新课程基础训练题必修1第一章(中)函数及其表示综合训练B组及答案

合集下载

高一数学必修一第一章(中)函数及其表示练习题及答案

高一数学必修一第一章(中)函数及其表示练习题及答案

高一数学必修一第一章(中)函数及其表示练习题及答案高一数学(必修1)第一章:函数及其表示基础训练选择题1.判断下列各组中的两个函数是同一函数的为()A。

⑴、⑵B。

⑵、⑶C。

⑷D。

⑶、⑸2.函数y=f(x)的图象与直线x=1的公共点数目是()A。

1B。

0或1C。

2D。

1或23.已知集合A={1.2.3.k},B={4.7.a。

4.a^2+3a},且a∈N,x∈A,y∈B*,使B中元素y=3x+1和A中的元素x对应,则a,k的值分别为()A。

2,3B。

3,4C。

3,5D。

2,54.已知f(x)={x+2(x≤-1),x^2(-1<x<2),2x(x≥2)},若f(x)=3,则x的值是()A。

1B。

1或-3C。

1,或±3D。

35.为了得到函数y=f(-2x)的图象,可以把函数y=f(1-2x)的图象适当平移,这个平移是()A。

沿x轴向右平移1个单位B。

沿x轴向右平移1/2个单位C。

沿x轴向左平移1个单位D。

沿x轴向左平移1/2个单位6.设f(x)={x-2(x≥10),f[f(x+6)](x<10)},则f(5)的值为()A。

10B。

11C。

12D。

13填空题1.设函数f(x)={1/(x-1)(x≥1),2/x(xa,则实数a的取值范围是(0.1)。

2.函数y=(x-2)/(x^2-4)的定义域是R-{-2.2}。

3.求函数f(x)=3x/(x+1)的定义域为R-{-1}。

4.函数y=(x-1)/(x-x^2)的定义域是(-∞。

0)∪(1.+∞)。

5.函数f(x)=x+(1/x)的最小值是2.解答题1.求函数f(x)=3x/(x+1)的定义域为R-{-1}。

解:当x+1≠0时,即x≠-1时,f(x)有意义,所以f(x)的定义域为R-{-1}。

2.求函数y=(x^2+x+1)/(x+1)的值域。

解:y=(x^2+x+1)/(x+1)=x+1+1/(x+1),当x→±∞时,y→±∞,所以y的值域为R-{-1}。

(完整word版)新课标高一数学必修1第一章集合与函数概念单元测试题及答案,推荐文档

(完整word版)新课标高一数学必修1第一章集合与函数概念单元测试题及答案,推荐文档

1.集合{a,b }的子集有)A . 2个B . 3个C .4个D.5个2.设集合A x| 4 x 3 , Bx|x 2,贝U AI B( )A . ( 4,3)B .( 4,2]C .(,2]D .(,3)23.已知 f x 1 x 4x 5,则 f x 的表达式是( )A . x 26xB . x 2 8x 7C . x 22x 3D . x 26x4.下列对应关系:( )① A {1,4,9}, B { 3, 2, 1,1,2,3}, f : x x 的平方根② A R, B R, f : x x 的倒数③ A R, B R, f : x x 2 2④ A1,0,1 ,B 1,0,1 , f : A 中的数平方其中是A 到B 的映射的是A .①③B .②④C .③④ D. .②③5.下列四个函数:① y 3 x :② 1③y x 22x 10 :④y 2x 1其中值域为R 的函数有 ( )A . 1个B . 2个C . 3个D . 4个、选择题x 21 A . -210x (x 0)1-(x 0) x2x (X (x 0),使函数值为 0)5的X 的值是( C . 2 或-2 D . 2或-2或 7•下列函数中,定义域为 [0,g) 的函数是 B . y 2x 2 3x D . (x 1)2 8.若 x, y R ,且 f (x y) f(x) f(y),则函数 f (X) A . f (0) 0且f (x)为奇函数 B . f (0) 0且f (x)为偶函数 C . f(x)为增函数且为奇函数 D . f(x)为增函数且为偶函数A •是奇函数不是偶函数 C .既是奇函数又是偶函数 二、填空题B •是偶函数不是奇函数 D •既不是奇函数又不是偶函数11•若 A 0,1,2,3 ,B3a,a A ,则 AI B12 .已知集合 M={( x , y)|x + y=2} , N={( x , y)|x — y=4},那么集合 M A N = _____________ .x 1, x 1,ttr13.函数 f X则 f f 4 ______ .x 3, x 1,14 .某班50名学生参加跳远、铅球两项测试,成绩及格人数分别为 40人和31人,两项测试均不及格的人数是4人,两项测试都及格的有 ____________ 人.15 .已知函数 f(x)满足 f(xy)=f(x)+f(y),且 f(2)=p,f(3)=q ,那么 f(36)= _________________ . 三、解答题16 .已知集合 A= x1 x 7 , B={x|2<x<10} , C={x|x< a},全集为实数集 R .(I)求 A U B , (C R A) A B ;(H)如果A A C M©,求a 的取值范围.17 .集合 A ={ x | x 2— ax + a 2— 19= 0}, B ={ x | x 2— 5x + 6= 0},C ={ x | x 2 + 2x — 8 = 0}.(I) 若 A =B ,求 a 的值; (H)若=A A B , A A C =,求 a 的值.(A) (B)(C )(D)10 .若 x R, n N ,规定: n Hxx(x 1)(x 2) (xn 1),例如:()4H4( 4) ( 3) ( 2)1)524,则 f(x) x H x2的奇偶性为18 •已知方程x 2 px q 0的两个不相等实根为,•集合A { , },19 .已知函数f (x) 2x 2 1 .(I)用定义证明f (x)是偶函数;(n)用定义证明f (x)在(,0]上是减函数;(川)作出函数f(x)的图像,并写出函数 f(x)当x [ 1,2]时的最大值与最小值.y220 •设函数f(x) ax 2 bx 1 ( a 0、b R ),若f( 1) 0 ,且对任意实数x ( x R )不等式f(x) 0恒成立.(I)求实数a 、b 的值;B {2,4, 5,6},C {1 , 2, 3, 4}, A A C = A , A A B = ,求p,q 的值?(n )当x [—2, 2]时,g(x) f(x) kx是单调函数,求实数k的取值范围.2010级高一数学必修一单元测试题(一)参考答案一、选择题CBACB AAACB二、填空题11. 0,3 12. {(3,- 1)} 13. 0 14. 25 15. 2( p q)三、解答题16 .解:(I) A U B={x|1 w x<10}(C R A) n B={x|x<1 或x>7} n{x|2<x<10}={x|7 w x<10}(n)当a>1时满足A n C工017 .解:由已知,得B={ 2, 3}, C={ 2,- 4}(I ) T A= B于是2, 3是一元二次方程x2- ax+ a2- 19 = 0的两个根, 由韦达定理知:2 3a2解之得a = 5.2 3 a219(n )由A n B三A n B,又A n C =,得3€ A, 2 A, - 4 A,由3€ A,得32—3a + a2- 19= 0,解得a= 5 或a= —2当a=5 时,A={ x | x2-5x+ 6= 0} = { 2, 3},与2 A 矛盾;当a= —2 时,A ={ x | x2+ 2x- 15= 0} = { 3, —5},符合题意•a = —2.18 .解:由A n C=A 知A C又A { , },则显然即属于C又不属于C , C .而A n B =,故 B ,B的元素只有1和3.B不仿设=1,=3.对于方程x2 px q 0的两根,应用韦达定理可得P 4,q 3.19. (I)证明:函数 f (x)的定义域为R ,对于任意的x R,都有f( x) 2( X)2 1 2x2 1 f (x),• f (x)是偶函数.(n)证明:在区间(,0]上任取x1, x2,且x1 x2,则有f(X1)f(X2)(2xj 1) (2X221) 2(xj X22) 2(X1 X2) (X1 X2), T X1,X2 ( ,0], X1 X2,二X1 X2 X1 X2 0,即(X1 X2) (X1 X2) 0••• f (X1) f (X2) 0 ,即f (x)在(,0]上是减函数.(川)解:最大值为f(2) 7 ,最小值为f(0) 1 .疯狂国际教育(内部)20.解:(I ) •/ f ( 1) 0••• aa 0•••任意实数x 均有f(x) 0成立• 2b 2 4a 0解得:a 1,b 2(n)由(1)知 f (x) x 2 2x 12•- g (x) f (x) kx x (2 k)x 1 的对称轴为 x•••当x [ — 2, 2]时,g(x)是单调函数• k 2 2 或 k 2 22 2•实数k 的取值范围是(,2][6,). 21 .解:(I )令 m n1 得 f(1)f(1) f(1)所以f (1) 01f(1) f(22)f(2)f(2)1 1 f(-) 01所以仁丄)1(n )证明: 任取0X 1 x 2,则x 2 1X 1因为当x1时, f(x) 0,所以f&) 0X 1所以f (x )在0,上是减函数.所以 f(x 2) f(x 1 生)X 1f (xj X1f (xj。

人教版高一数学必修一-第一章练习测试题与参考答案

人教版高一数学必修一-第一章练习测试题与参考答案

集合与函数基础测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.函数y ==x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .选递增再递减.2.方程组20{=+=-y x y x 的解构成的集合是 ()A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是()14.函数y =1+x 的单调区间为___________. 15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a . 16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分)17.已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18.设f (x )是定义在R 上的增函数,f (xy )=f (x )+f (y ),f (3)=1,求解不等式f (x )+f (x -2)>1.19.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.20.已知二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,写出函数的解析表达式,并求出函数)(x f 的单调递增区间.必修1第一章集合测试集合测试参考答案:一、1~5CABCB6~10ABACC11~12cB二、13[0,43],(-∞,-43) 14(-∞,-1),(-1,+∞)15-11603|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=⋂x x N C M U ;三、17所以f x >3或x 19.. f (x 当x < ∴f (20. ∴1=m .。

高一数学必修一第一章(中)函数及其表示综合练习题及答案

高一数学必修一第一章(中)函数及其表示综合练习题及答案

高一数学(必修1)第一章(中)函数及其表示[综合训练]一、选择题1.设函数()23,(2)()f x x g x f x =++=,则()g x 的表达式是( )A .21x +B .21x -C .23x -D .27x +2.函数)23(,32)(-≠+=x x cx x f 满足,)]([x x f f =则常数c 等于( ) A .3 B .3- C .33-或 D .35-或3.已知)0(1)]([,21)(22≠-=-=x xx x g f x x g ,那么)21(f 等于( ) A .15 B .1C .3D .304.已知函数y f x =+()1定义域是[]-23,,则yf x =-()21的定义域是( ) A .[]052,B. []-14,C. []-55,D. []-37, 5.函数2y =的值域是( )A .[2,2]-B .[1,2]C .[0,2] D.[6.已知2211()11x x f x x --=++,则()f x 的解析式为( ) A .21x x + B .212x x +- C .212x x + D .21x x +- 二、填空题1.若函数234(0)()(0)0(0)x x f x x x π⎧->⎪==⎨⎪<⎩,则((0))f f = .2.若函数x x x f 2)12(2-=+,则)3(f = .3.函数()f x =的值域是 。

4.已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式(2)(2)5x x f x ++⋅+≤的解集是 。

5.设函数21y ax a =++,当11x -≤≤时,y 的值有正有负,则实数a 的范围 。

三、解答题1.设,αβ是方程24420,()x mx m x R -++=∈的两实根,当m 为何值时, 22αβ+有最小值?求出这个最小值.2.求下列函数的定义域(1)y = (2)11122--+-=x x x y (3)x x y ---=111113.求下列函数的值域(1)x x y -+=43 (2)34252+-=x x y (3)x x y --=214.作出函数(]6,3,762∈+-=x x x y 的图象。

新课程高中数学测试题组(必修1)全套含答案(1)

新课程高中数学测试题组(必修1)全套含答案(1)

新课程高中数学测试题组(必修1)全套含答案(1)特别说明:《新课程高中数学训练题组》是由李传牛老师根据最新课[综合训练B组],[提高训练C组]目录:数学1(必修)数学1(必修)第一章:(上)集合[训练A、B、C]数学1(必修)第一章:(中)函数及其表[训练A、B、C]数学1(必修)第一章:(下)函数的基本性质[训练A、B、C]数学1(必修)第二章:基本初等函数(I)[基础训练A组]数学1(必修)第二章:基本初等函数(I)[综合训练B 组]数学1(必修)第二章:基本初等函数(I)[提高训练C组]数学1(必修)第三章:函数的应用[基础训练A组]数学1(必修)第三章:函数的应用[综合训练B组]数学1(必修)第三章:函数的应用[提高训练C 组]函数是描述客观世界变化规律的重要数学模型。

高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,函数的思想方法将贯穿高中数学课程的而不愠,不亦君子乎?来,不亦乐乎?人不知亦说乎?有朋自远方子曰:学而时习之,不始终。

新(数学1必修)第一章(上)集合[基础训练A组]一、选择题1.下列各项中,不可以组成集合的是()A.所有的正数B.等于2的数C.接近于0的数D.不等于0的偶数2.下列四个集合中,是空集的是()A.{某|某33}B.{(某,y)|y2某2,某,yR}C.{某|某20}D.{某|某2某10,某R}3.下列表示图形中的阴影部分的是()ABA.(AC)(BC)B.(AB)(AC)C.(AB)(BC)CD.(AB)C4.下面有四个命题:(1)集合N中最小的数是1;(2)若a不属于N,则a属于N;(3)若aN,bN,则ab的最小值为2;(4)某12某的解可表示为1,1;2其中正确命题的个数为()A.0个B.1个C.2个D.3个5.若集合Ma,b,c中的元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.若全集U0,1,2,3且CUA2,则集合A的真子集共有()A.3个B.5个C.7个D.8个二、填空题1.用符号“”或“”填空(1)0______N,(2)5______N,16______N 1______Q,_______Q,e______CRQ(e是个无理数)2(3)2323________某|某a6b,aQ,bQ2.若集合A某|某6,某N,B{某|某是非质数},CAB,则C的非空子集的个数为3.若集合A某|3某7,B某|2某10,则AB_____________.4.设集合A{某3某2},B{某2k1某2k1},且AB,则实数k的取值范围是5.已知Ayy某22某1,Byy2某1,则AB_________。

数学必修一浙江省高中新课程作业本标准答案

数学必修一浙江省高中新课程作业本标准答案

数学必修一浙江省高中新课程作业本答案答案与提示仅供参考第一章集合与函数概念.集合集合地含义与表示.{}.{∈}.{,-}.{(),(),(),(),()}..列举法表示为{(),()},描述法地表示方法不唯一,如可表示为(),..集合间地基本关系. ,{},{},{}. .①③⑤.≥{ ,{},{},{}}∈..集合地基本运算(一).{≤≤}.{}.∪{<,或≥}∪{}..{,或<<}.提示:∵∪,∴.而{,},对进行讨论:①当时,无实数解,此时Δ<,∴<<.②当≠时,{}或{}或{};当{}时,;当{}或{}时,Δ,±,但当±时,方程地解为±,不合题意.b5E2R。

集合地基本运算(二).{≥,或≤}或∈..{}.{>,或≤}{}{}.地可能情形有{}{}{}{}{}{}..提示:∵∩綂{},∴∈,∴,∴{}{},∵∩綂{},∴-綂,∴-∈,将代入,得,或.①当时{}{},∴綂,而∈綂,满足条件∩綂{}.②当时{}{},p1Ean。

∴綂,与条件∩綂{}矛盾..函数及其表示函数地概念(一)∪∞.[∞)..().(){≠,且≠}...()略.().函数地概念(二).{∈≠,且≠}.[,∞)..()≠.()[∞)..(].∩∪[∞).[).函数地表示法(一).略...略.函数地表示法(二).略.()=(≤<),(≤≤).().提示:设(),由(),得,又()(),即()()(),展开得(),所以,,解得,.(<≤),(<≤),(<≤),(<≤).略..函数地基本性质单调性与最大(小)值(一).[),[),[]∞<..略.单调递减区间为(∞),单调递增区间为[∞).略≥..设-<<<,则()-()=-=()()()(),∵-<-<+<->,∴()()()()>,∴函数=()在(-,)上为减函数.DXDiT。

单调性与最大(小)值(二).()()(<<).(]..日均利润最大,则总利润就最大.设定价为元,日均利润为元.要获利每桶定价必须在元以上,即>.且日均销售量应为()·>,即<,总利润()[()·](<<),配方得(),所以当∈()时,取得最大值元,即定价为元时,日均利润最大.RTCrp。

最新人教版高一数学必修一-第一章练习题与答案

最新人教版高一数学必修一-第一章练习题与答案

最新人教版高一数学必修一-第一章练习题与答案集合与函数基础测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.函数y ==x 2-6x +10在区间(2,4)上是()A .递减函数B .递增函数C .先递减再递增D .选递增再递减.2.方程组20{=+=-y x y x 的解构成的集合是()A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是()A. aB. {a ,c }C. {a ,e }D.{a ,b ,c ,d }4.下列图形中,表示N M ?的是()5.下列表述正确的是()A.}0{=?B. }0{??C. }0{??D. }0{∈?6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为 ( )A.A∩BB.A ?BC.A ∪BD.A ?B7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14}又,,B b A a ∈∈则有()A.(a+b )∈ AB. (a+b) ∈BC.(a+b) ∈ CD. (a+b) ∈ A 、B 、C 任一个8.函数f (x )=-x 2+2(a -1)x +2在(-∞,4)上是增函数,则a 的范围是()A .a ≥5B .a ≥3C .a ≤3D .a ≤-59.满足条件{1,2,3}?≠M ?≠{1,2,3,4,5,6}的集合M 的个数是()A. 8B. 7C. 6D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是()A. A BB. B AC. B C A C U UD. B C A C U U11.下列函数中为偶函数的是()A .x y =B .x y =C .2x y =D .13+=x y12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是()A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.函数f (x )=2×2-3|x |的单调减区间是___________.14.函数y =11+x 的单调区间为___________.15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合M N A M N B N M C M N D=N ,=?)(N C M U ,=?N M .三、解答题(共4小题,共44分)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ?,求实数a 的取值集合.18. 设f (x )是定义在R 上的增函数,f (xy )=f (x )+f (y ),f (3)=1,求解不等式f (x )+f (x -2)>1.19. 已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.20. 已知二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,写出函数的解析表达式,并求出函数)(x f 的单调递增区间.必修1 第一章集合测试集合测试参考答案:一、1~5 CABCB 6~10 ABACC 11~12 cB二、13 [0,43],(-∞,-43) 14 (-∞,-1),(-1,+∞) 15 -1 16 03|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=?x x N C M U ;13|{<≤-=?x x N M 或}32≤≤x .三、17 .{0.-1,1}; 18. 解:由条件可得f (x )+f (x -2)=f [x (x -2)],1=f (3).所以f [x (x -2)]>f (3),又f (x )是定义在R 上的增函数,所以有x (x -2)>3,可解得x >3或x <-1.答案:x >3或x <-1.19. .解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=-1.当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1,∴f (x )=x 3-2x 2+1.20. 二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,∴1=m ,则1)(2+-=x x f ,函数)(x f 的单调递增区间为(]0,∞-..。

高中数学必修1第一章基础训练题(有详解)

高中数学必修1第一章基础训练题(有详解)

高中数学必修1第一章基础训练题(有详解) 一、单选题 1.已知定义在R 上的奇函数()f x 和偶函数()g x ,则( ) A .()()f x g x +是奇函数 B .()()f x g x ⋅是奇函数 C .()()f x g x ⋅是偶函数 D .()()f x g x ⋅是偶函数 2.已知奇函数()f x 定义在(1,1)-上,且对任意1212,(1,1)()x x x x ∈-≠都有2121()()0f x f x x x -<-成立,若(21)(32)0f x f x -+->成立,则x 的取值范围为( )A .(0,1)B .1(,1)3C .13(,)35D .3(0,5 3.已知函数()f x 是定义在R 上的偶函数,且在[)0,∞+上是增函数,若对任意[)x 1,∞∈+,都有()()f x a f 2x 1+≤-恒成立,则实数a 的取值范围是( ) A .[]2,0- B .(],8∞-- C .[)2,∞+ D .(],0∞- 4.已知函数是定义在上的奇函数,对于任意的,且,有.若,则的解集为( ) A . B . C . D . 5.设奇函数在上为单调递减函数,且,则不等式的解集为 ( ) A . B . C . D . 6.定义在的偶函数,当时,,则的解集为( ) A . B . C . D . 7.设奇函数在上是减函数,且,若不等式对所有的都成立,则的取值范围是( ) A . B . C . D .8.函数,则下列结论错误的是( ) A .是偶函数 B .的值域是 C .方程的解只有 D .方程的解只有 二、填空题 9.给定映射22f a b a b a b →+-:(,)(,),则在映射f 下,31(,)的原象是______.10.若函数f (x )同时满足: ①对于定义域上的任意x 恒有f (x )+f (﹣x )=0,②对于定义域上的任意x 1,x 2,当x 1≠x 2时,恒有0,则称函数f (x )为“理想函数”.给出下列四个函数中①f (x ); ②f (x ); ③f (x );④f (x ),能被称为“理想函数”的有_______________(填相应的序号).11.给出下列五个命题:①函数f (x )=22a x ﹣1﹣1的图象过定点(12,﹣1);②已知函数f (x )是定义在R 上的奇函数,当x≥0时,f (x )=x (x+1),若f (a )=﹣2则实数a =﹣1或2.③若log a 12>1,则a 的取值范围是(12,1);④若对于任意x ∈R 都f (x )=f (4﹣x )成立,则f (x )图象关于直线x =2对称; ⑤对于函数f (x )=lnx ,其定义域内任意12x x ≠都满足f (122x x +)()()122f x f x +≥其中所有正确命题的序号是_____.12.下列结论中:①定义在R 上的函数f (x )在区间(-∞,0]上是增函数,在区间[0,+∞)上也是增函数,则函数f (x )在R 上是增函数;②若f (2)=f (-2),则函数f (x )不是奇函数;③函数y=x -0.5是(0,1)上的减函数;④对应法则和值域相同的函数的定义域也相同;⑤若x 0是二次函数y=f (x )的零点,且m<x 0<n ,那么f (m )f (n )<0一定成立.写出上述所有正确结论的序号:_____. 13.已知函数,若函数过点,那么函数一定经过点____________ 14.已知是R 上的增函数,则的取值范围是__________; 15.函数在区间上的最小值为___________.三、解答题 16.已知函数. (Ⅰ)用定义证明是偶函数; (Ⅱ)用定义证明在上是减函数; (Ⅲ)作出函数的图像,并写出函数当时的最大值与最小值. 17.设函数y =f (x )的定义域为R ,并且满足f (x +y )=f (x )+f (y ),f ()=1,当x >0时,f (x )>0. (1)求f (0)的值; (2)判断函数的奇偶性; (3)如果f (x )+f (2+x )<2,求x 的取值范围. 18.已知全集为R ,集合, . (1)求, ; (2)若,且,求a 的取值范围. 19.已知f (x )为一次函数,g (x )为二次函数,且f[g (x )]=g[f (x )]. (1)求f (x )的解析式; (2)若y=g (x )与x 轴及y=f (x )都相切,且g (0)= ,求g (x )的解析式. 20.已知函数. (1)求; (2)求值域.参考答案1.D【解析】【分析】逐个选项去判断是否是奇函数或者偶函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(数学1必修)第一章(中) 函数及其表示[综合训练B 组]一、选择题1. 设函数()23,(2)()f x x g x f x =++=,则()g x 的表达式是( )A . 21x +B . 21x -C . 23x -D . 27x + 2. 函数)23(,32)(-≠+=x x cx x f 满足,)]([x x f f =则常数c 等于( )A . 3B . 3-C . 33-或D . 35-或 3. 已知)0(1)]([,21)(22≠-=-=x xx x g f x x g ,那么)21(f 等于( )A . 15B . 1C . 34. ( )A .B .C .D .5. )A . [2,2]-B . [1,2]C . [0,2]D . []6. 已知2211()11x x f xx--=++,则()f x 的解析式为( )A . 21x x + B . 212xx +- C .212xx + D . 21xx +-二、填空题1. 若函数234(0)()(0)0(0)x x f x x x π⎧->⎪==⎨⎪<⎩,则((0))f f = .2. 若函数x x x f 2)12(2-=+,则)3(f = . 3.函数()f x =的值域是 .4. 已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式(2)(2)5x x f x ++⋅+≤的解集是 .5. 设函数21y ax a =++,当11x -≤≤时,y 的值有正有负,则实数a 的范围 . 三、解答题1. 设,αβ是方程24420,()x m x m x R -++=∈的两实根,当m 为何值时,22αβ+有最小值?求出这个最小值.2. 求下列函数的定义域 (1)y =(2)11122--+-=x xx y(3)xx y ---=111113. 求下列函数的值域 (1)xx y -+=43 (2)34252+-=x x y (3)x x y --=214. 作出函数(]6,3,762∈+-=x x x y 的图象.(数学1必修)第一章(中) [综合训练B 组]参考答案一、选择题1. B ∵(2)232(2)1,g x x x +=+=+-∴()21g x x =-;2. B()3,(),32()3223cf x x cx x f x c f x c xx ====-+-+得3. A 令[]2211111(),12,,()()152242x g x x x f f g x x-=-=====4. A 523,114,1214,02x x x x -≤≤-≤+≤-≤-≤≤≤;5. C224(2)44,02,20x x x -+=--+≤≤≤-≤≤022,02y ≤-≤≤≤;6. C 令22211()1121,,()11111()1t x t t t t x f t t xttt----+====-+++++则.二、填空题1. 234π- (0)f π=;2. 1- 令2213,1,(3)(21)21x x f f x x x +===+=-=-;3.22223(1)2x x x -+=-+≥≥10()22f x<≤<≤4.3(,]2-∞当320,2,(2)1,25,2,2x x f x x x x+≥≥-+=++≤-≤≤即则当20,2,(2)1,25,2 x x f x x x x+<<-+=---≤<-即则恒成立,即∴32x<;5.1(1,)3--(),(1)31,(1)1,(1)(1)(31)(1)0 y f x f a f a f f a a==+-=+⋅-=++<令则得113a-<<-三、解答题1.解:21616(2)0,21,m m m m∆=-+≥≥≤-或222222m in1()21211,()2m mmαβαβαβαβ+=+-=--=-+=当时2.解:(1)∵8083,30xxx+≥⎧-≤≤⎨-≥⎩得∴定义域为[]8,3-(2)∵222101011,110xx x x xx⎧-≥⎪-≥=≠=-⎨⎪-≠⎩得且即∴定义域为{}1-(3)∵00111021101011x x xxx xx xx x⎧⎪⎧⎪⎪-≠⎪<⎪⎪⎪⎪-≠≠-⎨⎨-⎪⎪⎪⎪≠-≠⎪⎪-⎩⎪-⎪-⎩得∴定义域为11,,022⎛⎫⎛⎫-∞--⎪ ⎪⎝⎭⎝⎭3.解:(1)∵343,43,,141x yy y xy x x yx y+-=-=+=≠--+得,∴值域为{}|1y y≠-(2)∵222432(1)11,x x x -+=-+≥ ∴2101,05243y x x <≤<≤-+∴值域为(]0,5 (3)1120,,2x x y x -≥≤且是的减函数,当m in 11,22x y ==-时,∴值域为1[,)2-+∞4. 解:(五点法:顶点,与x 轴的交点,与y 轴的交点以及该点关于对称轴对称的点)(数学1必修)第一章(中) [提高训练C 组]一、选择题1. B [),1,,S R T T S ==-+∞⊆2. D 设2x <-,则20x -->,而图象关于1x =-对称,得1()(2)2f x f x x =--=--,所以1()2f x x =-+.3. D 1,01,0x x y x x +>⎧=⎨-<⎩4. C 作出图象 m 的移动必须使图象到达最低点5. A 作出图象 图象分三种:直线型,例如一次函数的图象:向上弯曲型,例如二次函数2()f x x =的图象;向下弯曲型,例如 二次函数2()f x x =-的图象; 6. C 作出图象 也可以分段求出部分值域,再合并,即求并集二、填空题1. {}2- 当{}(]2()4,,0a f x ==-≠-∞时,其值域为-4当2202()0,,24(2)16(2)0a a f x a a a -<⎧≠≤=-⎨∆=-+-=⎩时,则2. []4,9 021,3,49x ≤-≤≤≤≤≤得2即3.12...na a a n+++ 22221212()2(...)(...)n nf x nx a a a x a a a =-+++++++ 当12...na a a x n+++=时,()f x 取得最小值4. 21y x x =-+ 设3(1)(2)y a x x -=+-把13(,)24A 代入得1a =5. 3- 由100>得2()110,0,3f x x x x =+=<=-且得三、解答题1.,(0)t t =≥,则2221111,2222t t x y t t t --==+=-++21(1)12y t =--+,当1t =时,(]max 1,,1y y =∈-∞所以 2. 解:222(1)223,(2)(2)30,(*)y x x x x y x y x y -+=-+---+-= 显然2y ≠,而(*)方程必有实数解,则 2(2)4(2)(3)0y y y ∆=----≥,∴10(2,]3y ∈3. 解:22()()4()31024,f ax b ax b ax b x x +=++++=++ 2222(24)431024,a x ab a xb b x x +++++=++ ∴22124104324a ab a b b ⎧=⎪+=⎨⎪++=⎩得13a b =⎧⎨=⎩,或17a b =-⎧⎨=-⎩∴52a b -=.4. 解:显然50a -≠,即5a ≠,则50364(5)(5)0a a a ->⎧⎨∆=--+<⎩得25160a a <⎧⎨-<⎩,∴44a -<<.。

相关文档
最新文档