八年级数学下册第十九章一次函数19.1变量与函数19.1.2函数的图象第1课时函数的图象及其画法练习新版新人教
《19.1 变量与函数》课件(含习题)

讲授新课
一 函数的相关概念
情景一
想一想,如果你坐 在摩天轮上,随着 时间的变化,你离 开地面的高度是如 何变化的?
下图反映了摩天轮上的一点的高度h (m)与旋转时间t(min) 之间的关系.
(1)根据左图填表:
t/分 0 1 2 3 4 5 … h/米 3 10 37 45 37 11 … (2)对于给定的时间t ,相 应的高度h能确定吗?
方法 区分常量与变量,就是看在某个变化过程中,该 量的值是否可以改变,即是否可以取不同的值.
二 确定两个变量之间的关系
例3 弹簧的长度与所挂重物有关.如果弹簧原长为10cm, 每1千克重物使弹簧伸长0.5cm,试填下表:
重物的质量 1 2 3 4 5 (kg)
弹簧长度 (cm)
10.5 11
11.5 12 12.5
4x 8 0 x 2
(3) y x 3
x 3 0 x 3
(4) y x 1 1 1 x
x 1且 x 1
x 1 0
1 x 0
即 xx
1 1
... -1 0 1
5.我市白天乘坐出租车收费标准如下:乘坐里程不超过3公 里,一律收费8元;超过3公里时,超过3公里的部分,每公里 加收1.8元;设乘坐出租车的里程为x(公里)(x为整数), 相对应的收费为y(元).
4.收音机上的刻度盘的波长和频率分别是用米(m)和 千赫兹(kHz)为单位标刻的.下面是一些对应的数:
波长l(m) 300 500 600 1000 1500 频率 1000 600 500 300 200 f(khz)
你能发现每一组l,f 的值之间的关系吗?并指出变量与 常量.
人教版版八年级下册数学习题课件19.1函数19.1.2函数的图象第1课时函数的图象及其画法

二、填空题(每小题6分,共6分) 2.(4分)(株洲中考)爷爷在离家900米的公园锻炼后回家,离开公园20分钟后,爷爷停下来与朋友聊天10分钟,接着又走了15分钟回到家中.下面图形中表示爷爷离家的距离y(米)与 爷爷离开公园的时间x(分)之间的函数关系是( B )
第十九章 一次函数
19.1.2 函数的图象
第1课时 函数的图象及其画法
八年级下册·数学·人教版
12.(12分)某车间的甲、乙两名工人分别同时生产同种零件,他们生产的零件个数y(个)与生产时间t(小时)之间的函数关系如图所示.
1.对于一个函数,如果把自变量与函数的每对对应值分别作为点的__横、纵坐标
(1)体育馆离家的距离为__2.5__千米,书店离家的距离为__1.5__千米;王亮同学在 书店待了__30__分钟. (2)分别求王亮同学从体育馆走到书店的平均速度和从书店出来散步回家的平均速 度.
解:(2)从体育馆到书店的平均速度 v=2.5-1.5= 1 千米/分钟,从书店散步到家的平均 50-35 15
解:(1)由题意可知,乙的函数图象是l2,甲的速度是60=30(km/h),乙的速度是60=
2
3
20(km/h).故答案为l2,30,20
(2)设甲出发x小时两人恰好相距5 km.
由题意30x+20(x-0.5)+5=60或30x+20(x-0.5)-5=60,解得x=1.3或1.5,答:
甲出发1.3小时或1.5小时两人恰好相距5 km
【综合应用】 14.(14分)(青岛中考)A,B两地相距60 km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:
初中数学第十九章 一次函数教案人教版

目录第十九章一次函数19.1 函数/4719.1.1 变量与函数/47第1课时变量/47第2课时函数/4919.1.2 函数的图象/5119.2 一次函数/5419.2.1 正比例函数/5419.2.2 一次函数/56第1课时一次函数/56第2课时求一次函数的表达式/59 19.2.3 一次函数与方程、不等式/61 19.3 课题学习选择方案/63第十九章一次函数知识结构课题变量与函数课时第1课时上课时间教学目标1.知识与技能(1)认识变量、常量.(2)学会用含一个变量的代数式表示另一个变量.2.过程与方法(1)经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己的观点.(2)逐步感知变量间的关系.3.情感、态度与价值观(1)积极参与数学活动,对数学产生好奇心和求知欲.(2)形成实事求是的态度以及独立思考的习惯.教学重难点重点:(1)认识变量、常量.(2)用式子表示变量间关系.难点:用含有一个变量的式子表示另一个变量.教学活动设计二次设计课堂导入情景问题:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.行驶时间为t 小时.1.请同学们根据题意填写下表:t/小时12345s/千米2.在以上这个过程中,变化的量是.不变的量是.3.试用含t的式子表示s.通过本节课的学习,相信大家一定能够解决这些问题.探索新知合作探究自学指导自学课本,尝试完成课本练习.合作探究探究内容设计:1.每张电影票售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元.设一场电影售票x张,票房收入y元.怎样用含x的式子表示y?2.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10 cm,每1 kg重物使弹簧伸长0.5 cm,怎样用含有重物质量m的式子表示受力后的弹簧长度?教师:引导学生通过合理、正确的思维方法探索出变化规律.学生:在教师的启发引导下,经历尝试运算、猜想探究、归纳总结及验证等过程得到正确的结论.续表探索新知合作探究通过上述探究活动,我们清楚地认识到,要想寻求事物变化过程的规律,首先需确定在这个过程中哪些量是变化的,而哪些量又是不变的.在一个变化过程中,我们称数值发生变化的量为变量,那么数值始终不变的量称之为常量.教师指导1.归纳小结:在某一变化过程中,可以取不同数值的量,叫做变量,数值保持不变的量叫做常量.2.方法规律:(1)变量和常量往往是相对的,相对于某个变化过程,在不同研究过程中,作为变量与常量的身份是可以相互转换的.(2)常量、变量与字母的指数没有关系,如S=πr2中,不能说自变量是r2.当堂训练1.分别指出下列各式中的常量与变量.(1)圆的面积公式S=πr2;(2)正方形的周长:l=4a;(3)大米的单价为2.50元/千克,则购买的大米的数量x(kg)与金额y的关系为y=2.5x.2.写出下面问题的关系式,并指出常量和变量.如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式.板书设计变量1.什么是常量2.什么是变量3.常量与变量的区分教学反思课题变量与函数课时第2课时上课时间教学 1.知识与技能目标(1)经过回顾思考认识变量中的自变量与函数.(2)进一步理解掌握确定函数关系式.(3)会确定自变量取值范围.2.过程与方法(1)经历回顾思考过程、提高归纳总结概括能力.(2)通过从图或表格中寻找两个变量间的关系,提高识图及读表能力,体会函数的不同表达方式.3.情感、态度与价值观(1)积极参与活动、提高学习兴趣.(2)形成合作交流意识及独立思考的习惯.教学重难点重点:1.进一步掌握确定函数关系的方法.2.确定自变量的取值范围.难点:认识函数、领会函数的意义.教学活动设计二次设计课堂导入如图,水滴激起的波纹可以看成是一个不断向外扩展的圆,它的面积随着半径的变化而变化;随着半径的确定而确定.在上述例子中,每个变化过程中的两个变最.当其中一个变量变化时,另一个变量也随着发生变化;当一个变量确定时,另一个变量也随着确定.你能举出一些类似的实例吗?从今天开始,我们就研究和此有关的问题——函数.探索新知合作探究自学指导自学课本,尝试完成课本练习合作探究我们来看下面的问题,通过观察、思考、讨论后回答:如图是体检时的心电图.其中横坐标x表示时间,纵坐标y表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?探索新知合作探究我们通过观察不难发现在上述问题的心电图中,对于x的每个确定值,y都有唯一确定的值与其对应.一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值.据此我们可以认为:上节情景问题中时间t是自变量,里程s是t的函数.t=1时的函数值s=60,t=2时的函数值s=120,t=2.5时的函数值s=150,…,同样地,在以上心电图问题中,时间x 是自变量,心脏部位的生物电流y是x的函数.教学活动设计二次设计课堂导入在太阳和月球引力的影响下,海水定时涨落的现象称为潮汐.如图是我国某港某天0时到24时的实时潮汐图.图中的平滑曲线,如实记录了当天每一时刻的潮位,揭示了这一天里潮位y(m)与时间t(h)之间的函数关系.本节课我们就研究函数图象.探索新知合作探究自学指导我们先来看这样一个问题:正方形的边长x与面积S的函数关系是什么?其中自变量x的取值范围是什么?计算并填写表格:x0.51 1.52 2.53 3.5S独立思考一下,表示x与S的对应关系的点有多少个?如果全在坐标中指出的话是什么样子?可以讨论一下,然后发表你们的看法,建议大家不妨动手画画看.得出结论:这样的点有无数多个,如果全描出来太麻烦,也不可能.我们只能描出其中一部分,然后想象出其他点的位置,用光滑曲线连接起来.这样我们就得到了一幅表示S与x关系的图.图中每个点都代表x的值与S的值的一种对应关系.如点(2,4)表示x=2时S=4.续表探索新知合作探究一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.函数图象可以通过数形结合来研究函数,给我们带来便利.合作探究探究一:如图是自动测温仪记录的图象,它反映了北京的春季某天气温T如何随时间t的变化而变化.你从图象中得到了哪些信息?教师引导学生从两个变量的对应关系上认识函数,体会函数意义;可以指导学生找出一天内最高、最低气温及时间;在某些时间段的变化趋势;认识图象的直观性及优缺点;总结变化规律…….学生在教师引导下,积极探寻,合作探究,归纳总结.探究二:如图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y 表示小明离他家的距离.根据图象探究下列问题:(1)菜地离小明家多远?小明走到菜地用了多少时间?(2)小明给菜地浇水用了多少时间?(3)菜地离玉米地多远?小明从菜地到玉米地用了多少时间?(4)小明给玉米地锄草用了多长时间?(5)玉米地离小明家多远?小明从玉米地走回家平均速度是多少?教师引导学生分析图象、寻找图象信息,特别是图象中有两段平行于x轴的线段的意义.学生在教师引导下,积极思考、大胆参与、探求答案.探究三:我们通过以上两个活动已学会了如何观察分析图象信息,那么已知函数关系式,怎样画出函数图象呢?例:在下列式子中,对于x的每个确定的值,y有唯一的对应值,即y是x的函数.请画出下列函数的图象.(1)y=x+0.5;(2)y=错误!未找到引用源。
八年级数学下册第19章一次函数19.1变量与函数19.1.1变量与函数课件(新版)新人教版

例2 下列变量间的关系是函数关系的是
.
①长方形的长与面积;②圆的面积与半径;
③y=± x ;④S= 1 ah中的S与h.
2
解析 ①因为长方形的长、宽、面积都不确定,有三个变量,所以长方
形的长与面积不是函数关系.②因为圆的面积公式为S=πr2,当半径r取一
个确定的值时,面积S就唯一确定,所以圆的面积与半径是函数关系.③当
解析 (1)根据函数的定义可知,对于底面半径的每个值,都有一个确定 的体积的值按照一定的法则与之相对应,所以自变量是底面半径,因变 量是体积. (2)体积增加了(π×102-π×12)×3=297π cm3.
2.(2018湖北咸宁咸安模拟)若函数y=
x
2
2(
x
2),
则当函数值y=8时,自
答案 B 把h=2代入T=21-6h,得T=21-6×2=9.故选B.
5.在函数y=3x+4中,当x=1时,函数值为 为10.
,当x=
时,函数值
答案 7;2
解析 当x=1时,y=3x+4=3×1+4=7.当函数值为10时,3x+4=10,解得x=2.
知识点三 自变量的取值范围
6.(2018江苏宿迁中考)函数y= 1 中,自变量x的取值范围是( )
知识点一 常量与变量 1.(2017河北唐山乐亭期中)一辆汽车以50 km/h的速度行驶,行驶的路程 s(km)与行驶的时间t(h)之间的关系式为s=50t,其中变量是 ( ) A.速度与路程 B.速度与时间 C.路程与时间 D.三者均为变量
答案 C 在s=50t中路程随时间的变化而变化,所以行驶时间是自变 量,行驶路程是因变量,速度为50 km/h,是常量.故选C.
八年级下册数学第十九章练习册参考答案

八年级下册数学第十九章练习册参考答案八年级下册数学第十九章练习册参考答案19.1.1变量与函数第1课时答案【基础知识】1、2π、r;c2、1,8,0.3;n,l3、21000,200;x,y4、0.4;0.8;1.2;1.6;y=0.4x5、y=30/x;30;x,y6、(1)s=x(10-x),敞亮是10,变量是x,s(2)α+β=90°,常量是90°,变量是α,β(3)y=30-0.5t,常量是30,0.5,变量是y,t(4)w=(n-2)×180°,常量是2,180°,变量是w,n(5)s=y-10t,常量是y,10,变量是s,t【能力提升】8、(1)65、101(2)w=n²+1(3)常量是1,变量是n,w19.1.1变量与函数第2课时答案【基础知识】1、d2、b3、c4、x≥15、y=5n;n;y;n6、y=360-9x;x;40,且x为正整数7、y=x(30-x/2)8、q/πa²【能力提升】9、(1)x≠2(2)x≥0,且x≠1(3)x≤2(4)x取任意实数10、(1)q=1000-60;(2)0≤t≤50/3(3)当t=10时,q=400(m²)(4)当q=520时,1000-60t=520 ∴t=8(h)19.1.1变量与函数第3课时答案【基础知识】1、c2、d3、a4、d5、q=30-1/2t;0≤t≤60;406、-3/27、y=2x8、s=4(n-1)9、(1)y=12+0.5x(2)17cm【能力提升】10、y=4(5-x)=-4x+20(0【探索研究】11、y=1/2x²-10x+5019.1.2函数的图象第1课时答案【基础知识】1、b2、a3、b4、6;-125、-46、207、略8、(1)-4≤x≤4(2)x=-4,-2,4时,y的值分别为2,-2,0(3)当y=0时,x的值为-3,-1,4(4)当x=3/2时,y的值最大;当x=-2时,y的值最小(5)当-2≤x≤3/2时,y随x的增大而增大当-4≤x≤-2或3/2≤x≤4时,y随x的增大而减小9、(1)距离和时间(2)10千米;30千米(3)10时30分~11时;13时【能力提升】10、略19.1.2函数的图象第2课时答案【基础知识】1、b2、d3、c4、提示:注意画图象的三个步骤:①列表;②描点;③连线,图表略5、(1)6(2)39.5;36.8(3)第一天6~12时下降最快,第三天12~18时比较稳定6、(1)c(2)a(3)b【能力提升】7、(1)任意实数(2)y≤2(3)28、(1)共4段时间加速,即12~13时,15~16时,19~20时,2~2.5时(2)共有5段时间匀速,即13~15时,16~17时,30~22时,23~24时,2.5~3.5时;其速度分别为:50km/h,60km/h,80km/h,60km/h,45km/h(3)共有4段时间减速,即17~18时,22~23时,24~1时,3.5~4时(4)略【探索研究】9、略19.2.1正比例函数第1课时答案【基础知识】1、a2、c3、c4、-15、(1)y=2.5x,时正比例函数(2)y=18-x/2,不是正比例函数6、解:设y=kx(k≠0),∴3=1/2k,∴k=6,∴y=6x.7、解:∵k²-9=0,∴k=±3,又∵k≠3,∴k=-3,∴y=-6x,当x=-4时,y=24.【能力提升】8、解:由题意得y=1.6x,当x=50时,y=1.6×50=80.9、(1)y=-x-3(2)-6(3)-3 2/3【探索研究】10、解:设y=k1x(k1≠0),z=k2y(k2≠0),∴z=k1k2x,∵k1k2≠0.∴z与x成正比例19.2.1正比例函数第2课时答案【基础知识】1、b2、c3、c4、d5、d6、(1,2)7、>18、一条直线;09、0.2;增大9、x;减小;二、四10、(1)k=2或k=-2(2)k=2(3)k=-2(4)略(5)点a在y=5/2x上,点b在y=-3/2x上【能力提升】11、解:设y+1=kx(k≠0),∴k=2x-1.当点(a,-2)在函数图像上时,有2a-1=-2,∴a=-1/212、(1)30km/h(2)当t=1时,s=30.(3)当s=100时,t=10/3【探索研究】13、y=360x,时正比例函数学子斋 > 课后答案 > 八年级下册课后答案 > 人教版八年级下册数学配套练习册答案 >19.2.1正比例函数第3课时答案【基础知识】1、c2、a3、a4、b5、>-2;一、三;6【能力提升】9、y=2x+210、(1)100(2)甲(3)8【探索研究】11、(1)15、4/15(2)s=4/45t(0≤t≤45) 19.2.2一次函数第1课时答案【基础知识】1、d2、d3、c4、a5、(1)(2)(4)(6)6、y=600-10t;一次7、3/4;-38、减小9、y=5x-210、y=-x11、-312、k=213、-2;514、(1)(-4,5)(2)(2,2),(10,-2)【能力提升】15、y=2x-516、a=-1【探索研究】17、(1)s=-2x+12(2)019.2.2一次函数第2课时答案【基础知识】1、1、d2、a3、b4、d5、a6、b7、38、y=2x+59、三条直线互相平行10、v=3.5t;7.5m/s11、y=t-0.6;2.4;6.412、1【能力提升】13、(1)k=1;b=2(2)a=-2【探索研究】14、(1)2;6毫克(2)3毫克(3)y=3x(0≤x≤2);y=-x+2(0(4)4h19.2.2一次函数第3课时答案【基础知识】1、(1)2(2)y=2x+30(0(3)由2x+30>49,得x>9.5,即至少放入10个小球时水溢出2、(1)h=9d-20(2)24cm3、(1)y=9/5x(0≤x≤15),y=2.5x-10.5(x>15)(2)当x=21时,y=42(元)4、y=1/10x-2(x≥20)【能力提升】5、(1)y甲=300x,y乙=350(x-3)(2)当人数为20人时,选乙旅行社比较合算,当人数为21人时,两旅行社费用一样多6、(1)y=7/5x+14/5(x≥3)(2)当x=2.5时,y=7(元)(3)当x=13时,y=7/5×13+14/5=21(元)(4)x=20(km)【探索研究】7、(1)8;10;12(2)图象略(3)提示:根据一次函数列方程求解19.2.3一次函数与方程、不等式第1课时答案【基础知识】1、d2、c3、a4、c5、66、(-3/2,0);x=-3/27、8、x24x,即02时,一半植树棵数多2、解:设团队中由游客x人,购买方式a、b得消费全额为ya元,yb元,由题意有:ya=20×0.8x=16x,yb=5×20+0.7×20(x-5)=14x+30.当16x=14x+30,即x=15时,两种方式一样,当16x>14x+30,即x>15时,选择方式b合算;当16x600+0.04x,即020000时,b公司工资待遇高.4、解:(1)y甲=1500+x,y乙=2.5x(2)图像略(3)当x=800时,y甲=2300,y乙=2000.∴选择乙印刷厂比较合算;当y=3000时,x甲=1500,x乙=1200.∴甲印刷厂印制的宣传材料多【探索研究】5、(1)200元(2)800页(3)有图象知,当每月复印页数在1200页左右时,y甲>y乙,∴选乙复印社合算第十九章综合练习答案一、选择#formattableid_0# 二、8、(3,0)(0,1)9、x≥-1且x≠010、-1;;211、略(答案不唯一)12、y=-2x+1;y=-2x-113、a>014、9三、15、y=x-516、y=x+317、图像略(1)(1,0)(2)当x>1时,y118、y=-3x+919、(1)m=3(2)-1/2≤m≤320、(1)4/3km/min(2)7min(3)s=2t-2021、提示:(1)设a型x套,b型(80-x)套,则2090≤25x+28×(80-x)≤2096,即48≤x≤50,∴有三种方案,即a型48套,b型32套;a型49套,b型31套;a型50套,b型30套(2)设利润为w万元,则w=(30-25)x+(34-28)(80-x),即w=-x+480,∴当x越小时,w越大.∴当x=48时,w=-48+480=432,∴a型48套,b型32套(3)w=(34-28)(80-x)+(30-25+a)x=(a-1)x+480,∴当a>1时,w=50(a-1)+480;当0∴当a>1时,a型50套,b型30套;当0。
八年级数学下册 第19章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案

售出票数x
100
120
140
160
180
……
票房收入y
①找一名学生填表,让学生一起分析y与x是不是单值对应关系;
②描述y与x的单值对应关系.
【设计意图】通过模仿训练,尝试初步理解单值对应的含义.
3、圆形水波慢慢地扩大,在这一过程中,圆的半径r 厘米 ,圆的面积为S 平方厘米,圆周率(圆周长与直径之比)为π.
(4)思考问题4中,矩形的宽y为自变量,矩形的长x是y的函数是否正确
①强调辨别函数的关键是:是否有两个变量,并且变量是否是单值对应关系;
②补充说明:一般地,主动变化的量是自变量,随之变化的量是函数。
【设计意图】借此例,将自变量与函数互换,说明只要满足单值对应,就可以用函数来表示这种关系,灵活理解函数的定义。
【设计意图】通过这三道例题,使学生学会根据定义判断函数关系,经过反复训练,突破难点.
4、P是数轴上的一个动点,它到原点的距离记为 x,它的坐标记为 y,y 是 x 的函数吗?为什么?
【设计意图】通过这道题,说明点的坐标y与绝对值x不是单值对应关系,所以不是函数;但反过来,x却是y的函数,采用小组讨论的方式,升华对函数定义的理解.
练习1:指出下列变化过程中的变量和常量:
1、某市的自来水价为4元/吨,现要抽取若干户居民调查水费支出情况,记某户月用水量为 x 吨,月应交水费为 y 元;
2、某地手机通话费为0.2元/分,李明在手机话费卡中存入30元,记此后他的手机通话时间为t 分,话费卡中的余额为w 元;
3、水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长与直径之比)为π;
八年级数学下册 第十九章 一次函数. 变量与函数 函数的图象 函数的图象_0000

我们知道,函数图象是以自变量的值和对应的函数值分 别为横、纵坐标的点组成的图形,这样的点有无数个,那 么怎样判断(pànduàn)一个点是否在函数图象上?
判断下列(xiàliè)各点是否在函数 y=2x+1的图象上? ①(-4,-7); ②(4,4.5).
判断(pànduàn)方法:
通常的方法是把点的横坐标(即自变量x)的取值代入解析式求出相 应的函数值y值,看是否等于该点的纵坐标,如果等于,则该点在函数图
y 试画出函数(hánshù)பைடு நூலகம் 6 x
x … -5 -4 -3 -2 -1 1 y … 1.2 1.5 2 3 6 -6
的图象.
2 3 4 5… -3 -2 -1.5 -1.2 …
为什么没有
(méi yǒu)“0”?
解:(1)列表 取自变量的一些(yīxiē)值,并求出对应的函数值,填入表 中.
图中的曲线即函数S=x2 ( x>0)的图象.
第七页,共二十四页。
知识 要点 (zhī shi)
一般地,对于一个函数,如果把自变量与函数的每对 对应(duìyìng)值分别作为点的横、纵坐标,那么坐标平面内
由这些点组成的图形,就是这个函数的图象.
函数图象是典型的数形结合,图象应用(yìngyòng)广泛 ,通过看图获取信息,不仅可以解决生活中的实际问 题,还可以提高分析问题、解决问题的能力.
huá)的曲 线把这些点依次连 接起来.
1
-5 -4 -3 -2 -1 o -1 -2
-3 -4
-5
第十六页,共二十四页。
-6
1 2 3 4 5x
(1,-6)
知识要点
1.画函数的图象的一般步骤:
(1)列表(liè biǎo)(表中给出一些自变量的值及其对应的函数)
八年级数学下册 第十九章 一次函数 19.1.1 变量与函数课件下册数学课件

(2)y=
:______x_≤__4____________________;
(3)y=
:_______x_≥__-_2__且_x_≠__1____________;
(4)y=
12/12/2021
:_______x_≥__-__1_________________.
第十八页,共二十三页。
课后巩固
(gǒnggù)
第十五页,共二十三页。
课后巩固
(gǒnggù)
11.在球的体积公式v= πr3中,下面说法正确 的是( C )
A.v、π、r是变量, 是常量
B.v、r是变量, 是常量
C.v、r是变量, 、π是常量 D.以上都不正确
12/12/2021
第十六页,共二十三页。
课后巩固
(gǒnggù)
12.下列等式(děngshì)中,y是x的函数的是A
()
A.y=|x|
B.y2=x
C.|y|=|x|
D.y=±x
13.当x=2时,函数y=2x-1的函数值是( ) C
A.0
B.-3 C.3
D.4
12/12/2021
第十七页,共二十三页。
课后巩固 (gǒnggù)
14.写出下列函数自变量的取值范围(填在相应的 横线上):
(1)y=
:______x_≠__-__2__________________;
第十三页,共二十三页。
课堂(kètáng) 导学
知识点4:列函数(hánshù)解
【析例式4】汽车开始行驶时,油箱中有油40 L,如果每小 时耗油5 L,则油箱内余油量y(L)与行驶时间x(h)的关系式 为_______________.y=40-5x.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.1.2 第1课时函数的图象及其画法
知识点 1 从函数图象中读取信息
1.下列各图象中,不表示y是x的函数的是( )
图19-1-4
2.如图19-1-5是某市某一天内的气温变化图,根据图象,下列说法中错误
..的是( )
图19-1-5
A.这一天中最高气温是28 ℃
B.这一天中最高气温与最低气温的差为16 ℃
C.这一天中2时至14时之间的气温在逐渐升高
D.这一天中只有14时至24时之间的气温在逐渐降低
3.图19-1-6反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离.小明家、菜地、玉米地在同一条直线上.
(1)小明从家到菜地用了________分钟;菜地离小明家有________千米.
(2)小明给菜地浇水用了________分钟.
(3)从菜地到玉米地用了________分钟;菜地离玉米地有________千米.
(4)小明给玉米地锄草用了________分钟.
(5)玉米地离小明家有________千米;小明从玉米地回家的平均速度是________千米/分.
4.如图19-1-7为一位旅行者在早晨8时从城市出发到郊外所走的路程s (单位:千米)与时间t (单位:时)的变化关系的图象.根据图象解答下列问题:
(1)在这个变化过程中,自变量是________,因变量是________; (2)9时、12时所走的路程分别是多少? (3)他休息了多长时间?
(4)他从休息后直至到达目的地这段时间的平均速度是多少?
图19-1-7
知识点 2 函数图象上的点与函数解析式的关系
5.下列四点中,在函数y =3x +2的图象上的是( )
A .(0,-2) B.⎝ ⎛⎭⎪⎫23,0 C .(-2,-4) D.⎝ ⎛⎭
⎪⎫12,212 6.已知点P (3,m ),Q (n ,2)都在函数y =x +8的图象上,则m +n =________.
7.画出函数y =2x -1的图象,并判断点(1,1),(-1,0),(-2,3),(2,3)在不在该函数图象上.
8.[2018·通辽]小刚从家去学校,先匀速步行到车站,等了几分钟后坐上公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶的路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是( )
图19-1-8
9.[2018·青海]均匀地向一个容器注水,最后将容器注满,在注水过程中,水面的高度h随时间t的变化规律如图19-1-9所示,这个容器的形状可能是( )
图19-1-9
图19-1-10
10.如图19-1-11是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )
A.乙车前4秒行驶的路程为48米
B.在0到8秒内甲车的速度每秒增加4米
C.两车到第3秒时行驶的路程相等
D.在4至8秒内甲车的速度都大于乙车的速度
图19-1-11 图19-1-12
11.地铁一号线的列车匀速通过某隧道时,列车在隧道内的长度y(米)与列车行驶时间x(秒)之间的关系用图象描述如图19-1-12所示,有下列结论:
①列车的长度为120米;②列车的速度为30米/秒;③列车整体在隧道内的时间为25秒;④隧道的长度为750米.其中正确的结论是________(填正确结论的序号).
12.(1)画出函数y =12
x 2
的图象;
(2)试判断点(-3,-2)是否在上述函数图象上.
拓广探究创新练 冲刺满分
13.[2018·舟山]如图19-1-13①,小红帮弟弟荡秋千,秋千离地面的高度h (m)与摆动时间t (s)之间的关系如图②所示.
(1)根据函数的定义,请判断变量h 是不是关于t 的函数? (2)结合图象回答:
①当t =0.7时,h 的值是多少?并说明它的实际意义; ②秋千摆动第一个来回需要多少时间?
图19-1-13
教师详解详析1.C 2.D
3.(1)15 1.1 (2)10 (3)12 0.9
(4)18 (5)2 2 25
4.解:(1)时间t路程s
(2)由图可知:9时、12时所走的路程分别是4千米、15千米.
(3)根据图象可得,该旅行者休息的时间为10.5-10=0.5(时).
(4)根据图象,得(15-9)÷(12-10.5)=4(千米/时).
答:他从休息后直至到达目的地这段时间的平均速度是4千米/时.
5.C [解析] 根据函数图象的定义,如果点的坐标满足函数解析式,那么这个点就在这个函数的图象上,通过计算,可知选C.
6.5 [解析] 根据函数图象的定义知点P(3,m)和点Q(n,2)都满足函数解析式y=x+8,所以3+8=m,n+8=2,解得m=11,n=-6,所以m+n=11+(-6)=5.
7
描点,并用平滑的曲线连接这些点,就得到函数y=2x-1的图象.
点(1,1),(2,3)在函数y=2x-1的图象上,点(-1,0),(-2,3)不在函数y=2x-1的图象上.
8.B [解析] 小刚从家到学校行驶的路程s(m)应随他行走的时间t(min)的增大而增大,因此A选项一定错误;而等车的时候行驶的路程不变,因此C,D选项错误,所以能反映小刚从家到学校行驶的路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是B.故选B.
9.D
10.C [解析] A项,根据图象可得,乙车前4秒行驶的路程为12×4=48(米),正确;
B项,根据图象可得,在0到8秒内甲车的速度每秒增加4米,正确;
C项,根据图象可得,两车到第3秒时行驶的路程不相等,错误;
D项,在4至8秒内甲车的速度都大于乙车的速度,正确.故选C.
11.②③[解析] 在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,故②正确;列车的长度是150米,故①错误;列车整体在隧道内的时间是35-5-5=25(秒),故③正确;隧道的长度是35×30-150=1050-150=900(米),故④错误.
12.解:(1)列表如下:
描点,连线:
(2)当x =-3时,y =12×(-3)2
=92≠-2,∴点(-3,-2)不在函数y =12x 2的图象上.
13.解:(1)∵对于每一个摆动时间t ,都有一个唯一确定的h 值与其对应,
∴变量h 是关于t 的函数. (2)①当t =0.7时,h =0.5,它的实际意义是秋千摆动0.7 s 时,离地面的高度为0.5 m. ②2.8 s.。