法1已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
2在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。
3乘法和除法互为逆运算。
4在除法里,0不能做除数。
因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。
5被除数÷除数=商,除数=被除数÷商被除数=商×除数。
5.整数加法计算法则相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
6.整数减法计算法则相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
7.整数乘法计算法则先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。
8.整数除法计算法则先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。
如果哪一位上不够商1,要补“0”占位。
每次除得的余数要小于除数。
9.运算顺序1小数、分数、整数小数四则运算的运算顺序和整数四则运算顺序相同;分数四则运算的运算顺序和整数四则运算顺序相同。
四年级数学知识点总结

四年级数学知识点总结一、数与运算1. 整数- 认识更大的整数,包括亿以上的数。
- 了解整数的比较大小。
- 进行整数的四则运算(加、减、乘、除)。
- 掌握乘法表的熟练运用。
- 学习并应用简单的整数性质,如奇偶数、质数和合数。
2. 分数- 理解分数的概念,包括分子和分母。
- 识别真分数和假分数。
- 学习分数的比较和排序。
- 进行分数的加减运算。
- 理解分数与整数之间的转换。
3. 小数- 掌握小数的基本概念和表示方法。
- 学习小数的比较和排序。
- 进行小数的加减运算。
- 理解小数点的移动规则及其对数值大小的影响。
4. 四则运算的应用- 解决实际问题中的四则运算问题。
- 学习使用方程来解决简单的数学问题。
- 理解单位换算,如长度、重量和容积的换算。
二、几何知识1. 平面图形- 认识基本的平面图形,如正方形、长方形、三角形等。
- 理解图形的对称性。
- 学习计算简单图形的周长和面积。
- 了解图形的平移、旋转和翻转。
2. 立体图形- 认识基本的立体图形,如立方体、长方体、圆柱、圆锥和球。
- 学习计算立体图形的表面积和体积。
- 理解立体图形的展开图。
三、统计与概率1. 统计- 收集和整理数据。
- 制作和解读条形图、折线图和饼图。
- 计算平均数、中位数和众数。
2. 概率- 理解可能性的概念。
- 通过实验和观察来估计简单事件发生的概率。
- 认识等可能事件和不等可能事件。
四、解决问题的策略1. 问题解决- 学习使用不同的策略来解决数学问题。
- 培养逻辑思维和批判性思考能力。
- 练习通过多种方法来解决同一个问题。
2. 数学应用- 将数学知识应用到日常生活中。
- 解决与时间和金钱相关的问题。
- 探索数学在其他学科领域的应用。
五、数学思维的培养1. 逻辑思维- 培养通过逻辑推理来解决问题的能力。
- 学习如何通过分析和归纳来得出结论。
2. 创造性思维- 鼓励学生发挥想象力,探索数学问题的多种解决方案。
- 培养在解决问题时的创新思维。
四年级数学下册知识点归纳及易错题

四年级数学下册学问点归纳及易错题一、小数的相识意义和加减法1、小数的计数单位为非常之一、百分之一、千分之一2、每相邻的两个计数单位之间进率是10。
3、小数的数位是非常位、百分位、千分位最高位是非常位,整数部分最低位是个位,个位及非常位是进率是10。
4、小数的数位依次表5、低级单位转化为高级单位时,先将这个低级单位的数写成分数的形式,再写成小数的形式。
例如1分米=1/10米=0.1米 1厘米=1/100米=1克=1/10006、小数的大小比较:〔1〕先比较整数部分;〔2〕假如整数部分一样,就比较小数部分非常位;〔3〕非常位一样,就比较百分位;〔4〕以此类推,直到比较出大小。
7、小数的根本性质:小数末尾添上“0〞或去掉“0〞,小数的大小不变。
理解0.1及0.10的区分联络:区分:0.1表示1个0.1、0.10表示10个0.01、意义不同。
联络:0.1=0.10两个数大小相等。
运用小数的根本性质可以不变更数的大小,改写小数或化简小数。
8、小数加减计算法那么:小数点对齐;根据整数加减法的法那么计算。
从末位算起;哪一位上的数相加满十,要向前一位进一。
如果被减数的小数末尾位数不够,可以添“0〞再减;哪一位上的数不够减,要从前一位退一,在本位上加十再减;得数的小数点要对齐横线上的小数点。
9、小数加减混合运算的依次和整数加减混合运算的依次一样。
只有加减运算,从左往右;有括号的,先里后外。
整数加、减法的运算定律同样适用于小数加减法。
例如加法结合律,交换律。
易错题360平方米=〔〕公顷 23400万吨是〔〕亿吨40.7分米=〔〕米 1.32千克=〔〕克4平方米=〔〕平方分米 0.56吨=〔〕千克40.7分米=〔〕米〔1.4平方米=〔〕平方分米 4.02平方千米=〔〕公顷0.3千克=〔〕克 0.86平方分米=〔〕平方米5.06吨=〔〕吨〔〕千克 2.80吨=〔〕千克2.08吨=〔〕千克 40公顷=〔〕平方分米4米5分米2厘米=〔〕米3吨80千克=〔〕吨 =〔〕千克79千克=〔〕吨二、相识三角形和四边形1、根据不同的标准给图形进展分类;①按平面图形和立体图形分;②按平面图形是否由线段围成来分的;③按图形的边数来分。
四年级数学下册知识点总结(人教版)

四年级数学下册知识点总结(人教版)四年级数学下册知识点总结(人教版)一、整数的认识与比较1.了解整数概念:正整数、负整数、零2.正整数与正整数的比较3.负整数与负整数的比较4.正整数与负整数的比较5.正整数、负整数和零的比较6.负整数自加(自减)二、调整顺序运算1.分析式子的结构特点2.通过计算说明前加减后乘除的意义3.计算带有括号和不带括号的式子三、四位数的认识与应用1.了解有关四位数的名称:千、百、十、个2.多位数的加减法3.竖式计算含有千、百、十、个的算式4.解决实际问题四、关系算式1.学会用算式表示关系2.理解计算过程和结果3.观察研究计算的特点五、小数的认识与应用1.了解小数和百分数的关系2.了解小数的概念和定义3.读、写、比较和写小数4.小数加减法5.小数的乘法与除法6.小数与整数的加减法7.约简与扩大分数8.解决实际问题六、平行、垂直和相交直线1.了解平行、垂直线2.了解相交线3.过直线的平面4.模型的设计与分析七、几何图形1.点、线、面的认识2.了解多边形3.四边形:正方形、长方形、菱形、梯形的认识与性质4.通过制作素描复原图形5.刻画或绘制平行四边形、长方形的调整精确八、统计与概率1.排列、组合和等概率事件2.通过探索判断事件是否等可能3.数据的书写整理和描述,数的统计4.对数据进行简单探讨,通过挖掘规律思考5.图形的统计九、图形的大小和位置1.了解正方体的特点2.运用模型比较并进行评价3.了解皮尺的使用4.运用皮尺比较物体的长短5.使用比例尺进行测量6.了解图形的大小和位置变化十、时间的认识与使用1.了解各种时间的单位2.读钟刻和时钟的用法3.时间的计算和运用4.解决实际问题以上是四年级数学下册(人教版)的知识点总结,主要涵盖了整数的认识与比较、调整顺序运算、四位数的认识与应用、关系算式、小数的认识与应用、平行、垂直和相交直线、几何图形、统计与概率、图形的大小和位置、时间的认识与使用等内容。
四年级下册数学知识点

四年级下册数学知识点四年级下册数学知识点总结第一单元:四则运算加法、减法、乘法和除法统称四则运算。
其中:和=加数+加数加数=和-另一个数差=被减数-减数减数=被减数-差被减数等于减数,差是0积=因数×因数因数=积÷另一个因数商=被除数÷除数除数=被除数÷商注意以下几点:1.不能将“0”作为除数,字母表示:a÷0 错误2.一个数加上0仍等于原数,字母表示:a+0= a3.一个数减去0仍等于原数,字母表示:a-0= a4.被减数等于减数,差是0,字母表示:a-a = 05.一个数乘以0等于0,字母表示:a×0=06.0除以任何非零的数仍等于0,字母表示:0÷a(a≠0)=07.被除数等于除数,商是1,字母表示:a÷a=1(a不为0)第三单元:运算定律及简便运算加减法运算定律:1.加法交换律:a+b=b+a2.加法结合律:(a+b)+c=a+(b+c)3.连减的性质:a-b-c=a-(b+c)乘除法运算定律:1.乘法交换律:a×b=b×a2.乘法结合律:(a×b)×c= a×(b×c )3.乘法分配律:1)两个数的和与一个数相乘:(a+b)×c=a×c+b×c2)两个数的差与一个数相乘:(a-b)×c= a×c - b×c4.除法的性质:a÷b÷c= a÷(b×c)第四单元:小数的意义和性质1.小数的计数单位是十分之一、百分之一、千分之一,分别写作0.1、0.01、0.001.每相邻两个计数单位间的进率是10.2.小数的数位是十分位、百分位、千分位,小数最高位是十分位,整数部分的最低位是个位。
3.以6.378为例,其计数单位是0.001,其中有6个整数部分,3个十分之一,7个百分之一,8个千分之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级下册数学知识点
第一单元四则运算:加法、减法、乘法和除法统称四则运算。
1、加减法的意义和各部分间的关系。
(1)把两个数合并成一个数的运算,叫做加法。
加法各部分间的关系:和=加数+加数加数=和-另一个数
(2)已知两个数的和与其中一个加数,求另一个数的运算,叫做减法。
减法各部分间的关系:差=被减数-减数减数=被减数-差被减数=差+减数
(3)加法和减法是互逆运算。
2、乘除法的意义和各部分间的关系。
(1)求几个相同加数的和的简便运算,叫做乘法。
乘法各部分间的关系:积=因数×因数因数=积÷另一个因数
(2)已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
除法各部分间的关系:商=被除数÷除数除数=被除数÷商被除数=商×除数
(3)乘法和除法是互逆运算。
3、关于“0”的运算
(1)“0”不能做除数;字母表示:a÷0错误
(2)一个数加上0还得原数;字母表示:a+0= a
(3)一个数减去0还得原数;字母表示:a-0= a
(4)被减数等于减数,差是0;字母表示:a-a = 0
(5)一个数和0相乘,仍得0;字母表示:a×0= 0
(6)0除以任何非0的数,还得0;字母表示:0÷a(a≠0)= 0
(7)被减数等于减数,差是0。
A-A=0 被除数等于除数,商是1.A÷A=1(a不为0)
4、四则运算顺序
(1)在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
(2)在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。
(3)一个算式里既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的,最后算括号外面的有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
第三单元运算定律及简便运算:
一、加减法运算定律:
1、加法交换律:a+b=b+a
2、加法结合律:(a+b)+c=a+(b+c)
3、连减的性质: a - b - c= a - (b+c) 。
二、乘除法运算定律:
1、乘法交换律:。
a×b=b×a
2、乘法结合律:(a×b )× c = a× (b×c )
3、乘法分配律:
(1)两个数的和与一个数相乘:(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c (2)两个数的差与一个数相乘:(a - b) ×c= a×c - b×c。
5、乘法分配律的应用:
①类型一:(a+b)×c= a×c+b×c (a-b)×c= a×c-b×c
②类型二:a×c+b×c=(a+b)×c a×c-b×c=(a-b)×c
③类型三:a×99+a = a×(99+1)a×b-a= a×(b-1)
④类型四:a×99 a×102
= a×(100-1)= a×(100+2)
= a×100-a×1 = a×100+a×2
6、商不变性质:a ÷b = (a ×c) ÷(b×c) ,a ÷b = (a ÷c) ÷(b÷c)。
三、简便计算
1.连减的简便计算:
①连续减去几个数就等于减去这几个数的和。
如:106-26-74=106-(26+74)
②减去几个数的和就等于连续减去这几个数。
如126-(26+74)=126-26-74
2.加减混合的简便计算:
第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减)例如:123+38-23=123-23+38 146-78+54=146+54-78
3.连除的简便计算:
①连续除以几个数就等于除以这几个数的积。
如:120÷3÷4=120÷(3×4)
②除以几个数的积就等于连续除以这几个数。
如:455÷(7×13)=455÷7÷13
4.乘、除混合的简便计算:
第一个数的位置不变,其余的因数、除数可以交换位置。
(可以先乘,也可以先除)例如:27×13÷9=27÷9×13
5、含有加法交换律与结合律的简便计算:7、含有乘法交换律与结合律的简便计算:
65+28+35+72 25×125×4×8
=(65+35)+(28 +72)=(25×4)×(125×8)
=100 +100 =100×1000
=200 =100000
6、乘法分配律简算例子:
(1)分解式(2)合并式(3)特殊1 25×(40+ 4)135×12—135×2 99×256+256
=25×40+ 25×4 =135×(12—2)=99×256+256×1
=1000+ 100 =135×10 =256×(99+1)
=1100 =1350 =256×100
=25600
(2)在表示近似数时,小数末尾的“0”不能去掉。
第五单元三角形
1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。
2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。
三角形只有3条高。
重点:三角形高的画法。
3、三角形的特性:稳定性。
如:自行车的三角架,电线杆上的三角架。
4、边的特性:三角形任意两边之和大于第三边;
三角形任意两边的差小于第三边。
5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。
6、三角形的分类:
按照角大小来分:锐角三角形,直角三角形,钝角三角形。
按照边长短来分:不等边三角形,等腰三角形,等边三角形(正三角形)。
等边三角形的三边相等,每个角是60度。
等腰三角形:有2条边相等,2个角相等。
(顶角、底角、腰、底的概念)
7、三个角都是锐角的三角形叫做锐角三角形。
8、有一个角是直角的三角形叫做直角三角形。
9、有一个角是钝角的三角形叫做钝角三角形。
10、每个三角形都至少有2个锐角;每个三角形都最多有1个直角;每个三角形都最多有1个钝角。
11、两条边相等的三角形叫做等腰三角形。
12、三条边都相等的三角形叫等边三角形,也叫正三角形。
13、等边三角形是特殊的等腰三角形。
14、三角形的内角和等于180°。
四边形的内角和是360°多边形内角和=(边数-2) ×180°
第六单元小数的加减法:
1、计算法则:相同数位对齐(小数点对齐),按照整数计算方法进行计算,得数的小数点要和横线上的小数的小数点对齐。
结果是小数的要依据小数的性质进行化简。
整数的小数点在个位右下角。
2、竖式计算以及验算。
注意横式上要写上答案,不要写成验算的结果。
3、整数的四则运算顺序和运算定律在小数中同样适用。
(简算)
第七单元图形的运动
1、轴对称的意义:把一个图形沿着某一条直线对折,如果折痕的两边的部分能够完全重合,那么就说这个图形是轴对称图形,这条直线就是对称轴。
2、轴对称的性质:对应点到对称轴的距离相等。
3、轴对称的特征:沿对称轴对折、对应点、对应线段、对应角都重合。
4、轴对称的图形:等腰三角形和等腰梯形、长方形、等边三角形、正方形;圆形有无数条对称轴。
5、平移的意义:物体或图形沿直线方向运动,而本身方向不发生改变时,这种运动现象就是平移。
6、平移后图形的每个点与原图形的对应点之间的距离都相等。
7、怎样补全下面这个轴对称图形?在原图上标出关键点——找出关键点的对称点——连点成图
8、平移不改变图形的形状和大小,只改变图形的位置。
第八单元:平均数和复式条形统计图
1、求平均数的方法:
将一组数据的和除以这组数据的个数所得商就是平均数。
它既可以描述一种数据的总体情况,也可以作为不同组数据比较的一个标准。
总数量÷总份数=平均数。
第九单元数学广角:鸡兔同笼:已知鸡、兔的总只数和腿数,求鸡、兔各几只。
1.列表法
2.假设法:假设全是鸡,先求出的是兔子。