三年级奥数巧填空格答案版

合集下载

奥数题及答案:乘除法填空格

奥数题及答案:乘除法填空格

奥数题及答案:乘除法填空格奥数题及答案:乘除法填空格编者导语:“题海无边,题型有限”。

数学必须要有扎实的基本功,有了扎实的基本功再进行“奥数”的学习就显得水到渠成了。

希望数学网店铺整理的三年级奥数题及参考答案:乘除法填空格2,可以帮助到你们,一分耕耘一分收获,相信大家通过自己的努力,一定能够取得优异的!!难度:一个四位数被一个一位数除得图7-15中的①式,而被另一个一位数除得图7-15中的②式,求这个四位数。

此主题相关图片如下:【答案】由第一个算式可知,被除数千位为1;由于除数不可能是1,至少是2,又由于两个商的'百位不可能都是1,那么,如果第二个算式的除数大于第一个除数,即至少是3,且百位均不为1,有五种可能:3*4=12、3*5=15、3*6=18、4*4=16、5*2=10;如果第二个除数是3,那么第一个除数就只能是2,由第一个算式可知显然不行,因为被除数前两位最小是10,而商最大为4。

所以,两个除数只能是3、4,3、5或4、5;如果是3、4,由第二个除数是4,被除数的前两位可以确定是16,且比较两个算式,由后一个可知后两位也只能是16,但对第一个不符,所以,3、4也不可能;如果是3、5,由第二个除数是5,被除数的前两位可以确定是10,百位只能是3,个位不能满足;剩下4、5时,同样分析可知不符合;再看,如果第二个算式的除数小于第一个除数,且百位均不为1,因为第一个除数最大为4,所以只有4、3,4、2和3、2三种可能;4、3显然不符;同样可以分析4、2也不符;只有是3、2时,分析可得到1014满足要求。

如果有一个商的百位是1,显然只能是第一个算式才可能,那么,被除数前两位只能是10,且除数只能是9;结合第二个算式,第二个除数只能是2或5,如为2,百位只能是1,不符;如为5,当百位是3时,可以同时满足两个算式,这时被除数为1035;所以,这个四位数有可能是1014、1035下载全文。

三年级下册数学试题-奥数巧填算符(练习含答案)全国通用

三年级下册数学试题-奥数巧填算符(练习含答案)全国通用

巧填算符巧填算符,就是指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。

在填算符的问题中,所填的算符包括:+”“-”“×”“÷”“=”“>”“<”“()”“[ ]”“{}” 巧填算符常用的方法有:1.凑数法:先选出一个与结果比较接近的数,然后再对剩下的数进行适当的增加或减少,使算式成立。

我们把这种方法称为凑数法。

2.逆推法:是从算式中的最后一个数开始,由后往前,逐步求解,我们把这种方法称为逆推法。

逆推法思路比较固定,但是分析起来头绪繁多,因此适合于数比较少、结果比较小的添运算符号问题。

注:添运算符号问题的解都比较多,并不唯一。

如果没有特殊的要求,只要添出一种答案就可以了。

例1在5+3×9-4+8÷2=66这个算式中添上两个小括号,使算式成立。

例2在下面算式的适当地方,添上运算符号+,-,×,÷和( ),使等式成立。

9 8 7 6 5 4 3 2 1 =1000例3在八个8之间的适当地方,添上+,-,×,÷运算符号,使算式成立。

8 8 8 8 8 8 8 8 =1000例4(第二届迎春杯决赛)试在15个8之间适当的位置填上适当的运算符号:+、-、×、÷,使运算结果等于1986。

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 =1986例5在□中填上“+”、“-”、“×”、“÷”、“( )”使算式成立。

⑴5□5□5□5□5=1⑵5□5□5□5□5=2⑶5□5□5□5□5=3⑷5□5□5□5□5=4同学们一定都玩过扑克牌,但你会用扑克牌玩一种叫“24点”的游戏吗?其实就是-种添运算符号的游戏。

游戏规则是拿出四张牌,根据四张牌上的点数,运用加、减、乘、除四种运算中的任意几种进行计算,每张牌的点数都必须用:并且只能用一次,使最后的结果等于24。

三年级奥数:巧妙填数字方程练习题含答案

三年级奥数:巧妙填数字方程练习题含答案

三年级奥数:巧妙填数字方程练习题含答

1. 题目
请填写下列等式中的数字,使得等式成立:
a. 7 + 9 = ___
b. 5 - 2 = ___
c. 4 × 3 = ___
d. 10 ÷ 2 = ___
2. 答案
a. 7 + 9 = 16
b. 5 - 2 = 3
c. 4 × 3 = 12
d. 10 ÷ 2 = 5
3. 解析
a. 在等式"7 + 9 = ___"中,我们要找一个数字填在空格中,使得7和9相加的结果等于这个数字。

将7和9相加,我们得到16,所以空格中的数字是16。

b. 在等式"5 - 2 = ___"中,我们要找一个数字填在空格中,使得5减去2的结果等于这个数字。

将5减去2,我们得到3,所以空格中的数字是3。

c. 在等式"4 × 3 = ___"中,我们要找一个数字填在空格中,使得4乘以3的结果等于这个数字。

将4乘以3,我们得到12,所以空格中的数字是12。

d. 在等式"10 ÷ 2 = ___"中,我们要找一个数字填在空格中,使得10除以2的结果等于这个数字。

将10除以2,我们得到5,所以空格中的数字是5。

这些题旨在帮助三年级的学生巩固数字方程的填写技巧,同时加深对基本运算符的理解。

通过解决这些问题,学生能够提高他们解决数学方程的能力,并增强他们的数学推理能力。

希望这些练习题对学生的学习有所帮助!。

三年级奥数教程第10讲填空格

三年级奥数教程第10讲填空格

三年级奥数教程第10讲填空格填空格就是在空格处填上合适的数或运算符号,使得所给的算式或要求成立.解这种问题,需要仔细分析(有时要分几种情况),由容易填写的地方入手,作为突破口.例1、在圆圈中填入运算符号“+”、“一”、“×”、“÷”,每个只能用一次,使下面两个等式成立.(1)9 ○ 13 ○ 7=100;(2)14 ○ 2 ○5=2.分析先看(1)式,等式右边是100,比左边的三个数都大得多.所以,(1)式中的运算符号必有乘号.如果第一个圆圈内填“×”,那么9×13=117,下一步无法得到100.所以第一圈不能填“×”.第二个圈内填“×”,第一个圈内填“+”,等式成立.再看(2)式,现在未用的运算符号只有“÷”和“一”.第一个圈内填“÷”,第二个圈内填“一”,(2)式成立.如果第二个圈内填“÷”,不可能等于2.所以,只有一种填法.解 (1) 9+13×7=100.(2) 14÷2—5=2.随堂练习1 添上运算符号(每个可用多次),使等式成立.1○2○3○4○5=10.例2、在下列5个9之间的空格中,添上适当的运算符号“+”、“一”、“×”、“÷”,还可以在需要的时候添加括号,使得等式成立.9口9口9口9口9=18.分析等号左边共有5个9,右边是1 8.如果在左边最后一个9前添“+”号,那么包含前面4个9的运算结果只要是9就可以了.同样,如果第4个9前仍添“+”号,那么只要包含前面3个9的运算结果是零就可以了.根据这样的分析,我们可以得到本题的三个解.解 (9—9)×9+9+9=18.9×(9—9)+9+9=18,(9—9)÷9+9+9=18.随堂练习2填上适当的运算符号与括号,使等式成立.9口9口9口9口9=17.例3、将0、1、2、3、4、5、6这七个数字填入方框内,每个数字恰好用一次,使算式成立(同一方框内可以填两个数字).口×口=口一口÷口分析与解由于每个数字恰好用一次,0、1都不能作算式中的被乘数与乘数.它们也不能作为除数,所以第四个方格中的被除数最大.第一、二个方格中的被乘数、乘数都只能是一位数.它们的乘积,即第三个方格中的数应当是二位数(这样5个数才能共用7个数字),仅小于第四个方格中的数,比其他三个方格中的数都大.先考虑口×□=口.因为数字不能重复,所以2×6=12,3×5=15,4×6=24都应排除.如果第三个方格中的个位是0,那么第四个方格中的个位也是0,这不可能.所以2×5=10,4×5=20,5×6=30都应排除.只剩下3×4=12(或4×3=12)显然12=60÷5.所以算式是3×4=12=60÷5.随堂练习3下面是由1~9这9个数字组成的算式,其中7已经出现.请将其余数字填入空格(每个空格只填1个数字),使等式成立.口口口÷口口=口一口=口一7.例4、从1、2、3、6、7、8中选5个填入方框中,使等式成立.(每个数字只用一次) 口口+口一口口=1.分析与解首先,两个两位数的十位数字不能相同,所以应当相差1,而且是后一个两位数的十位数字大1(否则前一个两位数减去后一个两位数至少是1,再加上一个一位数,结果大于1),即它们的十位数字只能是1与2、2与3、6与7、7与8这4种.其次,前两个数相加,所得的个位数字的和应当超过10(要进位),并且比后面的两位数的个位要大11.所以前面两个数的个位数字是6与7、6与8、7与8,相应地,后一个两位数的个位数字是2、3、4.最后一种情况显然不合要求(因为没有数字4可用).第一种情况用掉数字6、7、2,十位数字无法满足要求,于是,个位数字是6、8、3,十位数字是1与2,即16+8-23=1或18+6-23=1本题有两解.随堂练习4将3、4、5、6、8填入方框内(每个数字只用一次),使等式成立.口口一口口一口=11.例5、从1~8这8个数字中选出7个填入方框中,使等式成立.(口口口+口一口口)×口=2 005.(第三届“走进美妙的数学花园”三年级试题)分析与解 2 005=5×40l,所以最后一个方框应当填5,而前面括号算出的结果应当是401.于是口口口的百位应当是4,剩下数字l、2、3、6、7、8,要选5个填入口口+口一口口=1.问题化为例4,于是本题的结果是随堂练习5 将1、3、4、5、6、7、8填入方框(每个数字用一次),使等式成立.(口口口+口一口口)×口=623.例6、请将O~9这十个数字填入方框,每个方框只填一个数字,而且每个数字只能用一次.‘填的规则是“加2”,即左边的数加2等于右边的数.3→口;10→口口;1→口;口→口;口→1口;口→口.分析与解由于规则为“加2”,所以第1个式子中的方框应填5,第2个式子中的方框应分别填入1与2,第3个式子中的方框内填3.再看第5个式子,左边是一位数,右边是两位数,所以左边只能填8或9,如果填8的话,那么右边填0;如果填9的话,那么右边填1.由于l在第2个式子中已用过,所以第5个式子的左边只能填8,右边填0.最后,由于只剩下4、6、7、9四个数,所以剩下的两个式子的左边和右边应分别填入4、6和7、9.随堂练习6仿照例6找规则填数,规则为“减□”.5→4;口→6;9→口;口→3;口→口;l口→口;口→口.想一想…………………………………………日本算术奥林匹克日本算术奥林匹克始于1992年,至今已成功举办了15届.参加比赛的除目本选手外,还有中国、韩国、菲律宾、新加坡、俄罗斯等国家及中国香港、台湾地区的选手.竞赛由著名数学家、菲尔兹奖得主广中平裙主持.竞赛题中有不少原创性的问题,例如:有60张日币,其中有1日元、10日元、100日元、1 000日元各若干张.问这些日币能否恰好是10 000日元.请回答:能或不能,并请你把理由写出来.练习题1、在下列各式的圆圈内添上合适的运算符号“+”、“一”、“×”、“÷”,必要时可添加括号,使等式成立.(1)3 ○3 ○ 3 ○ 3 ○ 3=6;(2)3 ○ 3 ○ 3 ○ 3 ○ 3=7;(3)3 ○ 3 ○ 3 ○ 3 ○ 3=8;(4)3 ○ 3 ○ 3 ○ 3 ○ 3=9;(5)3 ○ 3 ○ 3 ○ 3 ○ 3=10.2、请把0、l、2、3、4、5、6、7、8、9这十个数字填入圆圈内,组成下面三个等式.要求每个数字只能用一次.○+○=○;○—○=○;○×○=○○.3、在圆圈中填入适当的符号“+”、“一”、“×”、“÷”,并可以在适当的地方添加括号,使下面式子成立.(1)5 ○ 5 ○ 5 ○ 5 ○ 5=1;(2)5 ○ 5 ○ 5 ○ 5 ○ 5=2;(3)5 ○ 5 ○ 5 ○ 5 ○ 5=3;(4)5 ○ 5 ○ 5 ○ 5 ○ 5=4.‘4、在合适的地方分别添一个乘号、七个加号,使等式成立.1 ○2 ○3 ○4 ○5 ○6 ○7 ○8 ○ 9=100.5、将○~9十个数字按规则“加15”填入下面的十个方框中,不能多填、少填,也不能重复填.48→口口;72→口口;口→2口;口5→3口; 37→口口.6、总共有24个球,把它们分布在下图的方框内,每个框内必须有球,使每一条边上都有11个球.请你在方框内画出排法(用数字表示每个框内的球数).7、将0~9十个数字填入下面的方框,不要多填、少填、重复填.(1)按给定规则“×4+3”填数.9→口口;5→口3;口→2口;口→3口;口口→口3.(2)先填好规则“÷口+口”,再填数.口口→口0;26→1口;口口→31;12→口;口6→19.8、依逆时针方向,找出前面两个圈里的相同关系,在第三个圈的( )内填入适当的数.9、在11个8之间的适当的地方,添上运算符号和括号,使等式成立.8 8 8 8 8 8 8 8 8 8 8=1 998.10、将1、2、3、4、5、6、7、8、9这9个数字填入方框,使等式成立.每个方框一个数字,每个数字只用一次.口÷口=口÷口=口口口÷口口.11、将36分成4个数的和,分别填入下面的空格中,使等式成立.口+2=口一2=口×2=口÷2.12、从图A看出,不论哪两个相邻圈中的数的差都正好是下面圈中的数,六个圈中正好是从1到6的数,一个数在一个圈里.请按这个规则在图B的圈中填上从l到10的数(不能有重复的数出现),最下面圈中的数为3.如果仅仅是左右的数互换,那么就算作一种答案,如图A和图C.本题解答不只一种,解答栏中写出4组,但不一定都填出,有几种解答就填几种.(第一届日本算术奥林匹克决赛试题)。

三年级奥数(乘除法填空格)题及答案-乘积

三年级奥数(乘除法填空格)题及答案-乘积
小编为同学们准备了一道三年级奥数乘除法填空格每日一题及答案
三年级奥数(乘除法填空格)题及答案-乘积
小编导语:小编为同学们准备了一道三年级奥数(乘除法填空格)每日一题及答案:乘积,同学们要利用课余时间多加练习啊。
如图是一个残缺的乘法算式,补全后它的乘积是多少?
此主题相关图片如下:
【答案解析】
由乘积个位得5,那么被乘数的个位也必定是5;
2014-2015五年级语文上册期中考试试题在线看
2014年小学六年级语文毕业复习题在线看
2014-2015四年级语文第一学期期中试题(人教版有答案)在线看
四年级奥数(相遇问题)题及答案-东西城镇
2014六年级语文上册第一二单元月考试卷(1-8课)在线看
2位为0,可知乘数的十位是4或8;
由积的千位为5,推得被乘数百位为3,并由此推出乘数十位为4;
所以,算式为325*47=15275,即乘积是15275。
小学教育,5068小学教育推荐:
2014三年级数学上册第一次阶段性考试试题(青岛版)在线看
2014年六年级语文上学期期中考试试题(人教版含答案)在线看
2014年五年级语文上册期中试卷(附答案)在线看

最新奥数专题——填空格(三)(含答案)-

最新奥数专题——填空格(三)(含答案)-
奥数专题——填空格(三)
在前面几讲中,我们有一讲向大家介绍了加法与减法竖式中有若干个空格,可以根据算式中几个已知数字之间的关系与特征。对算式进行逐步的分析,从而逐步填出空格的方法。这种填空格的方法,对于有空格的乘法与除法算式,也可以进行类似分析与填写。
(一)思路指导与解答
例1.在下面算式的空格内各填入一个合适的数字,使算式成立。
大学生对手工艺制作兴趣的调研2.请把下面的竖式填完整。
5、就业机会和问题分析
3.被乘数、积、乘数由1、2、3、4、5、6、8组成,被乘数是一个三位数,乘数是一位数,积是三位数,且积的个位是4,每个数字只用一遍,被乘数、乘数各是多少?
300-400元1632%
5、就业机会和问题分析被乘数是218,乘数是3
【试题答案】
(二)尝试体验,合作交流
1.在下面乘法算式的空格内,各填入一个合适的数字,使算式成立:
(1)
(2)
(3)
(4)
2.在下面的除法算式的空格内,各填入一个合适的数字,使算式成立。
(1)
(2)
(3)
(1)价格低
(4)
情感性手工艺品。不少人把自制的手机挂坠作为礼物送给亲人朋友,不仅特别,还很有心思。每逢情人节、母亲节等节假日,顾客特别多。
分析与解答:
(1)审题,这是一个四位数除以一个一位数,商是三位数,而且商的十位数字为7。
(2)选择突破口,根据商十位数字是7,可确定除数取值范围是3、4。
(3)确定空格中的数字。
[答题时间:45分钟]
(二)尝试体验,合作交流
1.在下面乘法算式的空格内,各填入一个合适的数字,使算式成立:
(1)(2)
(3)(4)
2.在下面的除法算式的空格内,各填入一个合适的数字,使算式成立。

小学奥数系列:第07讲 乘除法填空格

小学奥数系列:第07讲 乘除法填空格

第07讲数字谜问题第02讲乘除法填空格例1把1~9这九个不同的数字分别填在图7—1的各个方格内,可使加法和乘法两个算式都成立.现有三个数字的位置已确定,请你填上其他数字.答案17×4=68,68+25=93.分析在解乘法竖式的数字谜问题时,会经常使用枚举法试算.本题中,很重要的一个条件就是九个数字各不相同.知道了这一点,再使用枚举法就好了很多.‘详解因为九个数字各不相同,所以第一个乘数的十位只可能填1,如果填2、4、5都不可能使第一个乘法竖式成立,而17×4=68满足第一个乘法竖式.此时,数字谜变为一个加法竖式.因为和数的个位为3,所以第二个加数的个位为5.在九个数字中,现在只有2和9没有填过,因此可以很容易的知道68+25=93.评注此题关键是第一个乘法竖式,一个两位数乘一个一位数等于六十多,那么枚举的情况就很少了.况且所填的数字中不能有3,即情况就更少了.于是就可以比较容易地得出答案.例2请补全如图7-2所示的残缺算式.问其中的被乘数是多少?答案47568.分析在解乘法竖式数字谜问题时,要特别注意首位和末位,也要注意进位.此时的进位比加法要复杂一些,因此使用枚举法.详解先看末位:一个数字乘以7,个位是6,那么这个数只能是8.7×8=56,向十位进了“5”.而6×7:42。

因此积数的十位等于7,并且向百位进了“4”.9-4=5,因此乘数的百位数字乘以7所得的积的个位数字为5,所以乘数的百位数字只能是5.5×7=35,向干位进“3”.7×7=49,49+3=52,向万位进了“5”.因此乘数的万位数字乘以7所得的积大于25小于35,只有4×7=28满足条件.因此整个算式为:47568 × 7=322976.评注乘法的进位比加法复杂得多.两个数字相乘,可以向高位进位,而且在本题中还需要根据积的个位数字来推断乘数,而个位数字的确定也与进位有关.由此可知进位的重要性.例3 图7—3是一个残缺的乘法算式,只知道其中一个位置上数字为8,那么这个算式的乘积是多少?答案 1068.分析这个问题未知数很多,表面看上去很难,突破口就是“8”这个数字.第一个乘数乘以8是一个两位数,那么这个乘数的范围就很小了,而且这个乘数乘上第二个乘数的个位数字是一个三位数,所以第二个乘数的个位数字一定大于8,只可能是9.详解由分析可知,第二个乘数等于89.而第一个乘数只可能是10、ll或12,否则乘8后所得的积就是一个三位数,而11乘以9等于99,是_个两位数,不满足题中的要求.所以第一个乘数一定是12.12×89=1068评注解题时要善于找到突破口,这要求同学们具有很强的分析和推理能力,并且要对题中所涉及的知识点非常熟悉,运用自如.有些问题已知条件较少,那么这不多的几个条件往往就是突破口,它们包含了很重要的信息,应格外注意.例4在图7—4所示的残缺算式中只知道三个位置上的数字是4,那么补全后它的乘积是多少?答案 3243.分析这里只给出了三个4,第一个乘数首位为4,它乘上第二个乘数的个位数字所得的积为一个首位为4的三位数.这个条件很重要.利用枚举法和反证法推出所有的需要补伞的数字.使得竖式成立.详解第一个乘数最大是49,如果第二个乘数的个位为8,那么49×8=392,小于400.所以第二个乘数的个位数字只可能等于9.进一步可以推出第一个乘数的个位数字一定大于或等于5,否则第一个乘数乘上9以后肯定小于400.于是第一个乘数的个位数字只可能是5、6、7、8、9中的一个.如果第一个乘数的个位是5,那么45×9=405.因此第二个乘数的十位数字乘上45所得的积的个位数字应该等于4(否则两个乘数的积的十位数字就不可能等于4),而45乘任何一个数之后,个位只能等于0或5,不等于4,所以第一个乘数的个位不等于5.同样可以知道第一个乘数的个位也不可能等于6、8和9.而当第一个乘数的个位数字等于7时,47×9=23,并且47×6=282,正好可以满足两个乘数的积的十位等于4.我们还可以知道47乘上6以外的其他任何一个数字,个位都不可能等于2,因此答案是惟一的:47×69=3243.评注这道题对分析能力要求很高,首先要推出第二个乘数的个位为9,然后再推出第一个乘数的个位等于7.在详解中,只用反证法证明了第一个乘数的个位不等于5,大家可以类似地证明它不可能等6、8和9.例5图7-5是一个残缺的乘法算式,补全后这个算式的乘积应是多少?答案1862.分析本题和上一题的解法是类似的,要用到枚举法和反证法.详解因为20×90=1800,所以第二个乘数的十位只能是9,否则最后的结果就小于1800.而18×99<1800,所以第一个乘数只能是19.再根据乘法算式的第3行,容易判断出第二个乘数的个位是8.所以这个算式的乘积应该是19×98=1862.评注这道题使用了枚举法,而且计算量很大,枚举法使用了很多次.这种思路比较简单,计算也不是很复杂,认真地计算,不怕麻烦,多试几次就可以很容易地得出答案.例6在图7-6所示除法竖式的每个方框中填人适当的数字,使算式成立,那么算式中的被除数是多少?答案2919.分析将273分解质因数,得273=13×7×3.再利用题中其他信息推出除数,就可很容易地得出被除数是多少了.详解由273=13×7×3,知除数只可能是39或91.如果除数是39,那么39x 2=78,是一个两位数,不符合要求.所以除数肯定是91,那么商的十位数为3.所以被除数为:91×32+7=2919.评注此题关键是要将273分解质因数.由题中可以看出273等于一个两位数(除数)乘以一个一位数(商的十位数字),所以会很自然地想到将273分解质因数.这样可能的情况就很少了,用枚举法和反证法,稍加分析就很明了了.例7补全如图7-7所示的残缺除法算式.问其中的被除数应是多少?答案 11087.分析首先应该看到在除法竖式中,余数是98,而余数肯定是小于除数的,因此除数只可能是99.然后再仔细分析除法竖式的结构,可以很容易地得出答案.详解由以上分析可知除数一定是99.再看除法竖式的特点,发现99乘以商中的每一个数字所得的积都是两位数,因此商中的每一个数字都是1,即商等于111.所以,被除数为:99×111+98=11087.评注此题表面上很复杂,但是根据98可以得到很多信息.另外,大家在解除法竖式数字谜问题时经常会用到下面这个等式:除数×商+余数=被除数.而且有下面这个重要的不等式:除数>余数.例8 一个四位数被一个一位数除得图7-8中的①式,而被另一个一位数除得图7-8中的②式.求这个四位数.答案 1014或1035.分析这是一道很巧的题,条件很少,主要从竖式的结构去挖掘条件,而且要两个竖式联合起来考虑.详解首先被除数的首位一定等于1,百位为0,第一个竖式的除数乘以商的首位等于9.两个数相乘等于9,只有两种情况:3×3=9或者9×1=9.所以第一个竖式的除数等于3或者9.若第一个竖式的除数为3,那么由第二个竖式可知被除数的十位数字只能为1或2.试算一下,综合两个竖式就可知被除数为1014,此时第二个竖式的除数为2.若第一个竖式的除数为9,看第二个竖式,因为被除数的前两位分别1和0,所以第二个竖式的除数只能是2或5.若是2,试算一下,很容易知道不满足题目条件.因此,第二个竖式的除数是5.试算一下就可知被除数是1035.因此答案有两个:1014和1035.评注此题有两个答案,所以在使用枚举法和试探法时,一定要注意完整性,不要找到一个符合条件的就停止了,这样很容易遗漏掉一些情况.在这里,我们将两个竖式综合起来考虑,需要很强的综合分析能力,要求大家掌握从整体进行分析的思想.。

小学三年级奥数题及答案:巧填算符

小学三年级奥数题及答案:巧填算符

小学三年级奥数题及答案:巧填算符在下列算式中合适的地方,添上()[],使等式成立。

①1+2 3+4 5+6 7+8 9=303②1+2 3+4 5+6 7+8 9=1395③1+2 3+4 5+6 7+8 9=4455分析本题要求在算式中添括号,注意到括号的作用是改变运算的顺序,使括号中的部分先做,而在四则运算中规定先乘除,后加减,要改变这一顺序,往往把括号加在有加、减运算的部分。

题目中三道小题的等号左边完全相同,而右边的得数一个比一个大.要想使得数增大,可以让加数增大或因数增大,这是考虑本题的基本思想。

①题中,由凑数的思想,通过加(),应凑出较接近303的数,注意到1+2 3+4 5+6=33,而33 7=231.较接近303,而231+8 9=303,就可得到一个解为:(1+2 3+4 5+6)7+8 9=303②题中,得数比①题大得多,要使得数增大,只要把乘法中的因数增大.如果考虑把括号加在7+8上,则有6 (7+8)9=810,此时,前面1+2 3+4 5无论怎样加括号也得不到1395-810=585.所以这样加括号还不够大,可以考虑把所有的数都乘以9,即(1+2 3+4 5+6 7+8)9=693,仍比得数小,还要增大,考虑将括号内的数再增大,即把括号添在(1+2)或(3+4)或(5+6)或(7+8)上,试验一下知道,可以有如下的添加法:[(1+2)(3+4)5+6 7+8] 9=1395③题的得数比②题又要大得多,可以考虑把(7+8)作为一个因数,而1+2 3+4 5+6 (7+8)9=837,还远小于4455,为增大得数,试着把括号加在(1+2 3+4 5+6)上,作为一个因数,结果得33,而33 (7+8)9=4455.这样,得到本题的答案是:(1+2 3+4 5+6)(7+8)9=4455解:本题的答案是:①(1+2 3+4 5+6)7+8 9=303②[(1+2)(3+4)5+6 7+8] 9=1395③(1+2 3+4 5+6)(7+8)9=4455小2.巧填算符在下面算式适当的地方添上加号,使算式成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三年级奥数:巧填空格1.在下面算式的空格内,各填上一个合适的数字,使算式成立.2.在下面的算式空格内,各填入一个合适的数字,使算式成立.3.在下面算式的空格内,各填入一个合适的数字,使算式成立.4.在下面算式的空格内,各填入一个合适的数字,使算式成立.5.在下面的算式的空格内,各填入一个合适的数字,使算式成立.6.在下面的算式的空格内,各填入一个合适的数字,使算式成立.7.在下面的算式的空格内,各填入一个合适的数字,使算式成立.8.在下面的算式的空格内,各填入一个合适的数字,使算式成立.9.在下面的算式的空格内,各填入一个合适的数字,使算式成立.10..1 3 04 7 7 511.把下面除法算式中缺少的数字补上.12.把下面除法算式中缺少的数字补上.13.在下面的除法算式的空格内,各填一个合适的数字,使算式成立.14.把下面除法算式缺少的数字补上.———————————————答 案——————————————————————1. 我们仍按前面所说的三个步骤进行分析.(1)审题 这是一个两位数加三位数,和为四位数的加法算式.在算式中,个位上已经给出了两个数字,并且个位上的数字相加后向十位进了1,百位上数字之和又向千位进了1.(2)选择解题突破口 由上面的分析,显然选择个位上的空格作为突破口.(3)确定各空格中的数字①填个位 因为所以个位上的空格应填9.②填千位 千位数字只能是百位上数字之和向前进的数,因此只能是1.③填百位 第二个加数的百位上的数字最大是9,而和是四位数,因此算式中十位上的数字之和必须向百位进1,所以第二个加数的百位上填9,和的百位上填0.④填十位 由于算式中个位上数字之和向十位进了1,十位上的数字相加后又向百位进1,所以第二个加数的十位上的空格,可以填8或9.此题有两个解:2. (1)审题 这是一道加减法混合运算的填空格题,我们把加法、减法分开考虑,这样可以使问题简单化.(2)选择解题突破口在加法部分,因为十位上有两个数字已经给出,所以十位数字就成为我们解题的突破口.(3)确定各空格中的数字加法部分(如式):,第二个加数与和的十位上均是9,1,十位上的数字之和也向百位进了1.所以算式中十位上应是故第一个加数的十位填9.②填个位由于个位上1,所以中只能填9,则和的个位就为0.③填百位和千位由于第一个加数是两位数,第二个加数是三位数,而和是四位数,所以百位上数字相加后必须向千位进1,这样第二个加数的百位应填9,和的千位应填1,和的百位应填0.这样加法部分就变成:减法部分(如下式):①填个位由于被减数的个位是0,差的个位是5,而10-5=5,所以减数的个位应该填5.这样减法部分的算式变成:1 0 9 0②填十位、百位由于被减数是四位数,减数是三位数,差是两位数,所以减数的百位必须填9,同时十位相减时必须向百位借1,这样减数与差的十位也只能是9.这样减法部分的算式变为:此题的答案是:解答过程:减法部分①填个位被减数的个位填8.②填千位 被减数的千位填1.③填百位 被减数的百位填0,减数的百位填9.④填十位减数的十位填9,差的十位填9.加法部分:①填千位 和的千位填1.②填百位和的百位填0.③填十位 第二个加数的十位填9,和的十位填0.④填个位 第三个加数的个位填8.4. (1)审题 这是一个乘法算式,被乘数是三位数,个位上数字是9,乘数是一位数,积是一个四位数,积的千位数字为3,积的百位数字为0,积的个位数字为1.(2)选择解题突破口 因为乘数是一位数,当乘数知道以后,根据乘法法则,竖式中其他的空格就可以依次填出,因此乘数是关键,把它作为解题的突破口.(3)确定各空格中的数字 由于乘积的个位数字为1,所以可以确定出乘数为9.又因为积的前两位为30,所以被乘数的最高位(即百位)为3,于是被乘数的十位与乘数9相乘后应向百位进3,这样被乘数的十位应填3.得到此题的解为:5. (1)审题 这是一个除数是一位数并且有余数的除法算式.(2)选择解题突破口 因为除数是一位数,当除数知道后,竖式中其他空格可依次填出,因此,除数是关键,把它作为解题突破口.(3)确定各空格中的数字 由于余数为7,根据余数要比除数小这个原则,可以确定除数为8或9,现在逐一试验.①如果除数为8,见式:……第一行……第二行37观察算式可知:商的个位与除数8相乘应得所以商的 个位应填4.为了使余数得7,则算式中第二行的两空格应依次填3与9,这样被除数的个位也应填9(见下式).……第一行……第二行继续观察算式,被除数的百位上为4,被除数的前两位减去第一行后又余3,可以求出商的十位数字为5,这样其他空格也就填出来了.见下面的算式:②如果除数填9,那么商的个位填4,算式中第二行空格依次填4与3,被除数的个位也填3.见下面算式:……第一行……第二行7因被除数的百位为4,除数是9,所以商的十位数字为4或5.若商的十位填4,则第一行空格内应依次填3与6,被除数十位填0,符合要求.若商的十位数字为5,则第一行空格内应依次填4与5,被除数十位填9,也符合要求.此题有三个解:376.由于3=所以被乘数的个位数字为5,又由于2的积还是三位数,所以被乘数的百位数字为1、2、3或4,⨯3的积为四位数,所以被乘数的百位数字为4.最后确定乘数的十位数字.由于415所以乘数的十位数字为8或9,经试验,乘数的十位数字为8.被乘数和乘数确定了,其他方框中的数字也就容易确定了. 解:7. (1)审题 这是一个四位数除以一个一位数,商是三位数,而且商的十位数字为7.(2)选择解题突破口 由于商的十位数字已经给出,而且商的十位数字与除数的积为所以除数的取值范围为3、4.(3)确定空格中的数字①若除数为3:因为算式中余数为0,而除数3与商的个位相乘的积不可能等于因此,除数不可能为3.②若除数为4:为了叙述方便,我们先在算式中的一些空格中填入字母,并将可以直接确定的空格填上数,如下式:……第一行由算式中可以看到,04e b =⨯,所以b 只能取5,e 相应地就取2,这样算式中第一行两个数字依次为3与0.由于cd a =⨯43=cd ,因此a 可以取5或6,这样其他的空格就可相应填出.根据除数⨯商=被除数,可以确定出被除数为:575⨯4=2300或675⨯4=2700于是得到此题的两个解为:8.6相乘,结果考虑6=54,因此被乘数的个位数字为6或9.又由于被乘数,即因为乘数的十位数字不能为0,因而不论9乘以1~9中的哪个数字都不可能出现个位为0,进而被乘数的个位数字不为9,只能为6,则乘数的十位数字必为5.进一步分析,确定被乘数的十位数字与千位数字.由于被乘6相乘的积的十位数字为0,考虑⨯⨯6=48,所以被乘数的十位数字为3或8.由于被7,所以被乘数的十位数字为3,位数字6所以被乘数的千位数字为1,因而问题得到解决.解:9. 分析乘以商的十位数字积为且2⨯所以商的十位数字为2或7.而除数的首位数字最小为1,且7≠⨯,因此商的十位数字只能为2,除数的首位数字也为2.6接近于13,6,由于1392622=⨯,所以除数3.因此问题得以解决.解:10.a b 5……第一个部分积……第二个部分积……第三个部分积……乘积根据竖式乘法的法则,有下面的关系:dab ⨯5……第一个部分积cab ⨯5……第二个部分积15⨯ab……第三个部分积由乘法竖式可以看出,第一个部分积由于它的个位数字是5,所以d 只能取奇数但不能是1,即、5、7、9.由于第二个部分积的个位数字0,所以c 只能取偶数,即c =2、4、6、8.由于乘积的最高位数字是4,的最高位数字只能是2或3,也就是说,a =2或3.下面我们试验到底a 取什么数值:(1)如果a =2,那么求第一个部分积的算式变为52b ⨯d 75,由这个算式可推得b =7,d =9,即275⨯9=2475.这时求第二个部分积的算式变为275⨯c 经试验可知,无论c 取任何数值这个等式都不成立.这说明a 不能取2.(2)如果a=3,那么求第一个部分积的算式变为d b ⨯5375,由这个算式可推得b=2,d=7,即325⨯7=2275.这时求第二个部分的算式变为325⨯经试验可知c=4,即325⨯4=1300.因此,得被乘数5ab =325,乘数cd 1=147.求得的解如下:11. (1)设商数为AB ,除数为CD6.如下所示:根据竖式除法法则,有下面的数量关系: =⨯A CD 6……一式B CD⨯6……二式(2)我们知道,被除数=商数⨯除数,因此如果能先填出商数和除数,那么被除数就是已知的了,再根据竖式除法法则其余的空格就都可填出了.所以解此题的突破口是先填出商数和除数.(3)试验求解:①由一式A CD ⨯6可知A=1,D =7.②由二式B C ⨯76可知B =2. 因此,商数12=AB .③由二式276⨯C 可知C =3或8. 试验 当C =3时,除数63776=C .这时637⨯2=1274符合题意.当C=8时,除数68776=C .这时687⨯2=1374符合题意. 所以,除数是637或687.当除数是637时,被除数是12⨯637=7644.当除数是687时,被除数是12⨯687=8244.有了被除数、除数之后,其它的空格都可填出来了.我们把解写在下面,此题有两个解:12.设除数为a 3,商为3b . 由a 3⨯可知a =7. 由37⨯b 可知b =5. 由逆运算可知,被除数为(37⨯53=)1961,除法算式为35011111158116913713. 我们看到,在整个算式中有一个数字8是已知的.因此有人把这样的算式叫做“孤独的8”,在一个算式中,如果缺的数字很多,一般来说比较难解.设商数为b a 8,除数为xyz .如下面的算式.……第二行 ……第一余数 ……第四行 ……第二余数 ……第六行请你试一试:自己找出算式中的数量关系和解题的突破口. 下面试验求解:(1)因为=⨯8xyz就是算式中的第四行),这个积是三位数, x=1.(2)因为⨯a xyz 就是算式中的第二行),这个积是四位数,而=⨯8xyz是三位数,所以a>8,这样a只能是9.同理,b =9.因此,商数是989.(3)因为x=1,所以第四行的三位数变成81⨯yz 由此式可以看出这个三位数的最高位可能是8或9,但又由于第一余数减去这个三位数仍得三位数,因此第四行的三位数最高位只能是8,而第一余数的最高位只能是9.也就是说,81⨯yz又有第二行可知,91⨯yz 为使上述二式都能成立,经试验可知, yz 1只能是112.也就是说,除数是112.(4)由商数989,除数112,可求得被除数是989⨯112=110768,这样其它的空格都可填出了.所得的解如下:14. 解 (1)设除数为ab ,商为ef cd 8.显然,d=e =0.由ab ⨯ab⨯可知c =9.同理,f =9.所以商为90809.因为ab ⨯9>99,所以ab >11.又因为ab ⨯8<100,所以ab <12.5.由于ab 是整数,因此ab =12.由逆运算可知,被除数为(12 90809=)1089708.除法算式为: 9080908018016979801807980112。

相关文档
最新文档