椭圆滤波器(考尔滤波器)
归一化椭圆函数滤波器的正元件值全解及其cad

归一化椭圆函数滤波器的正元件值全解及其
cad
归一化椭圆函数滤波器是一种带有优良频率响应的滤波器。
根据其滤波器结构,其正元件值可分为4组满组件,每组有2个元件,它们分别是抗输入电感(L1,L2,L7,L8),抗源电容(C2,C3,C6,C7),抗源抗输出电容(C1,C4,C5,C8)和抗输出电感(L3,L4,L5,L6)。
传统的椭圆滤波器设计方法是根据不同的阶数,定义不同的椭圆常数(K)值,然后利用大量的数学公式来求出滤波器的正元件的值。
而归一化椭圆函数滤波器利用椭圆函数滤波器的正电容值实现元件值一次性全解,可以有效节省计算时间。
为了开发基于归一化椭圆函数滤波器的CAD,首先需要利用椭圆函数滤波器的正元件值,按照以下步骤计算归一化在特定频率表示的椭圆函数滤波器。
其次,利用椭圆函数滤波器的归一化元件值建立归一化椭圆函数滤波器的模型,并实现归一化椭圆函数滤波器的设计、仿真和电路分析。
最后,根据所需频率参数,通过仿真和计算获得归一化椭圆函数滤波器的最佳设计参数。
通过归一化椭圆函数滤波器的正元件值全解及其cad,可以实现更节省时间、更简便的椭圆滤波器设计。
此外,它还可以确保滤波器的性能,实现优异的频率响应,有效提高滤波器的性能。
椭圆带通滤波器的设计

燕山大学课程设计说明书题目:椭圆带通滤波器的设计学院(系):电气工程学院年级专业: 10级精仪二班学号:学生姓名:指导教师:***教师职称:副教授燕山大学课程设计(论文)任务书课程名称:数字信号处理课程设计基层教学单位:指导教师:说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。
年月日目录第1章摘要......................................................4 第2章引言......................................................4 第3章基本原理..................................................5 3.1 模拟滤波器的基本原理.......................................5 3.2 椭圆滤波器的特点...........................................5 第4章设计过程..................................................6 4.1 椭圆滤波器设计结构图.......................................6 4.2 设计椭圆模拟滤波器.........................................7 4.3 模拟滤波器的MATLAB实现和滤波器分析........................7 第5章仿真程序和仿真图......................................... 105.1、%连续信号的产生及采样.................................. 105.2、%椭圆带通滤波器的设计...................................115.3、%信号通过椭圆带通滤波器的波形图.........................12 5.4、信号通过椭圆带通滤波器的仿真图..........................12 第6章分析及总结............................................... 14 心得体会........................................................15 参考文献........................................................15第一章摘要滤波器是自动控制、信号处理和通信领域的重要组成部分,广泛地应用于各种系统中。
东南大学 数字信号处理 吴镇扬 3_2

由图中看到,在零频率附近,Ω~ω接近于线性关系,Ω进 一步增加时,ω增长变得缓慢, 时, (ω终止于折叠 频率处),所以双线性变换不会出现由于高频部 分超过折叠频率
2)双线性变换缺点: Ω与ω成非线性关系,导致: a. 数字滤波器的幅频响应相对于模拟滤波器的幅频响应有畸 变,(使数字滤波器与模拟滤波器在响应与频率的对应关系上 发生畸变)。 例如,一个模拟微分器,它的幅度与频率是直线关系, 但通过双线性变换后,就不可能得到数字微分器
令 c 1 ,得归一化的三阶BF:
H a (s)
如果要还原的话,则有
1 S 3 2S 2 2S 1
1 H a ( s) ( s / c )3 2( s / c ) 2 2( s / c ) 1
MATLAB设计模拟Butterworth filter
•[z,p,k]=buttap(N)
N为滤波器阶数, 如图1
图1 巴特沃兹滤波器 振幅平方函数
通带: 使信号通过的频带 阻带:抑制噪声通过的频带 过渡带:通带到阻带间过渡的频率范围 Ωc :通带边界频率。 过渡带为零, 阻带|H(jΩ)|=0 通带内幅度|H(jΩ)|=const., H(jΩ)的相位是线性的。
理想滤波器
图1中,N增加,通带和阻带的近似性越好,过渡带越陡。 在过渡带内,阶次为N的巴特沃兹滤波器的幅度响应趋于 斜率为-6NdB/倍频程的渐近线。
§3.2
常用模拟低通滤波器特性
为了方便学习数字滤波器,先讨论几种常用的模拟低通滤波 器设计方法,高通、带通 、带阻等模拟滤波器可利用变量变换 方法,由低通滤波器变换得到。 模拟滤波器的设计就是根据一组设计规范设计模拟系统函数 Ha(s),使其逼近某个理想滤波器特性。 因果系统中
巴特沃兹、切比雪夫、椭圆滤波器的滤波性能比较

在满足相同滤波器幅频响应指 标时: (1)椭圆型的阶数最低,巴 特沃兹型的阶数最高。 (2)就满足滤波幅频响应指 标而言,椭圆型的性价比较高 ,应用比较广泛。
相位逼近情况
巴特沃思和切比雪夫滤 波器在大约3/4的通带上非常 接近线性相位特性,而椭圆 滤波器仅在大约半个通带上 非常接近线性相位特性。
>> 0 >> 1 >> 2 >> 3 >> 4 >>
Let `s START
>> 0 >> 1 >> 2 >> 3 >&g比较
主讲 :王文博 matlab程序:张楠 PPT制作:马跃 资料整合:雷俊
一、三种滤波器回顾 二、三种滤波器阶数相同时的性能比较 三、满足相同滤波指标时的性能比较 四、小结
(2) 同一种滤波器如巴特沃斯,阶数 增加,衰减特性改善,相应的实现电 路变得复杂。
(3) 巴特沃斯、切比雪夫、椭圆滤波 器是从滤波器的幅频特性上考虑的, 滤波器的相位特性较差,其中最差的 是椭圆滤波器,切比雪夫滤波器次之 ,巴特沃斯滤波器较好。
一、三种滤波器回顾 二、三种滤波器阶数相同时的性能比较 三、满足相同滤波指标时的性能比较 四、小结
在相同阶数时: (1)巴特沃思滤波器具有单调下降的幅 频特性,过渡带最宽。 (2)两种类型的切比雪夫滤波器的过渡 带宽度相等,比巴特沃思滤波器的过渡带 窄,但比椭圆滤波器的过渡带宽。切比雪 夫Ⅰ型滤波器在通带具有等波纹幅频特性 ,过渡带和阻带是单调下降的幅频特性。 (3)椭圆滤波器的过渡带最窄,通带和 阻带均是等波纹幅频特性。
三种滤波器的性能比较
实际滤波器由于电路实现的限制 ,只能在某些方面(通带特性、阻带 特性、衰减特性、相位特性等)逼近 理想滤波器。常用抗混滤波器有巴 特沃斯、切比雪夫、椭圆;主要特 征如下:
滤波器对比分析,这四种滤波器你都了解吗?

滤波器对⽐分析,这四种滤波器你都了解吗?是⼀种,按照分类标准的不同,滤波器具有诸多种类,⽐如巴特沃斯滤波器、切⽐雪夫滤波器、椭圆滤波器、贝塞尔滤波器等等。
为增进⼤家对滤波器的认识,本⽂将对巴特沃斯滤波器、切⽐雪夫滤波器、椭圆滤波器、贝塞尔滤波器之间的不同予以介绍。
如果你对滤波器具有兴趣,不妨继续往下阅读哦。
⼀、巴特沃斯滤波器的特点是通频带内的频率响应曲线最⼤限度平坦,没有起伏,⽽在阻频带则逐渐下降为零。
在振幅的对数对⾓频率的波特图上,从某⼀边界⾓频率开始,振幅随着⾓频率的增加⽽逐步减少,趋向负⽆穷⼤。
巴特沃斯滤波器的频率特性曲线,⽆论在通带内还是阻带内都是频率的单调函数。
因此,当通带的边界处满⾜指标要求时,通带内肯定会有裕量。
所以,更有效的设计⽅法应该是将精确度均匀的分布在整个通带或阻带内,或者同时分布在两者之内。
这样就可⽤较低阶数的系统满⾜要求。
这可通过选择具有等波纹特性的逼近函数来达到。
⼆、切⽐雪夫滤波器切⽐雪夫滤波器是在通带或阻带上频率响应幅度等波纹波动的滤波器,振幅特性在通带内是等波纹。
在阻带内是单调的称为切⽐雪夫I型滤波器;振幅特性在通带内是单调的,在阻带内是等波纹的称为切⽐雪夫II型滤波器。
采⽤何种形式的切⽐雪夫滤波器取决于实际⽤途。
三、椭圆滤波器椭圆滤波器(EllipTIc filter)⼜称考尔滤波器(Cauer filter),是在通带和阻带等波纹的⼀种滤波器。
它⽐切⽐雪夫⽅式更进⼀步地是同时⽤通带和阻带的起伏为代价来换取过渡带更为陡峭的特性。
相较其他类型的滤波器,椭圆滤波器在阶数相同的条件下有着最⼩的通带和阻带波动。
四、贝塞尔滤波器贝赛尔(Bessel)滤波器是具有最⼤平坦的群延迟(线性相位响应)的线性过滤器。
贝赛尔滤波器常⽤在⾳频天桥系统中。
模拟贝赛尔滤波器描绘为⼏乎横跨整个通频带的恒定的群延迟,因⽽在通频带上保持了被过滤的信号波形。
贝塞尔(Bessel)滤波器具有最平坦的幅度和相位响应。
常见的滤波器函数

附件9-2-1 常见的滤波器函数由于理想滤波器的特性不可能实现,因而在实际滤波器的设计中通常采用某个函数来逼近。
根据逼近函数有很多种,以下介绍根据常用的逼近函数所设计的巴特沃兹滤波器(Butterworth filter )、切比雪夫滤波器(Chebyshev filter )和椭圆函数滤波器(elliptic filter )。
由这些函数所决定的实际滤波器特性各有其突出特点,有的衰减特性在过渡区很陡峭,有的相位特性(即延时特性)较为规律,应用中要根据实际需要来选用。
一、巴特沃兹滤波器巴特沃兹滤波器的特点是通带内的频率响应曲线最大限度平坦,没有起伏,而在阻带则逐渐下降为零。
巴特沃兹滤波器的时域特性也比较好,其脉冲响应具有适当的过冲及振铃。
R p =3dB 的巴特沃兹滤波器幅频特性的数学表达式为:()nn f f H 22c 1lg 101lg 10lg 20Ω+-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-=式中f c 是截止频率,Ω=f /f c 是归一化频率,n 是其阶数。
这个响应在Ω=0处有20lg|H |=0dB ,其后随Ω增大而单调增大,在Ω<1即f <f c 的通带内,曲线增长极其缓慢,比较平稳;在Ω>1即f >f c 的阻带内,曲线增长甚快,比较陡峭。
因为函数Ω2n 在Ω=0处的一阶、二阶直至2n -1阶导数均为0,反映了函数的变化率极小,所以巴特沃兹响应也称为最平坦响应。
阻带曲线增长的速率由n 来决定,n 越大,增长越快。
一阶巴特沃兹滤波器的衰减率为每倍频6分贝。
二阶巴特沃兹滤波器的衰减率为每倍频12分贝,三阶巴特沃兹滤波器的衰减率为每倍频18分贝,如此类推。
图1所示为一阶至五阶巴特沃兹低通滤波器的幅频特性。
f20lg|H |/dB图1 一阶至五阶巴特沃兹低通滤波器二、切比雪夫滤波器在巴特沃兹滤波器中,幅度响应在通带内是最平坦且没有起伏的,在阻带内是单调下降的,然而衰减速度相对较为缓慢。
七阶元件级仿真椭圆滤波器设计方法

2021年5月第40卷第5期洛阳师范学院学报Journal of Luoyang Normal UniversityMay,2021Vol.40No.5七阶元件级仿真椭圆滤波器设计方法降雪辉,孙滨(郑州工业应用技术学院信息工程学院,河南新郑451150)摘要:在通信系统中,连续时间滤波器是不可或缺的部分,如何灵活简洁地设计出易于集成、高频特性好、传输特性误差小的滤波器是电路与系统学界研究的重要方向.本文给出一种基于积分器模块的通用设计方法.该方法实现的电路结构中电阻与电容的元件数值合适,易于集成电路的工艺实现,并具有低的元件参数分散度.仿真结果表明所提出的电路方案正确有效,适于全集成.关键词:积分器;连续时间滤波器;信号流图;有限传输零点中图分类号:TN713文献标识码:A文章编号:1009-4970(2021)05-0019-030前言在通信系统中,连续时间滤波器是不可或缺的组成部分如何简洁地设计出易于集成、高频特性好和传输误差小的滤波器是电路系统学研究的重要方向.近年来,采用MOS IC技术设计的基于积分器的滤波器3切得到了广泛关注,这主要是因为基于积分器的滤波器技术十分适合超声频(>100kHz)的应用,且片内电阻与电容的元件数值合适,易于集成电路的工艺实现,并具有低的元件参数分散度,其既可以单片集成,也可以用于片上系统[1°-121.在设计基于积分器的滤波器时,以无源LC梯形网络为原型,采用有源技术模拟该结构的间接设计方法得到了广泛的应用.信号流图(SFG)技术是实现间接设计方法的一种十分有效的技术.参考文献[13]和参考文献[14]采用信号流图技术实现了基于电流传送器的全集成高阶椭圆滤波器,参考文献[15]介绍了基于积分器模块互联的信号流图技术,并给出了全极点滤波器的设计方法.本文采用基于积分器模块互联的信号流图技术,对于有限传输零点的高阶低通滤波器,推导得出了其电路形式和元件参数,并给出一种基于积分器模块的通用设计方法.本结构中的积分器模块既可以用经典的负反馈全差分运算放大器实现,又可以用基于OTA (operational transconductance amplifier)的电路实现.1基于信号流图的高阶椭圆滤波器设计方法对有源梯形滤波器进行设计,首先需设计无源网络,其设计原型为双端接载的LC梯形滤波器,由此得到的有源滤波器保持了LC原型滤波器低灵敏度和低元件参数分散度的特性.采用信号流图方法设计且不含有限传输零点的低通滤波器的方法在多篇文献中已有介绍山切,本文在此基础上,以五阶椭圆低通滤波器为例讨论含有限传输零点的梯形滤波器的信号流图设计方法,并给出其电路结构.全极点五阶低通滤波器的电路结构如图1所示, 其信号流图的设计方法在本文中不进行讨论,只给出其积分器模块互联结构(见图2),采用全差分运算放大器实现的电路结构如图3所示.五阶椭圆低通无源LC滤波器梯形原形电路如图4所示.通过分析推导其信号流图,即可得到设计所有高阶椭圆滤波器的通用方法.首先,对其列出三个节点电压方程:A-/3-(v.-vjs^-v.sC.=o,厶+(%-匕)sC”-i5-v4sC3-(r4-v6)sC b=o +(V4-V6)sC b-I7-V6sC5=0(1)收稿日期:2020-06-08基金项目:河南省高等学校重点科研项目计划(16A510022);河南省高等学校重点科研项目资助项目(20A520039);河南省高等学校青年骨干教师培养计划资助项目(2019GGJS279)作者简介:降雪辉(1979—),女,河南汝州人,博士,副教授;孙滨(1983—),男,河南遂平人,副教授.洛阳师范学院学报2021年第5期图1全极点五阶低通滤波器原形电路再次,采用全差分运算放大器实现了一种五阶椭圆低通滤波器电路,其结构图如图7所示.图中标出了用于实现有限传输零点的耦合电容.图3全差分运算放大器实现全极点五阶滤波器o n --_图4五阶椭圆低通无源LC 梯形滤波器原形电路经整理,可得到三个节点的电压分别表示为公式(2)、公式(3)和公式(4):—售―令 ⑵T/3 -15 Z C aT岭=M +C 。
椭圆滤波器

椭圆滤波器(考尔滤波器)
特点:幅值响应在通带和阻带内都是等波纹的,对于给定的阶数和给定的波纹要求,椭圆滤波器能获得较其它滤波器为窄的过渡带宽,就这点而言,椭圆滤波器是最优的,其振幅平方函数为
式中,R N (Ω,L )为雅可比椭圆函数,L 是一个表示波纹性质的参量。
图 N=5时 的特性曲线
由图可见,在归一化通带内(-1≤Ω≤1),
在(0,1)间振荡,
而超过ΩL 后, 在L 2和 间振荡。
L 越大,ΩL 也变大。
这一特点使滤
波器同时在通带和阻带具有任意衰减量。
下图为典型的椭园滤波器振幅平方函数:
图椭圆滤波器的振幅平方函数
图中ε和A的定义与切比雪夫滤波器相同。
、ε和A确定后,阶次N的确定方法为:
当Ωc、Ω
s
式中K(k)=为第一类完全椭圆积分。
上面讨论了三种最常用模拟低通滤波器的特性和设计方法,设计时按照指标要求,合理选用。
一般,椭圆滤波器的阶次可最低,切比雪夫次之,巴特沃兹最高,参数的灵敏度则恰恰相反。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆滤波器(考尔滤波器)
特点:幅值响应在通带和阻带内都是等波纹的,对于给定的阶数和给定的波纹要求,椭圆滤波器能获得较其它滤波器为窄的过渡带宽,就这点而言,椭圆滤波器是最优的,其振幅平方函数为
式中,RN(Ω,L)为雅可比椭圆函数,L是一个表示波纹性质的参量。
由图可见,在归一化通带内(-1≤Ω≤1),在(0,1)间振荡,而超过ΩL后,在L2和间振荡。
L越大,ΩL也变大。
这一特点使滤波器同时在通带和阻带具有任意衰减量。
下图为典型的椭园滤波器振幅平方函数:
图中ε和A的定义与切比雪夫滤波器相同。
当Ωc、Ωs、ε和A确定后,阶次N的确定方法为:
上面讨论了三种最常用模拟低通滤波器的特性和设计方法,设计时按照指标要求,合理选用。
一般,椭圆滤波器的阶次可最低,切比雪夫次之,巴特沃兹最高,参数的灵敏度则恰恰相反。