上海中考数学复习4因式分解
2022-2023年数学中考第一轮复习-专题四 因式分解

2.(2022秋•高昌区校级期中)下列属于因式分解的是
A. B.
C. D.
【分析】根据因式分解,等式的右边不是几个整式的积的形式,不属于因式分解,故本选项不符合题意;
. ,从左至右的变形属于因式分解,故本选项符合题意;
. ,故本选项不符合题意;
. ,从左至右的变形属于整式乘法,不属于因式分解,故本选项不符合题意.
故选: .
2.(2022春•细河区期末)下列分解因式正确的是
A. B.
C. D.
【分析】各式分解得到结果,即可作出判断.
【解答】解: 、原式不能分解,不符合题意;
、原式 ,符合题意;
、原式 ,不符合题意;
、原式 ,不符合题意.
故选: .
3.(2022秋•绿园区校级期中)分解因式: .
【分析】直接提取公因式3,再利用平方差公式分解因式得出答案.
选项不是因式分解,故不符合题意;
故选: .
2.(2021•兴安盟)下列等式从左到右变形,属于因式分解的是
A. B.
C. D.
【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.
【解答】解: . ,原变形是整式乘法,不是因式分解,故此选项不符合题意;
故选: .
3.(2022秋•仁寿县校级月考)下列从左边到右边的变形,属于因式分解的是
A. B.
C. D.
【分析】根据因式分解的意义逐个判断即可.
【解答】解: . ,从等式的左边到右边的变形属于整式乘法,不属于因式分解,故本选项不符合题意;
. ,没有把把一个多项式化成几个整式的积的形式,不属于因式分解,故本选项不符合题意;
中考数学专题复习第4讲因式分解(含详细答案)

第四讲 因式分解 【基础知识回顾】一、因式分解的定义:1、把一个 式化为几个整式 的形式,叫做把一个多项式因式分解。
2、因式分解与整式乘法是 运算,即:多项式 整式的积 【名师提醒:判断一个运算是否是因式分解或判断因式分解是否正确,关键看等号右边是否为 的形式。
】二、因式分解常用方法:1、提公因式法:公因式:一个多项式各项都有的因式叫做这个多项式各项的公因式。
提公因式法分解因式可表示为:ma+mb+mc= 。
【名师提醒:1、公因式的选择可以是单项式,也可以是 ,都遵循一个原则:取系数的 ,相同字母的 。
2、提公因式时,若有一项被全部提出,则括号内该项为 ,不能漏掉。
3、提公因式过程中仍然要注意符号问题,特别是一个多项式首项为负时,一般应先提取负号,注意括号内各项都要 。
】2、运用公式法:将乘法公式反过来对某些具有特殊形式的多项式进行因式分解,这种方法叫做公式法。
①平方差公式:a 2-b 2= ,②完全平方公式:a 2±2ab+b 2= 。
【名师提醒:1、运用公式法进行因式分解要特别掌握两个公式的形式特点,找准里面的a 与b 。
如:x 2-x+14符合完全平方公式形式,而x 2- x+12就不符合该公式的形式。
】三、因式分解的一般步骤1、 一提:如果多项式的各项有公因式,那么要先 。
2、 二用:如果各项没有公因式,那么可以尝试运用 法来分解。
3、 三查:分解因式必须进行到每一个因式都不能再分解为止。
【名师提醒:分解因式不彻底是因式分解常见错误之一,中考中的因式分解题目一般为两步,做题时要特别注意,另外分解因式的结果是否正确可以用整式乘法来检验】【重点考点例析】考点一:因式分解的概念例1 (•株洲)多项式x 2+mx+5因式分解得(x+5)(x+n ),则m= ,n= .思路分析:将(x+5)(x+n )展开,得到,使得x 2+(n+5)x+5n 与x 2+mx+5的系数对应相等即可.解:∵(x+5)(x+n )=x 2+(n+5)x+5n ,∴x 2+mx+5=x 2+(n+5)x+5n ∴555n m n +=⎧⎨=⎩,∴16n m =⎧⎨=⎩, 故答案为6,1.点评:本题考查了因式分解的意义,使得系数对应相等即可.对应训练1.(•河北)下列等式从左到右的变形,属于因式分解的是( )( ) ( )A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3-x=x(x+1)(x-1)1.D考点二:因式分解例2 (•无锡)分解因式:2x2-4x= .思路分析:首先找出多项式的公因式2x,然后提取公因式法因式分解即可.解:2x2-4x=2x(x-2).故答案为:2x(x-2).点评:此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.例3 (•南昌)下列因式分解正确的是()A.x2-xy+x=x(x-y)B.a3-2a2b+ab2=a(a-b)2C.x2-2x+4=(x-1)2+3 D.ax2-9=a(x+3)(x-3)思路分析:利用提公因式法分解因式和完全平方公式分解因式进行分解即可得到答案.解:A、x2-xy+x=x(x-y+1),故此选项错误;B、a3-2a2b+ab2=a(a-b)2,故此选项正确;C、x2-2x+4=(x-1)2+3,不是因式分解,故此选项错误;D、ax2-9,无法因式分解,故此选项错误.故选:B.点评:此题主要考查了公式法和提公因式法分解因式,关键是注意口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.例4 (•湖州)因式分解:mx2-my2.思路分析:先提取公因式m,再对余下的多项式利用平方差公式继续分解.解:mx2-my2,=m(x2-y2),=m(x+y)(x-y).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.对应训练2.(•温州)因式分解:m2-5m= .2.m(m-5)3.(•西宁)下列分解因式正确的是()A.3x2-6x=x(3x-6)B.-a2+b2=(b+a)(b-a)C.4x2-y2=(4x+y)(4x-y)D.4x2-2xy+y2=(2x-y)23.B4.(•北京)分解因式:ab2-4ab+4a= .4.a(b-2)2考点三:因式分解的应用例5 (•宝应县一模)已知a+b=2,则a2-b2+4b的值为.思路分析:把所给式子整理为含(a+b)的式子的形式,再代入求值即可.解:∵a+b=2,∴a2-b2+4b=(a+b)(a-b)+4b=2(a-b)+4b=2a+2b=2(a+b)=2×2=4.故答案为:4. 点评:本题考查了利用平方差公式分解因式,利用平方差公式和提公因式法整理出a+b 的形式是求解本题的关键,同时还隐含了整体代入的数学思想.对应训练5.(•鹰潭模拟)已知ab=2,a-b=3,则a 3b-2a 2b 2+ab 3= .5.18【聚焦山东中考】1.(•临沂)分解因式4x-x 2= .1.x (4-x )2.(•滨州)分解因式:5x 2-20= .2.5(x+2)(x-2)3.(•泰安)分解因式:m 3-4m= .3.m (m-2)(m+2)4.(•莱芜)分解因式:2m 3-8m= .4.2m (m+2)(m-2)5.(•东营)分解因式:2a 2-8b 2= .5.2(a-2b )(a+2b )6.(•烟台)分解因式:a 2b-4b 3= .6.b (a+2b )(a-2b )7.(•威海)分解因式:-3x 2+2x-13= . 7.21(31)3x --8.(•菏泽)分解因式:3a 2-12ab+12b 2= .8.3(a-2b )2【备考真题过关】一、选择题1.(•张家界)下列各式中能用完全平方公式进行因式分解的是() A .x 2+x+1 B .x 2+2x-1 C .x 2-1D .x 2-6x+9 1.D2.(•佛山)分解因式a 3-a 的结果是( )A .a (a 2-1)B .a (a-1)2C .a (a+1)(a-1)D .(a 2+a )(a-1) 2.C3.(•恩施州)把x 2y-2y 2x+y 3分解因式正确的是( )A .y (x 2-2xy+y 2)B .x 2y-y 2(2x-y )C .y (x-y )2D .y (x+y )23.C二、填空题4.(•自贡)多项式ax 2-a 与多项式x 2-2x+1的公因式是 .4.x-15.(•太原)分解因式:a 2-2a= .5.a (a-2)6.(•广州)分解因式:x 2+xy= .6.x (x+y )7.(2013•盐城)因式分解:a 2-9= .7.(a+3)(a-3)8.(•厦门)x2-4x+4=()2.8.x-29.(•绍兴)分解因式:x2-y2= .9.(x+y)(x-y)10.(•邵阳)因式分解:x2-9y2= .11.(x+3y)(x-3y)12.(•南充)分解因式:x2-4(x-1)= .12.(x-2)213.(•遵义)分解因式:x3-x= .13.x(x+1)(x-1)14.(•舟山)因式分解:ab2-a= .14.a(b+1)(b-1)15.(•宜宾)分解因式:am2-4an2= .15.a(m+2n)(m-2n)16.(•绵阳)因式分解:x2y4-x4y2= .16.x2y2(y-x)(y+x)17.(•内江)若m2-n2=6,且m-n=2,则m+n= .17.318.(•廊坊一模)已知x+y=6,xy=4,则x2y+xy2的值为.18.2419.(•凉山州)已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b= .19.-31。
沪科版七年级数学下册《因式分解(3、4)》参考课件

如何将多项式a2+2ab+b2-1和a2x-a2y-b2x+b2y分解因式? 请同学们自己先推导一下吧! 通过推导你得到了什么结论?
因式分解有时需要先分组,分组后 利用提取公因式或运用公式法进行分解。
把下列多项式分解因式:
(1)x2-y2+ax+ay (2) a2+2ab+b2-c2
解: (1)x2-y2+ax+ay =(x2-y2)+(ax+ay) =(x+y)(x-y)+a(x+y) =(x+y)(x-y+a)
1、什么是因式分解? 把一个多项式化成几个整式乘积的形式。
2、因式分解与整式乘法有什么关系? 因式分解与整式乘法是相反方向的变形。
从左到右是因式分解,从右到左是整式乘法。
3、你学过的因式分解的方法是什么? 提公因式法、公式法。
像2x3-32x这样的多项式该用什么方法因式分解呢?
2x3 32x 2x(x2 16) 2x(x 4)(x 4)
(7) 4a2-b2+6a-3b; (8)9m2-6m+2n-n2; (9)x2-y2-z2+2yz; (10)xy-xz+y-z; (11)ax-2bx+ay-2by (12)4xy-3xz+8y-6z;
在因式分解的过程中,有时提取公因式与 利用公式两种方法要同时使用。
把下列多项式分解因式:
(1)ab2 ac2
(2)3ax2 24axy 48ay2
解:(1)ab2 ac2 a(b2 c2 ) (提取公因式) a(b c)(b - c) (用平方差公式)
解:(2)3ax2 24axy 48ay2 3a(x2 8xy 16 y2 ) (提取公因式) 3a(x 43;b2-c2 =(a2+2ab+b2)- c2 =(a+b)2- c2 =(a+b+c)(a+b-c)
中考数学复习:专题1-6 例谈因式分解的方法与技巧

专题06 例谈因式分解的方法与技巧【专题综述】 因式分解是初中代数中一种重要的恒等变形,是处理数学问题重要的手段和工具,也是中考和数学竞赛试题中比较常见的题型。
对于特殊的因式分解,除了掌握提公因式法、公式法、分组分解法、十字相乘法等基本方法外,还应根据多项式的具体结构特征,灵活选用一些特殊的方法和技巧。
这样不仅可使问题化难为易,化繁为简,复杂问题迎刃而解,而且有助于培养探索求新的学习习惯,提高数学思维能力。
【方法解读】一、巧拆项:在某些多项式的因式分解过程中,若将多项式的某一项(或几项)适当拆成几项的代数和,再用基本方法分解,会使问题化难为易,迎刃而解。
例1:因式分解 32422+++-b a b a【举一反三】因式分解:611623+++x x x二、巧添项:在某些多项式的因式分解过程中,若在所给多项式中加、减相同的项,再用基本方法分解,也可谓方法独特,新颖别致。
例2:因式分解444y x +【举一反三】因式分解 4323+-x x三、巧换元:在某些多项式的因式分解过程中,通过换元,可把形式复杂的多项式变形为形式简单易于分解的多项式,会使问题化繁为简,迅捷获解。
例3:因式分解24)6)(43(22+---+x x x x【举一反三】因式分解2)1()2)(2(-+-+-+xy y x xy y x四、展开巧组合:若一个多项式的某些项是积的形式,直接分解比较困难,则可采取展开重组合,然后再用基本方法分解,可谓匠心独具,使问题巧妙得解。
例4:因式分解)()(2222n m xy y x mn +++【举一反三】因式分解 22)()(my nx ny mx -++五、巧用主元:对于含有两个或两个以上字母的多项式,若无法直接分解,常以其中一个字母为主元进行变形整理,可使问题柳暗花明,别有洞天。
例5:因式分解xy x y x x x 2232234-++-【举一反三】因式分解abc bc c b ac c a ab b a 2222222++++++【强化训练】1.因式分解:(5)(2)()()12x x x x +-+-+-..2.阅读下面解题过程,然后回答问题.分解因式: 223x x +-.解:原式=22113x x ++--=()2214x x ++- = ()214x +-=()()1212x x +++-= ()()31x x +-上述因式分解的方法称为”配方法”.请你体会”配方法”的特点,用“配方法”分解因式: 243y y -+.3.因式分解:(1)(a +b )2+6(a +b )+9; (2)(x ﹣y )2﹣9(x +y )2;(3)a 2(x ﹣y )+b 2(y ﹣x ). (4)(x 2-5)2+8(5-x 2)+16.4.下面是某同学对多项式(x 2-4x +2)(x 2-4x +6)+4进行因式分解的过程.解:设x 2-4x =y ,原式=(y +2)(y +6)+4=y 2+8y +16=(y +4)2=(x 2-4x +4)2.(1)该同学因式分解的结果是否彻底?_______________. (填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果__________________.(2)请你模仿以上方法尝试对多项式(x 2-2x )(x 2-2x +2)+1进行因式分解.5.先阅读,再因式分解:x 4+4=(x 4+4x 2+4)-4x 2=(x 2+2)2-(2x )2=(x 2-2x +2)(x 2+2x +2),按照这种方法把多项式x 4+324因式分解.6.问题背景:对于形如2120+3600x x -这样的二次三项式,可以直接用完全平方公式将它分解成()260x -,对于二次三项式21203456x x -+,就不能直接用完全平方公式分解因式了.此时常采用将2120x x -加上一项260,使它与2120x x -的和成为一个完全平方式,再减去260,整个式子的值不变,于是有: 2120+3456x -=22226060603456x x -⨯+-+=()260144x --=()226012x --=()()60+126012x x ---=()()4872x x --问题解决:(1)请你按照上面的方法分解因式: 2140+4756x x -;(2)已知一个长方形的面积为228+12a ab b +,长为+2a b ,求这个长方形的宽.7.因式分解:(x –3) (x +4) +3x =__________.8.x 3+3x 2—4 (拆开分解法)9.先阅读下列材料,再解答下列问题:材料:因式分解:(x +y )2+2(x +y )+1.解:将“x +y ”看成整体,令x +y =A ,则原式=A 2+2A +1=(A +1)2再将“A ”还原,得:原式=(x +y +1)2.上述解题中用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x ﹣y )+(x ﹣y )2=__________.(2)因式分解:(a +b )(a +b ﹣4)+4(3)证明:若n 为正整数,则式子(n +1)(n +2)(n 2+3n )+1的值一定是某一个整数的平方.10.已知22610340m n m n +-++=,则m n +=______.。
上海初一因式分解的方法

上海初一因式分解的方法
因式分解是把一个多项式转化成几个整式乘积的形式,是整式乘法的逆运算。
在上海初一的数学课程中,通常会学习以下几种基本的因式分解方法:
1.提公因式法:
这是最基本也是最常见的方法。
如果多项式的各项有公因式,那么可以先提取这个公因式,再进行因式分解。
例如:2x2+4x=2x(x+2)
2.公式法:
这里主要指的是平方差公式和完全平方公式。
平方差公式:a 2−b 2=(a+b)(a−b)
完全平方公式:a 2 +2ab+b 2 =(a+b) 2和a 2−2ab+b 2 =(a−b) 2
例如:x 2−4=(x+2)(x−2)
3.十字相乘法:
对于形如 ax2+bx+c 的二次多项式,如果 a 和 c 的因数能够交叉相乘得到 b,则可以使用十字相乘法进行因式分解。
例如:x 2−3x+2=(x−1)(x−2)
4.分组分解法:
当多项式项数较多,且部分项之间存在公因式或能利用公式分解时,可以先对多项式进行分组,然后分别进行因式分解,最后再进行合并。
例如:
x2+2xy+y2+x+y=(x2+2xy+y2)+(x+y)=(x+y)2 +(x+y)=(x+y)(x+y+1)
以上就是在上海初一通常会学习的因式分解方法。
通过不断练习和熟悉这些方法,学生将能够更好地理解和应用因式分解的概念。
沪教版(上海)初中数学七年级第一学期4因式分解—公式法-完全平方公式课件

特征 结构
2、有两个“项”的平方
3、有这两“项”的2倍或-2 倍
完全平方式:a2±2 a b +b2
直观模式:▲2±2 ▲ ●+ ●2 首2±2×首×末+末2
练习1:判断下列是不是完全平方式, 为什么?
(1) x2+xy+y2
否
(2) x2+6x+9
是
(3) 16a2+1
否
(4)-2xy+x2+y2
1、计算 1002-2×100×99+992 的结果是_______
2、如果x2+mxy+9y2是一个完全平方式,那么m的 值
为为完全平方式:
X4+4x2+______
六、学后感想、畅所欲言
本节课你学会了什么?
1.完全平方式 a2±2ab+b2
2.用完全平方公式因式分解 a2±2ab+b2=(a±b)2
是
(5) a2-6ab+b2
否
(6) 25x4-10x2+1
是
(7) x2+x+1/4
是
(8) 1-m+m2/4
是
练习2:请补上一项,使下列多项
式成为完全平方式
1 x2 __2_x_y___ y2
2 4a2 9b2 __1_2_a_b__
3 x2 __4_x_y__ 4 y2
ab 4 a2 _______ 1 b2 4
用公式法分解因式要注意些什么?
七、分层作业
1、基础训练:教材P48 练习8.14(2)。
2、拓展训练:
多项式:(x+y)2-2(x2-y2)+(x-y)2
能用完全平方公式分解吗?
请各位老师指正
中考数学复习《分解因式》教学课件

【预测5】 图(1)是边长为(a+b)的正方形,将图(1)中的阴 影部分拼成图(2)的形状,由此能验证的式子是 ( )
A.(a+b)(a-b)=a2-b2
B.(a+b)2-(a2+b2)=2ab
C.(a+b)2-(a-b)2=4ab
D.(a-b)2+2ab=a2+b2 解析 图 1 中大正方形的面积为(a+b)2,图 1 的中间空白部 分的正方形的边长为 a2+b2,所以它的面积为 a2+b2,所 以图 1 中阴影部分的面积可表示为:(a+b)2-(a2+b2);图 2 是对角线长分别为 2a 和 2b 的菱形,面积为12×2a×2b=2ab. 答案 B
【预测4】 已知实数a,b满足a+b=3,ab=1.求代数式 a2b+ab2的值. 解 a2b+ab2=ab(a+b)=1×3=3.
对接点四:拼图与因式分解
常考角度:通过图形的变化验证代数式的变化,培养数形
结合的思想.
甲图中阴影部分面积 【例题 4】 (2013·杭州)如图,设 k=乙图中阴影部分面积(a>
【即时应用1】 把a2-4a多项式分解因式,结果正确的是
()
A.a(a-4)
B.(a+2)(a-2)
C.a(a+2)(a-2)
D.(a-2)2-4
答案 A
因式分解的基本方法 1.提公因式法:ma+mb+mc=_m_(_a_+__b_+__c_); 2.运用公式法
(1)平方差公式:a2-b2=_(_a_+__b_)(_a_-__b_); (2)完全平方公式:a2±2ab+b2=_(a_±__b_)_2.
解析 A.x2-5x+6=x(x-5)+6右边不是整式积的形式, 故不是分解因式,故本选项错误; B.x2-5x+6=(x-2)(x-3)是整式积的形式,且左右两 边相等,故是分解因式,故本选项正确; C.(x-2)(x-3)=x2-5x+6是整式的乘法,故不是分解 因式,故本选项错误; D.x2-5x+6=(x-2)(x-3),故本选项错误. 答案 B
2020年上海中考数学·一轮复习 第06讲 因式分解

第06讲 因式分解[基础篇]一、提公因式法:一个多项式每一项都含有的因式叫做公因式,提取一个多项式的各项的公因式的方法叫做提取公因式法,把公因式提出,把提出公因式后的式子写在括号中,写成其与公因式的乘积,例如()am an a m n +=+.其中公因式可以是单项式也可以是多项式。
二、公式法:逆用所学过的平方差公式和完全平方公式进行因式分解,22()()a b a b a b -=+-,2222()a ab b a b ±+=±。
三、十字相乘法:2()()()x a x b x a b x ab ++=+++反过来可得:2()()()x a b x ab x a x b +++=++十字相乘法可以看做多项式与多项式相乘的逆运算,借助十字交叉线来分解因式。
四、分组分解法:将多项式进行分解后运用提取公因式法,十字相乘法和公式法进行分解,其中对于综合型题目需要能分组的分组,不能分组的化简后分组因式分解。
五、换元法:把某个式子看成整体,用新的元去代替它,可以将复杂和不熟悉的问题进行简化,变成我们熟悉的问题,通常的:我们将题目中重复出现的一部分或几部分设为新的元进行换元,或者当x y xy +、出现时将其设为新元。
[技能篇]类型一:提取公因式法(公因式为单项式)例1-1 用提取公因式法分解因式:34323x y xy -例1-2 用提取公因式法分解因式:2210515a y ay ay ++例1-3 分解因式:11232639m n m n x y x y ++-+-例1-4 计算201720161.51010⨯-,结果用科学计数法表示。
例1-5 已知4ab =-,536a b -=,求2253a b ab -的值。
例1-6 已知2992310023...1001(23...100)x x x A x x x x ++++=+++++,求A 的值。
类型二:提取公因式法(公因式为多项式)例2-1 分解因式()()x x y y y x -+-例2-2 分解因式33225()10()x y y x xy x y ---例2-3 分解因式2222()+()()a b a b c a b +-++例2-4 已知3210x x x +++=,那么20082000199625x x x ++例2-5 分解因式13()9()n n a b b a +---例2-6 解方程(2)(1)(2)0y y y y ++-+=例3-1 利用平方差公式分解因式:221(23)2()2x y x y --+例3-2 利用平方差公式分解因式:222()()x y x y ---例3-3 分解因式:42231x x -+例3-4 分解因式:44m -例3-5 用合理的方法计算:24832(21)(21)(21)(21)+++⋅⋅⋅+例3-6 因式分解:33(2)(2)x y x y x y ---例3-7 是否存在两个正整数m 和n ,能使222002m n -=例3-8 分解因式:222222()4()c b d a ab cd -+---例4-1 分解因式:3244x x x -+例4-2 分解因式:222(3)(364)4(3)a a a +--+-例4-3 分解因式:4224x x y y ++例4-4 分解因式:()(2)(1)(1)x y x y xy xy xy +++++-例4-5 分解因式:2(1)(2)(2)xy x y xy x y --+---例4-6 已知2222210a ab b a b ++--+=,求22a a b b -+-的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考复习之因式分解
知识考点:
因式分解是代数的重要内容,它是整式乘法的逆变形,在通分、约分、解方程以及三角函数式恒等变形中有直接应用。
重点是掌握提取公因式法、公式法、分组分解法、十字相乘法四种基本方法。
难点是根据题目的形式和特征恰当选择方法进行分解,以提高综合解题能力。
精典例题:
【例1】分解因式:
(1)3
3xy y x -
(2)x x x 2718323+-
(3)()112---x x (4)()()3
224x y y x --- 分析:①因式分解时,无论有几项,首先考虑提取公因式。
提公因式时,不仅注意数,也要注意字母,字母可能是单项式也可能是多项式,一次提尽。
②当某项完全提出后,该项应为“1”
③注意()()n n a b b a 22-=-,()()1212++--=-n n a b b a
④分解结果(1)不带中括号;(2)数字因数在前,字母因数在后;单项式在前,多项式在后;(3)相同因式写成幂的形式;(4)分解结果应在指定范围内不能再分解为止;若无指定范围,一般在有理数范围内分解。
答案:(1)()()y x y x xy -+; (2)()2
33-x x ; (3)()()21--x x ; (4)()()y x y x -+-222
【例2】分解因式:
(1)22103y xy x --
(2)32231222xy y x y x -+
(3)()222164x x -+
分析:对于二次三项齐次式,将其中一个字母看作“末知数”,另一个字母视为“常数”。
首先考虑提公因式后,由余下因式的项数为3项,可考虑完全平方式或十字相乘法继续分解;如果项数为2,可考虑平方差、立方差、立方和公式。
(3)题无公因式,项数为2项,可考虑平方差公式先分解开,再由项数考虑选择方法继续分解。
答案:(1)()()y x y x 52-+;(2)()()y x y x xy 232-+;(3)()()2
222+-x x 【例3】分解因式:
(1)2
2244z y xy x -+-;
(2)b a b a a 2322-+-
(3)322222--++-y x y xy x
分析:对于四项或四项以上的多项式的因式分解,一般采用分组分解法,。
四项式一般采用“二、二”或“三、一”分组,五项式一般采用“三、二”分组,分组后再试用提公因式法、公式法或十字相乘法继续分解。
答案:(1)()()z y x z y x --+-22(三、一分组后再用平方差)
(2)()()()112-+-a a b a (三、二分组后再提取公因式)
(3)()()13--+-y x y x (三、二、一分组后再用十字相乘法)
【例4】在实数范围内分解因式:
(1)44-x ;
(2)1322-+x x
答案:(1)()()()
2222-++x x x (2)⎪⎪⎭
⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛+--417341732x x 【例5】已知a 、b 、c 是△ABC 的三边,且满足ac bc ab c b a ++=++222,求证:△ABC 为等边三角形。
分析:此题给出的是三边之间的关系,而要证等边三角形,则须考虑证c b a ==,从已知给出的等式结构看出,应构造出三个完全平方式()()()02
22=-+-+-a c c b b a ,即可得证,将原式两边同乘以2即可。
略证:0222=---++ac bc ab c b a
022*******=---++ac bc ab c b a
()()()02
22=-+-+-a c c b b a ∴c b a ==
即△ABC 为等边三角形。
探索与创新:
【问题一】
(1)计算:⎪⎭
⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅⋅⋅⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛
-22221011911311211 分析:此题先分解因式后约分,则余下首尾两数。
解:原式=⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛
-10111011911911311311211211
=
10
111099108943322321⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯ =2011 (2)计算:22222221219981999200020012002-+⋅⋅⋅-+-+-
分析:分解后,便有规可循,再求1到2002的和。
解:原式=()()()()()()121219992000199920002001200220012002-+⋅⋅⋅+-++-+
=2002+2001+1999+1998+…+3+1
=()2
200212002⨯+ =2 005 003
【问题二】如果二次三项式82--ax x (a 为整数)在整数范围内可以分解因式,那么a 可以取那些值? 分析:由于a 为整数,而且82--ax x 在整数范围内可以分解因式,因此可以肯定82--ax x 能用形如()pq x q p x +++2型的多项式进行分解,其关键在于将-8分解为两个数的积,且使这两个数的和等于a -,由此可以求出所有可能的a 的值。
答案:a 的值可为7、-7、2、-2
跟踪训练:
一、填空题:
1、()229=n ;()222=a ;c a b a m m ++1= 。
2、分解因式:
222y xy x -+-= ;
1872--xy x = ;
()()25102++-+y x y x = 。
3、计算:1998×2002= ,2223274627+⨯-= 。
4、若012=++a a ,那么199920002001a a a ++= 。
5、如果n 222108++为完全平方数,则n = 。
6、m 、n 满足042=-++n m ,分解因式()()n mxy y
x +-+22= 。
二、选择题:
1、把多项式b a ab -+-1因式分解的结果是( ) A 、()()11++b a B 、()()11--b a C 、()()11-+b a D 、()()11+-b a
2、如果二次三项式12-+ax x 可分解为()()b x x +-2,则b a +的值为( )
A 、-1
B 、1
C 、-2
D 、2
3、若22169y mxy x ++是一个完全平方式,那么m 的值是( )
A 、24
B 、12
C 、±12
D 、±24
4、已知1248-可以被在60~70之间的两个整数整除,则这两个数是( )
A 、61、63
B 、61、65
C 、61、67
D 、63、65
三、解答题:
1、因式分解:
(1)118146-++-n n n x x x
(2)()()
8323222-+-+x x x x (3)122222++--+a b ab b a
(4)()()()()14321+++++x x x x
(5)()()ab b a
41122--- 2、已知0258622=+++-y y x x ,求y x 32-的值。
3、计算:22222212979899100-+⋅⋅⋅+-+-
4、观察下列等式:
2
311=
233321=+
23336321=++
23333104321=+++……
想一想,等式左边各项幂的底数与右边幂的底数有何关系?猜一猜可引出什么规律?用等式将其规律表示出来: 。
5、已知a 、b 、c 是△ABC 的三边,且满足224224c a b c b a +=+,试判断△ABC 的形状。
阅读下面解题过程:
解:由224224c a b c b a +=+得: 222244c b c a b a -=- ①
()()()
2222222b a c b a b a -=-+ ② 即222c b a =+ ③
∴△ABC 为Rt △。
④
试问:以上解题过程是否正确:;若不正确,请指出错在哪一步?(填代号);错误原因是;本题的结论应为。
微信公众号:上海试卷
参考答案
一、填空题:
1、n 3±,a 2±,()c ab a m +;
2、()2y x --,()()29+-x x ,()25-+y x
3、3 999 996 610;
4、0;
5、10或4;
6、()()22-+++y x y x
二、选择题:DADD
三、解答题
1、(1)()()43121---x x x n ; (2)()()()()1421-+++x x x x
(3)()21+-b a ; (4)()2255++x x
(5)()()b a ab b a ab ---++-11
2、23
3、5050
4、()2
33333214321⎥⎦⎤
⎢⎣⎡+=+⋅⋅⋅++++n n n
5、不正确,③,等式两边除以了可能为零的数,等腰或直角三角形。