洪水计算机模拟
基于BIM+GIS_的水库下游洪水模拟与可视化方法

文章编号:1006 2610(2023)03 0007 08基于BIM+GIS的水库下游洪水模拟与可视化方法郭敏鹏1,王 剑2,杨少雄1,孙继鑫1,杨 波1,赵 博1(1.西安航天天绘数据技术有限公司,西安 710100;2.航天恒星科技有限公司,北京 100094)摘 要:为有效推进水旱灾害防御高质量发展,国家大力支持智慧水利建设㊂基于此,为实现水库下游洪水演进过程快速模拟及三维立体可视,基于一㊁二维耦合水动力模型及三维倾斜摄影㊁BIM㊁GIS技术构建水库下游洪水模拟与可视化方法,以吉林市碾子沟水库为例,对不同重现期设计洪水条件下水库下游洪水进行快速模拟,并在真实三维场景下对洪水演进过程及淹没区范围㊁淹没历时及淹没水深等洪水要素信息进行全景映射表达和交互查询分析展示㊂结果表明:在各重现期设计洪水条件下,洪水模型计算稳定,各方案模型计算相对误差均低于10-6数量级,可知计算结果合理且满足工程要求,同时可实现洪水演进过程三维全景展示和灾害信息分析与交互查询㊂研究可为水库下游洪水风险决策提供支撑,提升洪水灾害防范能力,为智慧水利建设提供解决方案㊂关键词:设计洪水;BIM+GIS技术;数值模拟;洪水演进;三维可视化中图分类号:TV122.3 文献标志码:A DOI:10.3969/j.issn.1006-2610.2023.03.002A Simulation and Visualization Method for Flood Evolution Downstream of Reservoirs based on BIM+GIS TechnologyGUO Minpeng1,WANG Jian2,YANG Shaoxiong1,SUN Jixin1,YANG Bo1,ZHAO Bo1(1.XI'AN Aerospace Remote Sensing Data Technology Co.,Ltd.,Xi'an 710100,China;2.Space Star Technology Co.,Ltd,Beijing 100094,China)Abstract:In order to effectively promote the high-quality development of flood and drought disaster prevention,smart water conservancy con⁃struction is strongly supported by the state.Based on this,in order to achieve rapid simulation and three-dimensional visualization of the flood e⁃volution process downstream of the reservoir,based on one-and two-dimensional coupled hydrodynamic models and three-dimensional oblique photography,BIM and GIS technologies are used to build a flood simulation and visualization method in the downstream of the reservoir.Taking the Nianzigou Reservoir in Jilin City as an example,the downstream flood of the reservoir is quickly simulated under the design flood conditions of different return periods,and the flood evolution is analyzed in a real three-dimensional scene.The process and flood element information such as the range of the submerged area,the submerged duration,and the submerged water depth are displayed by panoramic mapping and interactive query analysis.The results show that under the design flood conditions of each return period,the calculation result of the flood model is stable, and the relative error of the calculation model of each scheme is less than10-6orders of magnitude.It indicates that the calculation results are rea⁃sonable and can meet the engineering requirements.Meanwhile,the model can realize the three-dimensional panoramic display of the flood evolu⁃tion process and the analysis and interactive query of disaster information.The research can provide support for flood risk decision downstream of the reservoir,improve flood disaster prevention capabilities,and provide solutions for smart water conservancy construction.Key words:design flood;BIM-GIS technology;numerical simulation;flood evolution;3D visualization 收稿日期:2023-03-31 作者简介:郭敏鹏(1996-),男,陕西省宝鸡市人,工程师,主要从事水利算法模型及洪水风险研究. 通讯作者:王剑(1978-),男,河北省秦皇岛市人,研究员,主要从事遥感及洪水风险研究. 基金项目:国家重点研发计划(2018YFC1508206);吉林市水库洪水风险图智能决策系统建设项目(20190917Z1041-1);水利部重大科技项目(SKS-2022129).0 前 言近年来,气候变化引发的极端强降雨频发,导致洪涝灾害的剧烈程度越来越强,造成了巨大的生命和财产损失[1-4]㊂水库作为中国水利建设重要的防洪建筑物,其泄洪流量对下游地区人民生命安全及社会经济和稳定有着重要的影响[5]㊂因此,对水库不同设计洪水条件下下游洪水演进过程精确模拟并7西北水电㊃2023年㊃第3期===============================================进行可视化表达分析,对库区下游地区防洪减灾㊁避险转移预案编制具有重要意义㊂国内外学者对洪水演进过程开展了深入的探索, 19世纪下半叶,圣维南方程组的提出为洪水演进过程的数值模拟提供了理论支撑[6-7];20世纪中后期,随着高性能计算机技术的发展和数值模拟理论的完善,数值模拟计算效率及精度得到进一步的提高,数值模拟成为洪水演进过程研究的主要手段[8-12],如Liang等[13]构建了捕捉地表快速水流的耦合水文过程的水动力模型,模拟了英国Haltwhistle Burn流域大尺度雨洪过程;Hou等[14-15]基于自主研发的二维水动力模型,对法国Malpasset小镇的大坝失事事件进行了高效高精度的模拟分析;王敏等[16]基于自主开发的溃坝模型及MIKE11对堰塞湖溃决洪水过程进行了模拟,模拟结果与实际演进过程基本一致,证明了模型的准确性㊂以上模型均可对洪水演进过程进行有效模拟,对洪水风险管理及防洪决策预案的编制具有重要意义,但其结果的二维展示,对水力要素展示还不够全面,信息交互查询与感知较差㊂鉴于此,王俊珲等[17]基于高分辨率数值模型与Unity3D可视化技术开展了城市及河道洪涝过程模拟及三维可视化研究,实现了洪涝过程三维场景的构建,但其构建的三维场景与真实场景差别较大,不能还原实际的场景;李政鹏等[18]集成了BIM-GIS技术与溃坝洪水模型,并将集成模型应用于前坪水库溃坝分析中,实现了溃坝洪水演进过程的二㊁三维分析与展示,但其在进行三维场景构建时,仅采用GIS技术进行建筑物地基开挖和河道扩挖,未融合倾斜摄影和高精度DOM 等数据,对真实地形和场景展示不足,并未考虑不同洪水条件下洪水演进过程,在洪水风险管理体系中,不同来洪条件下的洪水演进过程对精准施策具有重要的支撑作用;Yang等[19]基于WebGIS技术㊁CTS虚拟显示技术并结合TOPMODEL半分布式水文模型及IFMS洪水分析软件构建了洪水多元虚拟现实平台,实现了洪水演进三维场景的可视化和信息交互查询,并应用于实际工程中㊂以上研究虽均实现了洪水演进三维场景的可视化,但对其不同来洪条件下水库等工程措施对下游洪水演进过程的影响及三维可视化研究尚浅㊂基于此,本文以碾子沟水库工程为例,基于HydroMPM-FloodRisk模型对水库下游淹没区域在不同设计洪水条件下的洪水演进过程进行模拟,利用BIM㊁倾斜摄影㊁GIS等技术,构建真实水库下游三维场景,通过对洪水模拟结果㊁三维模型数据的融合可视化,实现洪水演进过程的分析表达,为洪水风险决策建设提供技术保障㊂1 洪水模拟数值模型与BIM+GIS耦合技术1.1 洪水模拟数值模型本文采用HydroMPM-FloodRisk模型对研究区域进行洪水演进过程模拟,该模型包含一维水动力学模型㊁二维水动力学模型和一㊁二维耦合水动力学模型模块[20-23]㊂其中,一维水动力模型可以很好地模拟分析河道洪水的演进情况,二维模型能够较为精准的计算区域内的洪水演进情况,一㊁二维耦合模型可以通过不同的耦合方式实现明渠㊁水工构筑物及二维地表漫流的模拟[24],模型计算原理如下所示: (1)一维水动力模型控制方程如下:BəZət+əQəs=q(1)əQət+2QA+(gA-BQ2A2)əZəs=B Q2A2(i+1BəAəs)-g Q2AC2R(2)式中:B为断面宽度,m;Z为断面水位,m;t为时间, s;S为沿水流方向的河道距离,m;q为旁侧流量, m3/s;Q为总流量,m3/s;A为过水断面面积,m2;V 为断面平均流速,m/s;i为渠底坡降;C为谢才系数;R为水力半径,m;g为重力加速度取9.8m/s2㊂(2)二维水动力模型控制方程如下:əHət+əMəx+əNəy=q(3) 动量方程:əMət+ə(uM)əx+ə(vM)əy+gHəZəx+g n2u u2+v2H1/3=0(4)əNət+ə(uN)əx+ə(vN)əy+gHəZəy+g n2v u2+v2H1/3=0(5)式中:x㊁y㊁z为笛卡尔坐标系;H为水深,m;Z为水位,m;q为连续方程中的源汇项;M㊁N分别为x㊁y 方面的单宽流量,m3/s;u㊁v为x㊁y方向的垂线平均8郭敏鹏,王剑,杨少雄,孙继鑫,杨波,赵博.基于BIM+GIS的水库下游洪水模拟与可视化方法===============================================流速,m/s;n为曼宁糙率系数;g为重力加速度取9.8m/s2㊂模型采用单元中心的显式有限体积法离散求解模型方程,保证了水量和动量在计算域内守恒㊂采用非结构三角形网格对研究区域进行离散,更有利于拟合复杂边界线,利用干湿网格判断法处理潮滩移动边界㊂(3)一㊁二维耦合模型本文一㊁二维模型的耦合采用侧向连接方式,实时耦合计算河道洪水漫溢淹没风险㊂侧向连接方式即是通过河道断面标注堤顶等效为堰,堰顶高程及堰宽以该处断面左右堤顶高程及宽度为准;沿一维河道边界线在二维区域设定耦合线,确定耦合的网格单元㊂模型通过比较二维网格与相应里程处一维河道内断面水深,利用堰的流量公式计算通过侧向连接的水流,实现一㊁二维水流之间的水量交换计算㊂1.2 BIM+GIS技术建筑信息模型(Building Information Modeling, BIM)通过建立虚拟三维模型,将实际水利工程的空间几何信息以及在不同时间及不同应用场景下的属性信息实时与孪生模型进行交互查询,是水利工程数字孪生孪生场景搭建的基础,并为智慧化模拟提供全方位的技术支撑[25]㊂三维GIS是在传统二维地理系统基础上发展而来的新一代三维空间信息技术㊂通过该技术所构建的三维空间框架,可作为BIM模型㊁遥感影像㊁DEM数据㊁地面传感器等多源数据的融合载体,可实现库区及下游淹没区域属性数据在实际地理基准下的高度映射,具有高度还原的可视化效果和决策分析基础[26]㊂1.3 耦合方法BIM+GIS技术在土木工程建设㊁城市管理㊁水利监测等方面得到广泛应用,其场景真实㊁易于耦合开发,适用于洪水演进过程的三维可视化㊂本文将一㊁二维洪水推演模拟结果与构建的BIM模型基于GIS平台进行三维可视化耦合,从而在保证模拟精度的前提下,将平面洪水演进过程转化为三维实景可视化展示㊂具体融合步骤如下:(1)洪水模拟模型采用基于地理坐标系的非结构网格㊁淹没面积㊁淹没水深㊁演进时间等模拟结果均存储于网格中;(2)洪水可视化时,基于网格地理坐标㊁编号以及拓扑关系,将洪水计算结果加载到基于BIM+GIS 技术构建好的实景场景中,实现洪水模拟模型与BIM+GIS平台的耦合,达到洪水推演模拟的三维可视化效果㊂2 水库下游洪水演进模拟以碾子沟水库为例,利用一㊁二维耦合水动力模型进行不同设计来洪条件下洪水过程的数值模拟,分析水库下游风险区域洪水演进过程以及淹没情况㊂2.1 研究区域概况碾子沟水库位于吉林省永吉县,水库坝址在一拉溪河上游,坝址以上河道平均比降8.7‰,是一座具有综合功能的中型水库㊂大坝主体为粘土心墙坝,右岸为3孔溢洪道,水库下游主要影响一拉溪镇和桦皮厂镇㊂文中所用参数和原始数据为实地测量或参考当地和相关水利标准㊂2.2 建模范围碾子沟水库下游河段一㊁二维耦合计算模型范围包括碾子沟水库~搜登站镇河崴子村河道两岸洪水影响区域,区域面积94.48km2㊂对研究区域河道和两岸区域建立一维和二维水动力模型,并进行耦合连接,建模范围如图1所示㊂图1 碾子沟水库下游一、二维建模范围示意图2.3 河道断面设置与网格剖分2.3.1 河道断面设置河道断面是一维水动力模型的重要基础数据,根据一拉溪㊁鳌龙河地形地貌特征,一维模型构建的河段(碾子沟水库坝下至搜登站镇河崴子村)全长38.2km,共设置12个断面,断面间距变化范围为9西北水电㊃2023年㊃第3期===============================================100~1500m㊂断面形态和河道断面布置分别如图2㊁3所示㊂图2 河道部分大断面示意图图3 河道断面布置示意图2.3.2 网格剖分研究区域计算总面积94.48km 2,网格数36872个㊂碾子沟水库下游淹没区网格布置如图4所示㊂图4 碾子沟水库下游二维模型范围网格剖分图2.4 模型边界设置2.4.1 一维边界一维非恒定流模型的边界条件包括上边界条件㊁下边界条件以及内部边界条件㊂边界条件的选择取决于模拟对象的物理特性和资料条件㊂一维非恒定流模型的上边界条件一般选用流量过程,下边界条件一般选用水位过程或水位流量关系曲线,内部边界根据模型的实际条件给出㊂01郭敏鹏,王剑,杨少雄,孙继鑫,杨波,赵博.基于BIM+GIS 的水库下游洪水模拟与可视化方法=============================================== 河道洪水方案的边界主要分为4类:①上游边界,碾子沟水库坝址,采用其设计洪水过程;②下游边界,搜登站镇河崴子村附近断面水位,采用由下游桦皮厂水文站设计水位推求值;③区间边界,碾子沟水库坝址至汇流口,鳌龙河区间;④集雨面积较大支流点源边界㊂2.4.2 二维边界在本次洪水分析过程中,二维水流模型的边界条件分为两类:①与一维模型耦合处的边界条件,具体包括与碾子沟水库下游河道的侧向连接处边界,此类边界均为动水位边界,由模型自动耦合计算;②模拟区域周边的外边界,由于在确定建模范围时已考虑了河道洪水边界,模型计算范围内区域与区域外不存在水量交换,因此确定为固边界㊂2.5 模型参数确定2.5.1 一维河道水动力模型参数(1)糙率碾子沟水库下游(碾子沟水库~搜登站镇河崴子村)河道糙率值是影响该河道模拟精度的主要参数,参考相关标准,结合河道现状,设定碾子沟水库下游河段河道综合糙率为0.033㊂(2)计算步长为保证模型稳定及运算效率,设定碾子沟水库下游(碾子沟水库~搜登站镇河崴子村)一维计算迭代步长60s㊂(3)初始水深综合碾子沟水库下游(碾子沟水库~搜登站镇河崴子村)实际情况及现场查勘结果,考虑模型稳定及运算效率等多种因素,设定碾子沟水库下游(碾子沟水库~搜登站镇河崴子村)河道一维水动力模型计算初始水深为0.2m㊂2.5.2 二维淹没区水动力模型参数(1)糙率为保证二维模型计算精度,糙率依据土地利用分类进行分区㊂各分区内采用水力学手册中的建议值,下垫面糙率取值见表1㊂(2)计算步长为保证模型稳定及运算效率,设定二维模型最大迭代步长60s,最小迭代步长0.01s㊂表1 洪水风险区域糙率参照表序号下垫面类型糙率1沥青铺面0.0122混凝土铺面0.0143裸土0.024耕地0.035堤㊁路㊁埝0.0456果林0.0657房屋0.108鱼池㊁水池0.0359水田0.0410条田㊁台田0.06511河床㊁渠床0.03512谷场0.0313一般草地0.0414密集草地0.0615菜地0.03516灌木丛0.082.5.3 一㊁二维耦合模型参数利用一维模型和二维模型最小时间步长作为耦合模型的时间步长,实现一维模型和二维模型固定时间步长内的动态耦合,耦合模型计算时间步长为60s㊂2.6 设计洪水在本研究中,通过桦皮厂站流量资料推算碾子沟水库下游不同频率设计洪水峰值,设计洪水过程的推求采用放大典型洪水过程线的方法,桦皮厂水文站2005年6月30日至7月9日的实际洪水过程呈现峰高量大,对工程防洪运用较为不利,同时能够反映碾子沟水库下游大洪水的的洪水特性,因此,选择此次洪水作为典型洪水进行同频率放大㊂根据洪水量级分析,实现20年一遇和50年一遇的设计洪水过程㊂设计洪水过程线如图5所示㊂图5 碾子沟水库下游设计洪水过程线2.7 不同设计洪水条件下水库下游洪水演进模拟基于构建的一㊁二维耦合洪水演进数值模型对碾子沟水库下游不同重现期条件下洪水演进过程进11西北水电㊃2023年㊃第3期===============================================行模拟,当碾子沟水库下游遭遇20年一遇洪水,计算区最大水深分布如图6(a)所示,最大淹没水深为2.91m,最大淹没面积9.21km2,积水量98.88万m3㊂当设计洪水为50年一遇时,研究区域内最大水深分布如图6(b)所示,最大淹没水深为3.93 m,最大淹没面积26km2,积水量135.06m3㊂图6 碾子沟水库下游遭遇不同设计洪水最大水深2.8 模型验证与合理性分析由于碾子沟下游区域针对强降雨后带来的洪水演进和淹没情况,没有完整详细数据记录,因此无法对二维模型进行严格率定和准确验证㊂为保证模型计算结果可靠,本研究在建模时通过对基础数据㊁模型构建和参数选取3个方面进行精细化处理和校核验证以保障模型的可靠性和参数的准确性㊂为更好地说明模型的合理性,下面针对各洪水计算方案,对水量平衡进行定量化分析,来论证计算模型的合理性㊂根据水利部颁布的SL483-2010‘洪水风险图编制导则“中的4.8.7节论述,计算过程中流入和流出计算范围的水量差等于计算范围的蓄水量,两者相对误差(入流水量-出流水量-蒸发量蓄水量)应小于1×10-6㊂计算碾子沟水库下游淹没区内蓄水量相等以验证水量平衡关系,如表2所示㊂由表2可知,碾子沟水库下游遭遇20年一遇洪水时,误差为60.51万m3;碾子沟水库下游段遭遇50年一遇洪水时,误差为41.39万m3;各方案模型计算相对误差均低于10-6数量级,满足水量平衡要求[27]㊂表2 碾子沟水库洪水计算方案的水量平衡对比表洪水方案初始蓄水量/(×104m3)进洪量/(×106m3)出水量/(×106m3)最终蓄水量/(×104m3)水量平衡误差/(×104m3) 20年一遇44.43380.75380.8198.8860.51 50年一遇59.67981.98981.64135.0641.393 基于BIM+GIS技术的水库下游洪水演进三维展示3.1 碾子沟水库BIM模型构建基于无人机机载倾斜摄影技术,通过Context Capture Center构建其三维模型,再采用Auto3Dmax 进行单体的精细化处理得到水库大坝各建筑物精确的BIM模型,BIM模型如图7所示,建模流程如图8所示㊂21郭敏鹏,王剑,杨少雄,孙继鑫,杨波,赵博.基于BIM+GIS的水库下游洪水模拟与可视化方法===============================================图7 碾子沟水库BIM模型图8 碾子沟水库BIM 模型建模流程3.2 水库下游三维场景构建基于无人机航测技术获取水库库区及下游淹没区精细高精度DEM 数据,通过解译及处理得到研究区域内精细的地形模型,同时基于正射影像及利用多旋翼采集到的五视角影像㊁POS 数据㊁像控点数据,通过空三解算㊁密集点云匹配㊁三角网构建㊁贴图等步骤,构建高精度水库下游三维场景㊂三维场景根据低空无人机倾斜摄影技术建模而成,完整展现真实地物状态,模型纹理基于高精度实景影像经过精细化构建而成,三维模型完整,定位准确㊁场景还原度高,弥补了正射影像的不足,能真实地反映地物和纹理信息,且该模型可实现信息交互查询及360°全方位三维漫游和一体化展示㊂模型构建流程如图9所示,居民区三维模型效果如图10所示㊂图9 三维场景构建流程图10 三维模型效果3.3 水库下游洪水演进三维场景基于GIS 引擎,以BIM 模型及构建的三维场景为基础,结合洪水演进数值模型的计算结果,根据其各时刻水深㊁淹没范围等特性进行叠加渲染与三维可视化展示,直观㊁真实的展现水库下游洪水演进过程㊁淹没情况及洪灾损失信息等信息,在洪水风险分析时,三维实景模型的构建相比传统平面地形图评估更加直观准确㊂在此基础上,实现了场景漫游探索㊁信息查询㊁区域量测等信息交互查询功能,可实现医院㊁学校㊁安置点等重点区域洪水信息的实时提取㊁下载等功能,在进行避灾决策时,动态掌握淹没信息,提升决策的准确性和有效性㊂洪水演进过程三维与淹没信息交互查询展示如图11所示㊂31西北水电㊃2023年㊃第3期===============================================图11 洪水演进过程三维与淹没信息交互查询展示4 结 论本文以吉林市碾子沟水库为例,利用BIM㊁GIS㊁倾斜摄影等技术,构建了洪水演进过程三维场景;基于一㊁二维耦合水动力模型,对不同洪水条件下洪水演进过程进行模拟;通过对BIM数据㊁倾斜摄影建模三维数据以及洪水模拟结果进行融合表达,实现了洪水演进过程的快速模拟及全景交互查询分析可视化,结果表明:(1)本文所用模型模拟结果准确,满足实际工程需求;通过对水库不同洪水条件下下游演进过程的模拟及各水力要素的分析发现,随着设计洪水重现期的增大,淹没范围及淹没水深均增大,因此,在面对不同设计洪水条件下,应针对不同淹没范围进行精准施策,进行淹没区避洪转移,最大限度的降低洪灾风险㊂(2)基于BIM+GIS技术与洪水演进水动力模型的耦合,将洪水淹没演进过程进行直观的三维可视化,同时实现了洪水信息的实时交互查询,对水库下游防洪决策具有重要指导意义,有力推动了相关防汛部门智慧水利建设工作㊂参考文献:[1] 黄国如,罗海婉,卢鑫祥,等.城市洪涝灾害风险分析与区划方法综述[J].水资源保护,2020,36(06):1-6,17. [2] 徐宗学,陈浩,任梅芳,等.中国城市洪涝致灾机理与风险评估研究进展[J].水科学进展,2020,31(05):713-724. [3] 张兆安.基于非结构网格GPU加速技术的二维水动力数值模拟[D].西安:西安理工大学,2021.[4] 徐宗学,刘琳,杨晓静.极端气候事件与旱涝灾害研究回顾与展望[J].中国防汛抗旱,2017,27(01):66-74.[5] 张松松,张卫,国林,等.大新水库不同溃坝高度的洪水演进过程模拟研究[J].安全与环境工程,2021,28(06):16-24,30. [6] 刘林,常福宣,肖长伟,等.溃坝洪水研究进展[J].长江科学院院报,2016,33(06):29-35.[7] 文岑,蒋友祥,赵海燕.溃坝问题数值模拟研究综述[J].中国科技信息,2010(21):58-61.[8] 臧文斌,赵雪,李敏,等.城市洪涝模拟技术研究进展及发展趋势[J].中国防汛抗旱,2020,30(11):1-13.[9] 许栋,徐彬,David PAyet,等.基于GPU并行计算的浅水波运动数值模拟[J].计算力学学报,2016,33(01):114-121. [10] 史宏达,刘臻.溃坝水流数值模拟研究进展[J].水科学进展,2006(01):129-135.[11] 程坤,刘锦,巨江.二维溃坝洪水演进数值模拟[J].西北水电,2020(02):97-101.[12] 韩浩,侯精明,金钊.新型流域雨洪过程模拟方法研究[J].西北水电,2022(05):41-46.[13] LIANG QH,XIA XL,HOU JM.Catchment-scale high-resolu⁃tion flash flood simulation using the GPU-based technology[J].Procedia Engineering,2016,154:975-981.[14] Hou Jingming,Liang Qiuhua,Zhang Hongbin,et al.MultislopeMUSCL method applied to solve shallow water equations[J].Computers and Mathematics with Applications,2014,68(12):2012-2027.(下转第20页)41郭敏鹏,王剑,杨少雄,孙继鑫,杨波,赵博.基于BIM+GIS的水库下游洪水模拟与可视化方法===============================================汽输送通道在9月中旬完全消失,转为异常偏北风控制,即水汽输送的来源在9月中旬发生改变,其次,9月中旬唐乃亥以上地区,无论是水汽输送通量还是水汽辐合强度,都要强于6月中旬㊂5 结 论(1)2019年6月中旬及9月中旬,西北太平洋副热带高压和南亚高压势力均异常偏强,位置分别偏西㊁偏东,形成黄河源区唐乃亥水文站两次编号洪水的主要降水天气形势;高纬度低槽加深㊁冷空气南下,与来自低纬副高边缘或印缅槽前的暖湿气流相结合,配合研究区上空高层异常反气旋,加强了区域内低层上升运动的发展,有利于产生持续降水,进而导致两次编号洪水的发生㊂(2)造成两次洪水的大气环流存在较大不同,500hPa 等压面上,6月中旬欧亚中高纬为 两槽一脊”经向型环流,研究区位于巴尔喀什湖大槽前部,9月中旬则转为受平直的西风气流控制,巴尔喀什湖地区对应为浅槽;200hPa 上,6月中旬副热带西风急流偏南,9月中旬则偏北㊂由此产生的低层上升运动表现为6月中旬异常上升运动以西宁为中心,9月中旬则以久治㊁红原为中心,后者位置偏南㊁强度偏强㊂(3)造成两次致洪降水的水汽条件亦不同,6月中旬水汽输送主要依赖于印缅槽前异常偏南风,水汽源地主要为孟加拉湾,而9月中旬的水汽主要来自西太平洋的偏东气流,水汽输送通量及水汽辐合强度均更强,配合研究区更显著的上升运动,在环流形势相对不利的情况下,仍能产生接近6月中旬的降水量级,且较同期偏多幅度最大㊂参考文献:[1] 刘晓燕,常晓辉.黄河源区径流变化研究综述[J].人民黄河,2005,27(02):6-8,14.[2] 高治定,李文家,李海荣,等.黄河流域暴雨洪水与环境变化影响研究[M].郑州:黄河水利出版社,2002.[3] 范国庆,谢文轩,毛利强.黄河河源区洪水时空分布特征统计分析[J].人民黄河,2013,35(06):27-28,31.[4] 李国芳,王迟,王正发,等.黄河源区可能最大洪水研究[J].河海大学学报(自然科学版),2013,41(02):102-107.[5] 楚楚,任立新.黄河源区2018年洪水特性分析[J].人民黄河,2020,42(S2):14-16.[6] 曹瑜,游庆龙,蔡子怡.1961 2019年青藏高原中东部夏季强降水与大尺度环流的关系[J].冰川冻土,2021,43(05):1290-1300.[7] 中国气象局国家气候中心.中国气候公报(2019)[M].北京:气象出版社,2020.[8] 王欢,李栋,蒋元春.1956 2012年黄河源区流量演变的新特征及其成因[J].冰川冻土,2014,36(02):403-412.[9] 刘还珠,赵声蓉,赵翠光,等.2003年夏季异常天气与西太副高和南压高压演变特征的分析[J].高原气象,2006,25(02):169-178.[10] 张宇,李耀辉,王式功,等.中国西北地区旱涝年南亚高压异常特征[J].中国沙漠,2014,34(02):535-541.[11] 许建伟,高艳红,彭保发,等.1979-2016年青藏高原降水的变化特征及成因分析[J].高原气象,2020,39(02):234-244.[12] 朱羿洁,张飞民,杨耀先,等.夏季南亚高压位置与青藏高原降水年际变化的关系研究[J].高原气象,2023,42(01):60-67. (上接第14页)参考文献:[15] Hou Jingming,Liang Qiuhua,Simons Franz,et al.A 2D well-bal⁃anced shallow flow model for unstructured grids with novel slope sourceterm treatment[J].Advances in Water Resources,2013,52:107-131.[16] 王敏,卢金友,姚仕明,等.金沙江白格堰塞湖溃决洪水预报误差与改进[J].人民长江,2019,50(03):34-39.[17] 王俊珲,侯精明,王峰,等.洪涝过程模拟及三维实景展示方法研究[J].自然灾害学报,2020,29(04):149-160.[18] 李政鹏,皇甫英杰,李宜伦,等.基于BIM+GIS 技术的前坪水库溃坝洪水数值模拟[J].人民黄河,2021,43(04):160-164.[19] Yang B,Ma J,Huang G,et al.Development and Application of3D Visualization Platform for Flood Evolution in Le'an River Ba⁃sin of Wuyuan[C]//IOP Conference Series:Earth and Environ⁃mental Science.IOP Publishing,2021,638(1):012053.[20] 宋利祥.基于高稳㊁高速计算的洪水实时分析技术[J].中国防汛抗旱,2019,29(05):6-7.[21] 杨莉玲,宋利祥,邓军涛,等.一㊁二维耦合数学模型在感潮河网洪水风险图编制中的应用[J].长江科学院院报,2017,34(09):36-40.[22] 陈文龙,宋利祥,邢领航,等.一维-二维耦合的防洪保护区洪水演进数学模型[J].水科学进展,2014,25(06):848-855.[23] 宋利祥.HydroMPM 模型及其在地表水环境影响评价中的应用[C]//环境保护部环境工程评估中心.2014年中国环境影响评价研讨会大会报告集.武汉:环境保护部环境工程评估中心,2014:704-743.[24] 孙继鑫,王剑,杨少雄,等.黄河水库下游河段洪水影响规律数值模拟研究[J].西北水电,2022(02):18-26.[25] 刘志明.以BIM 技术促数字赋能推进智慧水利工程建设[J].中国水利,2021(20):6-7.[26] 胡乃勋,吴巨峰,赵训刚,等.基于BIM+GIS 技术的桥梁数字孪生平台研究[J /OL ].土木建筑工程信息技术:1-8.https:// /kcms /detail /detail.aspx?FileName =HJPG201406001029&DbName =CPFD2014.[27] 中华人民共和国水利部.洪水风险图编制导则:SL 483-2010[S].北京:中国水利水电出版社,2017.02王鹏,张利娜,沈延青,祁善胜.22019年黄河干流唐乃亥站两次编号洪水的降水成因分析===============================================。
城市内涝洪水数值模拟及三维场景构建研究

城市内涝洪水数值模拟及三维场景构建研究目录一、内容综述 (2)1.1 研究背景 (2)1.2 研究目的与意义 (3)1.3 研究内容与方法 (4)二、理论基础与文献综述 (5)2.1 城市内涝洪水形成机理 (8)2.2 数值模拟技术及其应用 (9)2.3 三维场景构建技术及其在防洪中的应用 (10)2.4 国内外研究现状及发展趋势 (11)三、城市内涝洪水数值模拟 (12)3.1 模拟方法选择 (13)3.2 模拟算子与离散化方法 (14)3.3 模拟过程与参数设置 (16)3.4 模拟结果分析与验证 (17)四、城市内涝洪水三维场景构建 (18)4.1 三维场景建模方法 (20)4.2 地形地貌建模 (20)4.3 水文气象要素建模 (22)4.4 模拟场景生成与可视化 (23)五、城市内涝洪水风险评估与管理 (24)5.1 风险评估指标体系构建 (25)5.2 风险评估模型建立与求解 (26)5.3 防洪措施与应急预案制定 (27)六、案例分析 (28)6.1 实际城市案例选择 (29)6.2 模拟结果分析与对比 (30)6.3 防洪措施实施效果评估 (32)七、结论与展望 (33)7.1 主要研究成果总结 (34)7.2 存在问题与改进方向 (35)7.3 未来研究与发展趋势 (36)一、内容综述随着城市化进程的加快,城市内涝问题日益严重,对城市基础设施和人民生活造成了极大的影响。
为了更好地了解城市内涝洪水的特点及其对城市的影响,本文对城市内涝洪水数值模拟及三维场景构建进行了研究。
本文对城市内涝的概念进行了界定,分析了城市内涝的形成机制和发展过程。
本文介绍了城市内涝洪水数值模拟的方法和技术,包括水文模型、降水模型、径流模型等,并结合实际案例对这些方法和技术进行了详细的阐述。
本文探讨了基于三维场景构建的城市内涝洪水仿真系统的设计和实现,包括数据采集、模型建立、可视化展示等方面的内容。
通过对城市内涝洪水数值模拟及三维场景构建的研究,本文旨在为城市规划和管理提供科学依据,以期减轻城市内涝带来的负面影响,提高城市的可持续发展能力。
GIS洪水淹没模拟及灾害评估中的应用

GIS洪水淹没模拟及灾害评估中的应用地理信息系统(Geographic Information System,GIS)是一种基于计算机技术的地理空间数据处理工具,广泛应用于各领域,包括环境保护、城市规划、资源管理等。
在自然灾害管理中,GIS也扮演着至关重要的角色,特别是在洪灾方面。
本文将探讨GIS在洪水淹没模拟和灾害评估中的应用。
GIS在洪水淹没模拟中的应用数据采集与处理GIS可以整合各种地理空间数据,如地形、降水、河流网络等,以帮助模拟洪水淹没过程。
通过卫星影像、数字高程模型等数据,GIS能够精确获取地表信息,为洪水淹没模拟提供必要的数据基础。
模型构建与仿真基于采集的数据,GIS可以构建洪水淹没的数值模型,通过计算机仿真来模拟不同洪水事件下的淹没情况。
模型可以包括水流模拟、淹没深度、泥沙运移等方面,帮助预测洪灾风险和制定防灾措施。
结果可视化与分析GIS能够将洪水淹没模拟结果以图形化形式展现,如淹没区域、淹没深度等信息,为决策者和公众提供直观的参考。
通过空间分析功能,GIS还能够对淹没情况进行量化评估和比较,为灾害管理提供科学依据。
GIS在灾害评估中的应用资源调度与救援在灾害发生后,GIS可以实时监测灾情、统计受灾人口和物资需求等重要信息,协助决策者进行资源调度和救援指挥。
通过空间数据的动态更新和分析,GIS能够实现快速响应和有效救援。
风险评估与规划利用GIS技术,可以进行灾害风险评估,分析各类自然灾害如洪水、地震等可能造成的影响范围和损失情况。
基于评估结果,可以对灾害防治工作进行规划和建议,提高城市的应急响应能力。
空间决策支持GIS为灾害管理提供了空间决策支持系统,通过空间数据的整合和分析,帮助决策者优化资源配置、制定灾害应对方案,并及时评估实施效果。
GIS技术的运用能够提高灾害管理的科学性和效率。
综上所述,GIS在洪水淹没模拟和灾害评估中的应用极大地提升了自然灾害管理的能力和水平。
随着技术的不断发展,GIS在灾害领域的应用前景也将更加广阔,为减少灾害损失、保护人民生命财产安全发挥着重要作用。
计算机辅助洪水模拟与预测研究

计算机辅助洪水模拟与预测研究一、引言洪水是全球性的自然灾害之一,严重威胁着人类的生命和财产安全。
如何准确预测并有效应对洪水成为全球各国面临的重要课题。
目前,计算机模拟与预测技术逐渐成为洪水预测与管理的主要手段,应用前景广阔。
本文将介绍计算机辅助洪水模拟与预测的研究成果和应用现状。
二、计算机辅助洪水模拟技术1. 概述计算机辅助洪水模拟是指利用计算机技术对洪水发生及演化过程进行模拟与预测的过程。
目前,计算机辅助洪水模拟技术主要包括洪水演进模型、洪水预测模型和洪水防御模型三类。
2. 洪水演进模型洪水演进模型主要是通过数学模型对洪水在地表、地下以及河道中的流动过程进行模拟。
该模型一般分为二维和三维模型,能够模拟流量、水位、流速等参数的变化,进而实现对洪水演进过程的定量预测。
3. 洪水预测模型洪水预测模型主要是通过对大雨数据、山洪暴雨等数据的处理,结合实时监测资料,构建出洪水演进的地区性和次区域性预报模型。
该模型能够在洪水未来发生之前准确预测洪水水位、流量等参数的变化,辅助政府和公众采取有效的防御措施。
4. 洪水防御模型洪水防御模型主要是基于洪水演进模型和洪水预测模型,构建对应的洪水防御计划。
该模型能够分析洪水防御营地、沟渠等设施的布局及其力度,实现洪水防御决策的快速优化。
三、计算机辅助洪水模拟技术应用1. 洪水预测近年来,计算机辅助洪水模拟技术在全球范围内得到了广泛的应用。
中国、美国、荷兰等国家已经建立了比较完善的洪水预测系统。
其中,中国的洪水预测系统已经成功应用于实际的洪水预报工作中,对防洪工作的保障和应急调度作出了重要贡献。
2. 洪水演进模拟计算机辅助洪水模拟技术在洪水演进模拟方面的应用也越来越广泛。
比如,荷兰的“水管理中心”利用计算机辅助洪水模拟技术,成功地模拟出了荷兰北部地区发生大型水灾的情景,并进一步制定出相应的相应预案。
与此同时,在我国福建、广西等地,为防止洪灾,福建省气象台已经开始采用计算机模拟的天气预报来提高防范水灾的预警能力。
超级计算机构建自然灾害模型

超级计算机构建自然灾害模型自然灾害是指由地球自然环境中的自然力量引起的、对人类社会造成严重损害和灾难性后果的突发性事件,如地震、洪水、台风等。
为了应对和减少自然灾害带来的损失,科学家们通过构建自然灾害模型来对灾害的发生和演化进行预测和分析。
超级计算机作为一种高性能的计算设备,可以为自然灾害模型的建立和运行提供强大的计算能力。
超级计算机利用先进的计算算法和大数据技术,能够处理大规模的复杂计算问题。
在构建自然灾害模型时,科学家们需要收集大量的有关地质、气象、水文等数据,这些数据需要通过超级计算机进行处理和分析。
超级计算机的高速运算能力可以在短时间内处理海量的数据,准确地模拟出自然灾害可能发生的范围、强度和影响程度。
自然灾害模型的构建需要考虑多个因素的综合影响。
例如,在地震模型中,科学家们需要将地球的地壳结构、地震活动、应力场等数据输入超级计算机,并结合历史地震事件的统计数据,通过模拟算法预测未来地震活动的概率和可能的破坏范围。
超级计算机可以在短时间内完成复杂的地震模拟计算,为地震防灾减灾提供科学依据。
除了地震,洪水也是一种常见的自然灾害。
在洪水模型的构建中,科学家们需要考虑降雨量、流量、地形等多个因素,通过超级计算机进行水文模拟和预测。
超级计算机可以对复杂的水文过程进行高精度的模拟和预测,为防洪工作提供科学参考。
台风是另一种常见的自然灾害,它可能带来巨大的毁灭性。
为了准确预测台风的路径、强度和可能影响的范围,科学家们使用超级计算机进行气象数值模拟。
超级计算机可以模拟大气环流、海洋热力等复杂的物理过程,提供台风路径的准确预测,为相关部门的防灾减灾工作提供重要依据。
超级计算机的运算能力还可以用于其他自然灾害模型的构建,如火灾、地质灾害等。
通过结合大数据和计算能力,科学家们可以捕捉到自然灾害背后的规律和趋势,进而对灾害的发生和演化进行预测和分析,为灾害防控工作提供科学依据。
随着科技的不断进步,超级计算机的计算能力和处理速度不断提高,为构建自然灾害模型提供了更多的可能性。
水利工程中的洪水模拟与预警系统

水利工程中的洪水模拟与预警系统第一章:引言水利工程中的洪水模拟与预警系统一直以来都是一个重要的研究领域。
洪水是一种天灾,它给人类社会带来巨大损失,因此在水利工程中及时准确地预测和预警洪水发生对于保护人民生命财产安全至关重要。
本文将重点介绍水利工程中的洪水模拟与预警系统的原理、应用以及未来发展方向。
第二章:洪水模拟系统洪水模拟是利用数学和计算机技术模拟洪水的生成、发展和传播过程。
洪水模拟系统通常包括输入模块、计算模块和输出模块。
输入模块用于获取洪水模拟所需的地理、气象、水文等数据,计算模块通过数学模型对洪水进行计算和模拟,输出模块将模拟结果以图表、报表等形式呈现。
洪水模拟可以帮助工程师评估洪水的危险程度,为水利工程的设计与规划提供数据依据。
第三章:洪水预警系统洪水预警系统是基于实时监测、数据传输和信息处理技术,通过对洪水的实时监视和数据分析,及时发出预警信息,以便采取相应的措施减少洪灾造成的损失。
洪水预警系统通常由监测站、数据传输系统、数据处理与分析系统和预警发布系统组成。
监测站负责实时采集洪水相关数据,数据传输系统将监测数据传输到数据处理与分析系统,数据处理与分析系统对数据进行处理并生成预警信息,预警发布系统将预警信息传达给相关部门和居民。
第四章:洪水模拟与预警系统的应用洪水模拟与预警系统在水利工程中的应用十分广泛。
首先,洪水模拟与预警系统可以用于水库调度,通过模拟水库容积变化和洪水泄流过程,预测洪水峰值到达时间和水位,从而合理安排水库蓄水和泄洪计划。
其次,洪水模拟与预警系统可以用于城市排水管理,通过模拟雨水径流过程和城市排水系统工作情况,预测城市内涝风险区域,为城市排水系统的设计和改进提供依据。
此外,洪水模拟与预警系统也可以用于自然灾害风险评估、土壤侵蚀预测等方面的应用。
第五章:洪水模拟与预警系统的挑战与展望尽管洪水模拟与预警系统在水利工程中取得了一定的成绩,但仍然面临一些挑战。
首先,数据质量和数据更新的问题是制约洪水模拟与预警系统应用的关键因素,如何获取准确、实时、连续的监测数据是一个亟待解决的问题。
最全地城市洪涝、河道、水质模型模拟软件介绍

一、相关模型简介清单1011121314151617 ECOLaMIKE2InfoWorksRSWARMQUAL2MIKESHEBioWinWASPQUASAREFDC水质和水生态模拟DHI丹华水利模拟河口、海岸或海洋区域的物理、化学或生物学过程用于水资源优化调度,防洪管理、规划,实时调度和决策分析,水污染防治与评价,河网整治,冲淤分析的模拟以水环境为中心的流域管理决策支持系统,用于水质管理、总量负荷计算、分配及其成本/效益分析.应用于河流水环境规划、水质评价、水质预测等方面的综合性、多样化的河流水质模型模拟陆相水循环中所有主要的水文过程,综合考虑了地下水、地表水、补给以及蒸散发等水量交换过程。
涉及湿地管理修复,环境影响评价。
模拟污水处理厂的所有处理单元,即全污水处理厂的模型是为分析池塘、湖泊、水库、河流、河口和沿海水域等•系列水质问题而设计的动态多箱模型在河流水环境规划、治理的一维动态水质模型能用于模拟点源和面源的污染、有机物迁移及归趋的模型DHI丹华水利华霖富美国EPRI美国环境保护局(USEPA)DHI丹华水利华霖富美国国家环保央国Whitehead美国弗吉尼亚州海洋研究所(VIMS)二、城市内涝模型1)MIKEURBAN城市排水模拟软件MIKEURBAN城市排水软件是顶级的排水管网模拟软件。
它整合了ESRI 的ArcGIS以及排水管网模拟软件,形成了一套城市排水模拟系统。
该模型广泛应用于城市排水与防洪、分流制管网的入流或渗流、合流制管网的溢流、受水影响、在线模型、管流监控等方面,可为水资源的可持续利用、污染控制、雨水和污水管网管理及城市防洪提供综合管理方案。
应用领域•雨污水泵站优化调度•排水管网溢流(CSO/SSO)分析•管网泥沙淤积评估•管网水质分析•城市降雨径流过程分析•城市内涝分析与风险评估•低影响开发(LID)的模拟•海绵城市的规划2)MIKEFLOODMIKEFLOOD是迄今为止最完整的洪水模拟工具。
洪水计算软件hsjs操作步骤

运用洪水计算程序hsjs的操作步骤:
将文件夹hsjs放在电脑盘的根目录,如“e”盘;接下来,按以下步骤操作。
点击电脑的“开始”菜单,然后点击“运行”,在“运行”的输入框里输入“cmd”;回车;
输入“盘径:”,如“e:”,回车;
输入“cd hsjs\ccdos”,回车;
输入“ccdos”,回车;
输入“cd..”,回车;
输入“basic”(回车)
按“f3”键
输入程序名(回车),如输入“suhm-1a”(综合单位线法计算程序),又或“tl-1a”(推理公式法计算程序),又或“th-3”(调洪演算计算程序)等
按“f2”
输入输入数据文件名称(回车),如“5825.dat”(此数据文件要事先做好)
输入输出数据文件名称(回车),如“5825.out”(此文件无需事先做好)按提示输入(输入一些计算参数,如Kp)
程序运行完毕,算出结果后,输入“system”,回车;输入“exit”;进入文件夹hsjs,查看输出文件5825.out。
操作步骤介绍完毕。
另附数据文件5825.dat,一同与此步骤文件发送予您。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Procedia Engineering 29 (2012) 3267 – 32751877-7058 © 2011 Published by Elsevier Ltd.doi:10.1016/j.proeng.2012.01.478Available online at vailable online at 2012 International Workshop on Information and Electronics Engineering (IWIEE)Computer Simulation of Flood Scheduling in Large Scale Flood Control SystemsWan Xin-yu, Zhong Ping-an *, Chen Xuan, Dai Li, Jia Ben-youCollege of Hydrology and Water Resources, Hohai University, Nanjing 210098, ChinaAbstractIt is difficult to simulate the large scale flood control systems because they consist of several different kinds of floodcontrol projects, such as levee, reservoirs and detention basins. By applying the approach of system decomposition andcoupling, this paper decomposes the complicated flood control system into single constructional element for waterconservancy project, conducts simulation respectively, and then couplings single constructional elements by takingadvantages of key technologies such as node encoding, topology matrix and order code of calculation etc., and finallyconducts simulation scheduling on upstream flood control system of Zhengyanghuan, Huaihe through employingcompensation scheduling model. According to simulation results, the complicated simulation scheduling of floodcontrol system can provide decision supports as well as effects to flood control decision makers in a rapid manner.© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Harbin Universityof Science and TechnologyKeywords: Flood control and scheduling; Simulation system; Node encoding; Topology matrix; Decision support1 IntroductionI t has long been a hot topic for flood scheduling research to simulate river basin flood control andscheduling process with computer technology. As early as in the 1950s, U.S. Army Corps of Engineers hadbegun to conduct joint scheduling simulation on 6 reservoirs on Mississippi River tributaries by takingadvantages of computers, and then established gradually reservoir system simulation models representedby HEC model [1]. Simulation scheduling research was also carried out widely in China in the 1980s [2].* Zhong Ping-An. Tel.:+86-25-83787493.E-mail address: wanxinyu@.3268Wan Xin-yu et al. / Procedia Engineering 29 (2012) 3267 – 3275Besides system analyzing model, simulation model has become a significant approach to study floodcontrol and scheduling.Flood damage occurs frequently in Huaihe river basin, which has caused huge economic losses,particular, at Zhengyangguan segment. It marks a crucial measure for reducing flood damage to constructriver basin flood control engineering system. Currently, 20 large reservoirs, 6 flood storage and retentionareas and 11 flood control sections have been constructed in the upper stream of Zhengyangguan, Huaiheriver basin, effectively restraining occurrence of flood damage there. However, the large scale as well ascomplicated structure of flood control engineering system of Huaihe has brought about certain difficultiesto flood control decision making. Flood control and scheduling simulation system is necessarily to be builtso as to take flood prevention effect of river basin flood control engineering system into full play and helpdecision makers to come up with decisions in a rapid manner.At present, however, river basin flood prevention and scheduling simulation research is mainlycharacterized by single type of flood control engineering simulations, for instance, flood control andscheduling of reservoirs[3] and flood storage and retention areas[4]. Few joint scheduling simulationresearches on complicated reservoirs and flood storage and retention areas have been witnessed. To this end,the article decomposes complicated flood control system into single constructional elements such asreservoirs, flood storage and retention areas and river ways etc., conducts simulation, and then performscoupling on them in accordance with topological structure of river network and hydraulic connection,forms the overall simulation model, and undertakes simulation calculation of flood control and schedulingin upstream of Zhengyangguan, Huaihe by employing compensation scheduling model.2 Simulation methodIncluding 20 large reservoirs, 6 flood storage and retention areas and 11 flood control sections, upstreamof Zhengyangguan, Huaihe is confronted with complicated flood control projects as well as difficulties insimulation calculation. In consideration of this, the paper conducts flood prevention system simulation byputting the method of decomposition-coupling into application. A sketch of this complex flood controlsystems is shown in Fig.1.2.1 System decompositionDivide Huaihe flood control project into three types: reservoir, water way and flood storage andretention areas, and then conduct simulation respectively with the following specific details:2.1.1 ReservoirGiven the flood inflow process, construct calculation model for reservoir flood routing[5] according tothe principle of water balance with the following equation:(1)(2)Where, and are reservoir inflows at the beginning and end of the period respectively with the unit of; and are reservoir outflows at the beginning and end of the period respectively with the unit of; and are reservoir storage at the beginning and end of the period respectively with the unit of ;is the length of the period with the unit of ; is the reservoir outflow with the unit of ; is thereservoir storage with the unit of ; represents curve function of reservoir discharge capacity.3269 Wan Xin-yu et al. / Procedia Engineering 29 (2012) 3267 – 3275Fig.1 Sketch of the flood control systems2.1.2 ReachGiven flood process of upper cross-section in the reach, apply various channel flood routing models inaccordance with river way parameter models:(1)Muskingum routing method[6]Muskingum method ranks the most widely used calculation approach for river flow. See the followingfor its specific equations:(3)(4)(5)Among the above equations, and are upstream cross-section discharge in reach at the beginningand end of the period respectively with the unit of ; and are downstream cross-sectiondischarge in reach at the beginning and end of the period respectively with the unit of ;, andare three Muskingum parameters; , which can be deemed as a constant, is the slope of storage-flowrelation curve with the unit of ; is the coefficient for discharge proportion; is the length of the periodwith the unit of .As for a reach, , and can be figured out after confirming the parameters of and as well asselecting , the period for calculation. , downstream flow process can be simulated according to ,upstream flow process and initial downstream flow.3270Wan Xin-yu et al. / Procedia Engineering 29 (2012) 3267 – 3275(2)Flow concentration curve methodRiver flow concentration curve, which can be applied to conduct flood calculation provided that onlyriver channel convergence materials are available, demonstrates the response process of specific rate offlow in the upstream cross-section on the downstream cross-section. Assume that the response process ofspecific rate of flow in the upstream cross-section on the downstream cross-section is, simulation equation for flow process in the downstream cross-section shall be:(6) Where, is flow of the downstream cross-section at the moment of ; is flow of upstreamcross-section at the moment of .(3)Lag-and-route methodAs for reaches with short lengths, flood process and traveling time of upstream cross-section can bedirectly developed to the downstream cross-section, which can be shortened as flat extrapolation with thefollowing calculation equation:(7)Where, is the flow of downstream cross-section at the moment of ; is traveling time of flood in thereach; is the flow of upstream cross-section at the moment of .2.1.3 Flood detention basinsNecessity exists to apply flood diversion in flood detention basins when reach flood discharge exceedsits safety discharge. This paper conducts simple simulation on flood diversion in flood detention basinswith the method of “Leveling head” as well as the following simulation equation:(8) Where, is the flood diversion discharge in flood detention basins at the moment of with the unit of; is the cross-section discharge in the reach at the moment of before flood diversion with theunit of ; is the safety discharge of the reach with the unit of .In addition, flood diversion discharge should satisfy the following constraint conditions:(1)Flow constraint of gate designing: When conduct flood diversion, the maximum discharge shouldnot exceed , the flow constraint of gate designing in flood detention basins, namely:(9)(2)Storage capacity constraint in flood detention basins: Water storage divided into flood detentionbasins should not exceed , the total capacity of reservoir in flood detention basins. That is to say:(10)2.2 System couplingRealize the overall simulation calculation of upstream multi-reservoirs, reach and flood detention basinsin Zhengyangguan on the basis of system decomposition with the following requirements: 1. Reservoir,flood detention basins and control cross-section can be accepted or rejected arbitrarily; 2. Reservoirscheduling mode, flood diversion calculation approach in flood detention basins and channel flood routingmodels can be combined arbitrarily; 3. Both global and local simulation can be conducted.Taking upstream reservoirs, flood control cross-section and flood detention basins at Zhengyangguan,Huaihe as nodes, establish topological relations between them, formulate node calculation order codes, andconduct simulation calculation from upper reaches to the lower ones. Control inflow process of reservoirs3271Wan Xin-yu et al. / Procedia Engineering 29 (2012) 3267 – 3275above the cross-section, interval flow process of each cross-section, characteristic and controls parametersof reservoir, controls parameters of flood detention basins and reach cross-section etc. by entering startingand ending calculation order codes, and then figure out reservoir outflow hydrograph, flood diversion flow hydrograph in flood detention basins as well as flow hydrograph of control cross-section. See Fig. 2 forFig. 2 Overall framework of flood control and scheduling system in Huaihe river basin3272Wan Xin-yu et al. / Procedia Engineering 29 (2012) 3267 – 3275 Technical problems of three aspects should first and foremost be solved in order to construct flood control and scheduling simulation systems of river basin reservoirs that are suitable for practical conditions: 1. Demonstrate correctly hydraulic project elements such as reservoir, cross-section and flood detention basins etc., and select appropriate computation model according to the type of hydraulic project elements; 2. Indicate river network topological structure in a right manner, and establish hydraulic connection between hydraulic project elements; 3. Set up computation order for model in a right way.2.2.1 Node encoded modeI n order to uniquely identify hydraulic project elements within river basin, take hydraulic project elements such as reservoirs in the river basin, cross-sections and flood detention basins etc. as computation nodes, conduct unified encoding and confirm node type in accordance with element type so as to make it convenient for the program to identify node type in an automatic manner when calculating and invoke corresponding computation models.There are 20 reservoirs, 11 cross-sections and 6 flood detention basins, altogether 37 computation nodes in upstream Zhengyangguan, Huaihe. Apply 6 figures to perform unique encoding with the first two representing rivers the nodes are located in, two in the middle demonstrating order of the node in the river, and the last two indicating type of the node. 01 represents reservoir, 02 suggests cross-section, 03 demonstrates flood detention basin and 04 represents flood passage area.There are 1 main stream and 16 branches above Zhengyangguan, Huaihe, encoding them according to the principle of upper reaches to lower ones, branches first and main stream second as well as left bank first and right bank second, and then perform encoding on the nodes in accordance with numerical order of the river and element type.2.2.2 Topological relational matrixDespite that node encoding can uniquely identify space location and type of the nodes; it cannot demonstrate hydraulic connection between them. As a result, topological relational matrix that expresses hydraulic connection between nodes is introduced in the paper.A down triangle is applied by topological relational matrix, horizontal represents upper nodes, and vertical represents lower nodes. A null value represents that there is no hydraulic connection between nodes, while a positive integer represents existence of hydraulic connection. Figure represents computation method applied when evolving flood at the upper node to the lower one. 1 represents employing Muskingum, 2 represents putting the approach of convergence curve into application, 3 indicates applying flat extrapolation and 4 suggests Muskingum with many sets of parameters.Thanks to the topological relational matrix, when calculating to certain node, simulation system can seek upstream node that enjoys hydraulic connection with it, and then judge computation method applied when evolving from upstream node to this one, and invoke corresponding calculation parameters, in which way all 37 nodes can be combined organically. Moreover, nodes can be added or deleted arbitrarily without causing any influence to the overall structure of the system. See Table 2 for hydraulic connection between the nodes.2.2.3 Calculation sequence encodingAlthough they can confirm spatial location, type and hydraulic connection of the nodes, node code and topological relational matrix are not capable of reflecting their calculation sequences. Therefore, the paper formulates computation sequence code for each node so as to demonstrate the using sequence of each node in the process of flood evolution. In accordance with the principle of upper reaches to lower ones , and3273Wan Xin-yu et al. / Procedia Engineering 29 (2012) 3267 – 3275branches to main stream, the paper formulates computation sequence codes from 1 to 37 for each noderespectively.2.3 Scheduling modeGiven that 6 large reservoirs in the 20 on the upper reaches of Zhengyangguan, Huaihe enjoy staggerability on flood from the main stream, set scheduling mode of each reservoir when conducting simulationcalculation. Apply compensation scheduling model to 6 stagger reservoirs including Suyahu, Nanwan,Meishan, Nianyushan, Xianghongdian and Foziling etc., and practical scheduling mode to other reservoirs.Reservoir compensation scheduling employs the approach of compensation scheduling featuring takingturns of each reservoir[7].(1)Seqencing from the poor ones to the good ones in terms of reservoir regulating performance (Givepriority to the one with short traveling time when the regulating performance is the same);(2)First, conduct compensation scheduling on reservoir 1 (which enjoys the poorest regulatingperformance). Take the minimum value of maximum water flow in flood control cross-section asthe target, target function of compensation scheduling shall be:(11) Where, is the number of intervals in the scheduling period; is the response discharge of release ofreservoir 1 on flood control cross-section; is the interval runoff process; other variables go the samewith the foregoing.Take into account constraint conditions such as water balance, release ability and the highest water levelof the reservoir etc. in compensation scheduling.(3)Conduct compensation scheduling on reservoir . Take the minimum value of maximum waterflow in flood control cross-section as the target, target function of compensation scheduling shallbe:(12)Where, is response process of release of reservoir on flood control cross-section;is the sum of interval discharge and response discharge of aerial drainage of reservoir 1to reservoir on flood control cross-section; other variables and constraint conditions go the same withthe foregoing.(4)Continue to do the same operation until finishing compensation scheduling of the last reservoir (theone with the greatest regulating performance).3 Simulation resultsConduct flood control and scheduling simulation calculation on No. 19910611, 19960628 and 20050821floods on the upper reaches of Zhengyangguan, Huaihe according to the above approaches. The knownboundary conditions are inflow of each reservoir, interval hydrograph of each flood control cross-section.Take practical initial state of each flood (starting water level) as the initial computation condition of thereservoir, set the flood control high water level as the controlled water level. As long as the highest waterlevel in reservoir scheduling period does not exceed the controlled one, the reservoir then can allow for nowater discharge. Try to conduct flood stagger with the computation period lasting for 1 hour. Simulationscheduling result of cross-section flood at Zhengyangguan is just presented here. Table 1 is the3274 Wan Xin-yu et al. / Procedia Engineering 29 (2012) 3267 – 3275compensation scheduling controlled conditions for stagger, reservoir of Huaihe. Table 2 demonstrate the calculation results.Table 1 Compensation scheduling controlled condition setting for stagger, reservoirs Flood No.Controlled Conditions Suyahu Lake Nanwan Meishan Nianyushan Foziling Xianghongdian Starting water level (m )52.18 101.96 129.48 105.21 117.99 126.68 19910611Highest water level (m )53.17 103.01 135.75 107.16 125.59 134.17 Starting water level (m )53.34 102.12 122.41 104.77 113.51 117.27 19960628Highest water level (m )53.81 103.23 126.99 107.75 118.03 121.35 Starting water level (m )53.69 103.95 122.98 105.83 112.71 124.36 20050821 Highest water level (m )54.6 105.36 129.9 108.21 121.94 130.41Table 2 Flood prevent scheduling simulation result of upper reach at Zhengyangguan, HuaiheActual scheduling Compensation scheduling Blood No. Natural flood peak(m 3/s )Outflow flood peak(m 3/s )Peak clipping rate (%)Outflow flood peak (m 3/s )Peak clipping rate (%)19910611 12100 748038.2 7380 39.0 19960628 7854 671014.6 6290 19.9 20050821 93956680 28.9 6200 34.0 According to scheduling simulation, under the mode of compensation scheduling, peak flow of No. 19910611, 19960628 and 20050821 flood at Zhengyangguan, Huaihe is 7380 , 6290 and 6200respectively, declining 4720 , 1564 and 3195 compared with natural flood peakand 100 , 420 and 480 compared with actual flood peak respectively and significantlylowering water level of flood peak at Zhengyangguan. Peak clipping rate of flood prevention system on flood peak of Zhengyangguan is 39%, 19.9% and 34.0% respectively, which is 0.8%, 5.3% and 5.1% higher than actual peak clipping rate.Fig. 2 is the simulation effects of compensation scheduling on No. 20050821 flood at the cross-section of Zhengyangguan, Huaihe. The broken line is the natural hydrograph at Zhengyangguan section, and the real line is the calculation one after scheduling.Fig. 3 Compensation scheduling simulation results of No. 20050821 Flood at Zhengyangguan cross-section3275Wan Xin-yu et al. / Procedia Engineering 29 (2012) 3267 – 32754 ConclusionThe following conclusions are drawn out in the thesis through compensation research on flood prevention and scheduling of upper reach of Zhengyangguan, Huaihe:(1)I t can effectively reduce the complicity of simulation system to decompose complicated floodprevention system into single element of water conservancy project.(2)Take single water conservancy project as the computation node, conduct unified encoding,establish topological relational matrix between them according to hydraulic connection and set upcomputation sequence so as to enhance the flexibility and generality of system coupling.(3)Compensation scheduling mode can significantly improve flood prevention effect of flood controlsystem in upper reach of Zhengyangguan, Huaihe and reduce flood peak flow at Zhengyangguancross-section.I n general, it can provide decision makers of flood prevention with decision support in an effectivemanner to conduct simulation scheduling of river basin flood prevention system, construct flood schedulingprogram and form scheduling results rapidly through computer techniques.AcknowledgementThis research was supported by the National Basic Research Program of China (973 Program)(2010CB951102), the National Natural Science Foundation of China (51179044) and the Fundamental Research Funds for the Central Universities (2011B04914).Reference[1] Gross E J, Moglen G E. Estimating the hydrological influence of Maryland state dams using GIS and the HEC-1 modelF-5452-2010. JOURNAL OF HYDROLOGIC ENGINEERING, 2007, 12(6): 690~693.[2] ZHONG P A. Research and application of key technique for real-time joint operation of flood control system in river basin.Nanjing: Hohai University, 2006.[3] Choudhury P. Reservoir flood control operation model incorporating multiple uncontrolled water flows: BlackwellPublishing Ltd, 2010. 153~163.[4] Yun L, Yi-tian L, Guang-ming T, Jin-yun D, Zhao-hua S, Ji-sheng K. Optimization of Flood Control of Storage andDetention Basin. Journal of Yangtze River Scientific Research Institute, 2010, 27(7): 22~25.[5] Fenton J D. Reservoir routing. Hydrological Sciences Journal, 1992, 37(3): 233~246.[6] Fread D L, Hsu K S. Applicability of Two Simplified Flood Routing Methods: Level-Pool and Muskingum-Cunge.Hydraulic Engineering, 1993.[7] Ping-an Z, Xiao-yan X, Lin T. A compensive operating model for multi-reservoir based on the allocation of excess water.SHUILI XUEBAO, 2010, 41(12): 1446~1450.。