高三一轮复习--33数列求和
高考第一轮复习之方法指导——《数列求和的方法》

高考第一轮复习之方法指导——《数列求和的方法》数列求和是高中数学中非常重要的一个概念,也是高考中经常会涉及到的内容。
下面给出一些数列求和的方法指导,希望对高考复习有所帮助。
1.等差数列求和:等差数列是高中数学中最基本的数列之一,求和方法也是最为简单的。
对于一个等差数列:a_1,a_2,a_3,...,a_n,如果首项是a_1,公差是d,则数列的和可以通过如下公式计算:S_n=(n/2)(a_1+a_n)其中,S_n表示数列的和,n表示数列的项数,a_n表示数列的最后一项。
2.等比数列求和:等比数列也是高中数学中常见的数列类型,求和方法相对于等差数列要稍复杂一些。
对于一个等比数列:a_1,a_2,a_3,...,a_n,如果首项是a_1,公比是q,则数列的和可以通过如下公式计算:S_n=(a_1(q^n-1))/(q-1)其中,S_n表示数列的和,n表示数列的项数,q表示数列的公比。
3.等差数列前n项和:如果需要计算等差数列的前n项的和,可以通过使用等差数列求和公式快速计算。
首先,计算数列的首项a_1和最后一项a_n,然后带入求和公式即可。
4.等差数列项数:如果需要计算等差数列的项数n,可以通过反推求解。
首先,计算数列的首项a_1和最后一项a_n,然后使用如下公式:n=(a_n-a_1)/d+1其中,n表示等差数列的项数,a_n表示最后一项,a_1表示首项,d表示公差。
5.等差数列的和等于0:如果一个等差数列的和等于0,可以应用等差数列的性质进行求解。
首先,计算数列的首项a_1和公差d,然后使用等差数列求和公式解方程:n/2(a_1+a_n)=0可得等差数列的项数n。
6.等差数列差数求和:如果需要计算等差数列的差数的和,可以使用差数求和公式进行计算。
该公式是等差数列求和公式的一个变形。
首先,计算差数的和:S_d=(n/2)(a_2-a_1)其中,S_d表示差数的和,n表示数列的项数,a_1表示首项,a_2表示第二项。
一轮复习-数列求和专题

2n
1
1 2n
=1
2
1 2
1 4
1 2n1
2n 1 2n
=1
2
1 2
1 1
1 2n1 1
2n 1 2n
2
=3
2n 2n
3
变式探究
2. 设数列{an} 满足a1+3a2+32a3+…+
n3 3n-1an= ,a∈N*.
(1)求数列{an}的通项;
(2)设bn=
n an
,求数列{bn}的前n项和Sn.
1
1 1+ 2 1+ 2 + 3
1+ 2 + 3 + 4 + ....+ n
解:an
1 1 23
2 n n(n 1)
2( 1 1 ) n n 1
1 11
11
Sn
2[(1
)( 22
) 3
(
)]
n n 1
2(1 1 ) 2n n 1 n 1
3.
1
1( 1 1 )
(2n 1)(2n 1) 2 2n 1 2n 1
4. 1 1 ( a b) a b ab
5.
1
1[ 1
1
]
n(n 1)(n 2) 2 n(n 1) (n 1)(n 2)
nn+1 n n+1
6.
n常n见21nn1- +的1111裂2n+nn项+21公==12式12n2n有nn1+1-:111--2nn1++11n1,n+2.
=
(6n
-
5)[6(n
+ 1)
-
5]
=
2
(
6n
-
高三数学第一轮复习 —数列求和教案

解:〔1〕
.
〔2〕∵ ,
∴ .
〔3〕∵
∴
.
〔4〕 ,
当 时, … ,
当 时, … ,
… ,
两式相减得 … ,
∴ .
〔5〕∵ ,
∴原式 … … .
〔6〕设 ,
又∵ ,
∴ , .
例2.数列 的通项 ,求其前 项和 .
解:奇数项组成以 为首项,公差为12的等差数列,
偶数项组成以 为首项,公比为4的等比数列;
2.倒序相加、错位相减,分组求和、拆项求和Hale Waihona Puke 求和方法;〔二〕主要方法:
1.求数列的和注意方法的选取:关键是看数列的通项公式;
2.求和过程中注意分类讨论思想的运用;
3.转化思想的运用;
〔三〕例题分析:
例1.求以下数列的前 项和 :
〔1〕5,55,555,5555,…, ,…;〔2〕 ;
〔3〕 ;〔4〕 ;
芯衣州星海市涌泉学校一.课题:数列求和
二.教学目的:1.纯熟掌握等差数列与等比数列的求和公式;
2.能运用倒序相加、错位相减、拆项相消等重要的数学方法进展求和运算;
3.熟记一些常用的数列的和的公式.
三.教学重点:特殊数列求和的方法.
四.教学过程:
〔一〕主要知识:
1.等差数列与等比数列的求和公式的应用;
当 为奇数时,奇数项有 项,偶数项有 项,
∴ ,
当 为偶数时,奇数项和偶数项分别有 项,
∴ ,
所以, .
例3.〔高考A方案智能训练14题〕数列 的前 项和 ,数列 满足 ,假设 是等比数列,
〔1〕求 的值及通项 ;〔2〕求和 … .
〔解答见教师用书127页〕
数列求和课件-2025届高三数学一轮复习

(2)设 =
,数列{ }的前项和为 ,若 = ,求的值.
+
【解】 由(1)知, =
=
=
−
,
+
− +
−
+
所以 = − + − + ⋯ +
−
−
+
= −
=
.
+
×[− ]
−
−×
错位相减法求和的注意事项
(1)掌握解题的“3个步骤”
(2)注意解题的“3个关键”
①要善于识别题目类型,特别是等比数列的公比为负数的情形.
②在写出“ ”与“ ”的表达式时应特别注意将两式“错项对齐”以便下一
步准确写出“ − ”的表达式.
③在应用错位相减法求和时,若等比数列的公比为参数,应分公比 = 和
− = − = .故
2.在数列{ }中, =
2 023
_______.
解析:由题意得 =
所以 =
= .
−
+ −
+
,若数列{ }的前项和为
,则
= −
,
+
+
+ ⋯+ −
=
或可求和的数列组成的,则求和时可用分组求和法,分别求和后再相加减.
高三数学数列的求和

11
1
(
)
(2n 1)(2n 1) 2 2n 1 2n 1
4.
1
1[ 1
1
]
n(n 1)(n 2) 2 n(n 1) (n 1)(n 2)
5. 1 1 ( a b ) a b ab
五、分组求和法
通过把数列的通项分解成几项,从而出现 几个等差数列或等比数列,再根据公式进 行求和。关键是分析通项
一、公式法 1. 等差数列求和公式:
Sn
na1
2
an
na1
nn 1
d 2
2. 等比数列求和公式:
Sn
na1 a1 1
qn
1 q
q 1 a1 anq q 1
1q
一、公式法
常见数列的前n项和公式
1 2 3 n n(n 1) ; 2
1 23
1 n (n
1)练习Leabharlann .求和1 Sn=2×5
1 +5×8
1 +8×11
1 + …+(3n-1) (3n+2)
常见的拆项公式
1. 1 1 1 n(n 1) n n 1
2. 1 1 ( 1 1 ) n(n k ) k n n k
3. 1
把通项分解成几项,从而出现 几个等差数列或等比数列进行 求和。
练习
1、求数列5,55,555, …,555…5的和
n个
an
5 9
10n
1
Sn
5 81
10n1
2023年高考数学一轮复习讲义——数列求和

§6.5 数列求和 考试要求 1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差数列、非等比数列求和的几种常见方法. 知识梳理数列求和的几种常用方法1.公式法直接利用等差数列、等比数列的前n 项和公式求和.(1)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1. 2.分组求和法与并项求和法(1)若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(2)形如a n =(-1)n ·f (n )类型,常采用两项合并求解.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.4.裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(2)常见的裂项技巧①1n (n +1)=1n -1n +1. ②1n (n +2)=12⎝⎛⎭⎫1n -1n +2. ③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1. ④1n +n +1=n +1-n .思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( √ ) (2)当n ≥2时,1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1.( √ ) (3)求S n =a +2a 2+3a 3+…+na n 时,只要把上式等号两边同时乘a 即可根据错位相减法求得.( × )(4)求数列⎩⎨⎧⎭⎬⎫12n +2n +3的前n 项和可用分组转化法求和.( √ ) 教材改编题1.数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( )A .-200B .-100C .200D .100答案 D解析 S 100=(-1+3)+(-5+7)+…+(-197+199)=2×50=100.2.等差数列{a n }中,已知公差d =12,且a 1+a 3+…+a 99=50,则a 2+a 4+…+a 100等于( ) A .50B .75C .100D .125 答案 B解析 a 2+a 4+…+a 100=(a 1+d )+(a 3+d )+…+(a 99+d )=(a 1+a 3+…+a 99)+50d=50+25=75.3.在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0222 023,则项数n =________. 答案 2 022解析 a n =1n (n +1)=1n -1n +1, ∴S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0222 023, ∴n =2 022.题型一 分组求和与并项求和例1 (2022·衡水质检)已知各项都不相等的等差数列{a n },a 6=6,又a 1,a 2,a 4成等比数列.(1)求数列{a n }的通项公式;(2)设b n =2n a +(-1)n a n ,求数列{b n }的前2n 项和T 2n .解 (1)∵{a n }为各项都不相等的等差数列,a 6=6,且a 1,a 2,a 4成等比数列.∴⎩⎪⎨⎪⎧ a 6=a 1+5d =6,(a 1+d )2=a 1(a 1+3d ),d ≠0,解得a 1=1,d =1,∴数列{a n }的通项公式a n =1+(n -1)×1=n .(2)由(1)知,b n =2n +(-1)n n ,记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2, B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.延伸探究 在本例(2)中,如何求数列{b n }的前n 项和T n ?解 由本例(2)知b n =2n +(-1)n n .当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ]=2-2n +11-2+n 2=2n +1+n 2-2;当n 为奇数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -2)+(n -1)-n ]=2n +1-2+n -12-n =2n +1-n 2-52. 所以T n =⎩⎨⎧ 2n +1+n 2-2,n 为偶数,2n +1-n 2-52,n 为奇数.教师备选(2020·新高考全国Ⅰ)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8.(1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100. 解 (1)由于数列{a n }是公比大于1的等比数列,设首项为a 1,公比为q ,依题意有⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2=8, 解得⎩⎪⎨⎪⎧ a 1=32,q =12(舍)或⎩⎪⎨⎪⎧a 1=2,q =2, 所以{a n }的通项公式为a n =2n ,n ∈N *.(2)由于21=2,22=4,23=8,24=16,25=32,26=64,27=128,所以b 1对应的区间为(0,1],则b 1=0;b 2,b 3对应的区间分别为(0,2],(0,3],则b 2=b 3=1,即有2个1;b 4,b 5,b 6,b 7对应的区间分别为(0,4],(0,5],(0,6],(0,7],则b 4=b 5=b 6=b 7=2,即有22个2;b 8,b 9,…,b 15对应的区间分别为(0,8],(0,9],…,(0,15],则b 8=b 9=…=b 15=3, 即有23个3;b 16,b 17,…,b 31对应的区间分别为(0,16],(0,17],…,(0,31],则b 16=b 17=…=b 31=4,即有24个4;b 32,b 33,…,b 63对应的区间分别为(0,32],(0,33],…,(0,63],则b 32=b 33=…=b 63=5,即有25个5;b 64,b 65,…,b 100对应的区间分别为(0,64],(0,65],…,(0,100],则b 64=b 65=…=b 100=6,即有37个6.所以S 100=1×2+2×22+3×23+4×24+5×25+6×37=480.思维升华 (1)若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.(2)若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{c n }的前n 项和.跟踪训练1 (2022·重庆质检)已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25.(1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5,又a 5=9=a 1+4d ,所以d =2,a 1=1,所以a n =2n -1,S n =n (1+2n -1)2=n 2. (2)结合(1)知b n =(-1)n n 2,当n 为偶数时,T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)]=1+2+3+…+n =n (n +1)2. 当n 为奇数时,n -1为偶数,T n =T n -1+(-1)n ·n 2=(n -1)n 2-n 2=-n (n +1)2. 综上可知,T n =(-1)n n (n +1)2. 题型二 错位相减法求和例2 (10分)(2021·全国乙卷)设{a n }是首项为1的等比数列,数列{b n }满足b n =na n 3.已知a 1,3a 2,9a 3成等差数列.(1)求{a n }和{b n }的通项公式; [切入点:设基本量q ](2)记S n 和T n 分别为{a n }和{b n }的前n 项和.证明:T n <S n 2. [关键点:b n =n ·⎝⎛⎭⎫13n ]教师备选(2020·全国Ⅰ)设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项.(1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和.解 (1)设{a n }的公比为q ,∵a 1为a 2,a 3的等差中项,∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0,∴q 2+q -2=0,∵q ≠1,∴q =-2.(2)设{na n }的前n 项和为S n ,a 1=1,a n =(-2)n -1,S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,② ①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n=1-(-2)n 1-(-2)-n (-2)n =1-(1+3n )(-2)n 3, ∴S n =1-(1+3n )(-2)n 9,n ∈N *. 思维升华 (1)如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,常采用错位相减法.(2)错位相减法求和时,应注意:①在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.②应用等比数列求和公式必须注意公比q 是否等于1,如果q =1,应用公式S n =na 1.跟踪训练2 (2021·浙江)已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *). (1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.解 (1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9,两式相减可得4a n +1=3a n ,即a n +1a n =34. 当n =1时,4S 2=4⎝⎛⎭⎫-94+a 2=-274-9, 解得a 2=-2716, 所以a 2a 1=34.所以数列{a n }是首项为-94,公比为34的等比数列, 所以a n =-94×⎝⎛⎭⎫34n -1=-3n +14n . (2)因为3b n +(n -4)a n =0,所以b n =(n -4)×⎝⎛⎭⎫34n .所以T n =-3×34-2×⎝⎛⎭⎫342-1×⎝⎛⎭⎫343+0×⎝⎛⎭⎫344+…+(n -4)×⎝⎛⎭⎫34n ,① 且34T n =-3×⎝⎛⎭⎫342-2×⎝⎛⎭⎫343-1×⎝⎛⎭⎫344+0×⎝⎛⎭⎫345+…+(n -5)×⎝⎛⎭⎫34n +(n -4)×⎝⎛⎭⎫34n +1,② ①-②得14T n =-3×34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -(n -4)×⎝⎛⎭⎫34n +1 =-94+916⎣⎡⎦⎤1-⎝⎛⎭⎫34n -11-34-(n -4)×⎝⎛⎭⎫34n +1 =-n ×⎝⎛⎭⎫34n +1,所以T n =-4n ×⎝⎛⎭⎫34n +1.因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n ×⎝⎛⎭⎫34n +1≤λ⎣⎡⎦⎤(n -4)×⎝⎛⎭⎫34n 恒成立,即-3n ≤λ(n -4)恒成立, 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立,当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3.所以-3≤λ≤1.题型三 裂项相消法求和例3 (2022·咸宁模拟)设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *. (1)求数列{a n }的通项公式; (2)若b n =1a n -1,求数列{b n }的前n 项和S n . 解 (1)因为a n +1+a n =4+2a n +1a n ,n ∈N *, 所以a n +1+a n -2a n +1a n =4, 即(a n +1-a n )2=4,又{a n }是各项为正数的单调递增数列,所以a n +1-a n =2,又a 1=2,所以{a n }是首项为2,公差为2的等差数列,所以a n =2+2(n -1)=2n ,所以a n =4n 2.(2)b n =1a n -1=14n 2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1, 所以S n =b 1+b 2+…+b n =12⎝⎛⎭⎫1-13+ 12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 教师备选设数列{a n }的前n 项和为S n ,且2S n =3a n -1.(1)求{a n }的通项公式;(2)若b n =3n (a n +1)(a n +1+1),求{b n }的前n 项和T n ,证明:38≤T n <34. (1)解 因为2S n =3a n -1,所以2S 1=2a 1=3a 1-1,即a 1=1.当n ≥2时,2S n -1=3a n -1-1,则2S n -2S n -1=2a n =3a n -3a n -1,整理得a n a n -1=3, 则数列{a n }是以1为首项,3为公比的等比数列,故a n =1×3n -1=3n -1.(2)证明 由(1)得b n =3n(3n -1+1)(3n +1)=32×⎝ ⎛⎭⎪⎫13n -1+1-13n +1, 所以T n =32×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫130+1-131+1+⎝ ⎛⎭⎪⎫131+1-132+1+⎝ ⎛⎭⎪⎫132+1-133+1+…+⎝ ⎛⎭⎪⎫13n -1+1-13n +1, 即T n =32×⎝ ⎛⎭⎪⎫12-13n +1=34-323n +1, 所以T n <34, 又因为T n 为递增数列,所以T n ≥T 1=34-38=38, 所以38≤T n <34. 思维升华 利用裂项相消法求和的注意事项(1)抵消后不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.(2)将通项裂项后,有时需要调整前面的系数,如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1, 1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2. 跟踪训练3 (2022·河北衡水中学模拟)已知数列{a n }满足a 1=4,且当n ≥2时,(n -1)a n = n (a n -1+2n -2).(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)记b n =2n +1a 2n ,求数列{b n }的前n 项和S n . (1)证明 当n ≥2时,(n -1)a n =n (a n -1+2n -2),将上式两边都除以n (n -1),得a n n =a n -1+2n -2n -1, 即a n n -a n -1n -1=2, 所以数列⎩⎨⎧⎭⎬⎫a n n 是以a 11=4为首项,2为公差的等差数列. (2)解 由(1)得a n n=4+2(n -1)=2n +2, 即a n =2n (n +1),所以b n =2n +1a 2n =14⎣⎢⎡⎦⎥⎤1n 2-1(n +1)2, 所以S n =14⎩⎨⎧ ⎝⎛⎭⎫1-122+⎝⎛⎭⎫122-132+⎭⎪⎬⎪⎫…+⎣⎢⎡⎦⎥⎤1n 2-1(n +1)2 =14⎣⎢⎡⎦⎥⎤1-1(n +1)2=n 2+2n 4(n +1)2. 课时精练1.已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49.(1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围. 解 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7,故公差d =a 4-a 3=7-5=2,故a n =a 3+(n -3)d =2n -1.(2)由(1)知b n =22n -1+2n -1,T n =21+1+23+3+…+22n -1+2n -1=21+23+…+22n -1+(1+3+…+2n -1)=21-22n +11-4+n (1+2n -1)2 =22n +13+n 2-23. 易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000,故T n ≥1 000,解得n ≥6,n ∈N *.2.(2020·全国Ⅲ改编)设数列{a n }满足a 1=3,a n +1=3a n -4n .(1)计算a 2,a 3,猜想{a n }的通项公式;(2)求数列{2n a n }的前n 项和S n .解 (1)由题意可得a 2=3a 1-4=9-4=5,a 3=3a 2-8=15-8=7,由数列{a n }的前三项可猜想数列{a n }是以3为首项,2为公差的等差数列,即a n =2n +1.(2)由(1)可知,a n ·2n =(2n +1)·2n ,S n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n ,① 2S n =3×22+5×23+7×24+…+(2n -1)·2n +(2n +1)·2n +1,② 由①-②得,-S n =6+2×(22+23+…+2n )-(2n +1)·2n +1=6+2×22×(1-2n -1)1-2-(2n +1)·2n +1 =(1-2n )·2n +1-2,即S n =(2n -1)·2n +1+2.3.(2022·合肥模拟)已知数列{a n }满足:a 1=2,a n +1=a n +2n .(1)求{a n }的通项公式;(2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .解 (1)由已知得a n +1-a n =2n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+2+22+…+2n -1=2+2(1-2n -1)1-2=2n . 又a 1=2,也满足上式,故a n =2n .(2)由(1)可知,b n =log 2a n =n ,1b n b n +1=1n (n +1)=1n -1n +1, T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=n n +1,故T n =n n +1.4.(2022·济宁模拟)已知数列{a n }是正项等比数列,满足a 3是2a 1,3a 2的等差中项,a 4=16.(1)求数列{a n }的通项公式;(2)若b n =(-1)n log 2a 2n +1,求数列{b n }的前n 项和T n . 解 (1)设等比数列{a n }的公比为q ,因为a 3是2a 1,3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q -2=0,解得q =2或q =-12, 因为数列{a n }是正项等比数列,所以q =2.所以a n =a 4·q n -4=2n .(2)方法一 (分奇偶、并项求和)由(1)可知,a 2n +1=22n +1,所以b n =(-1)n ·log 2a 2n +1=(-1)n ·log 222n +1=(-1)n ·(2n +1),①若n 为偶数,T n =-3+5-7+9-…-(2n -1)+(2n +1)=(-3+5)+(-7+9)+…+[-(2n -1)+(2n +1)]=2×n 2=n ; ②若n 为奇数,当n ≥3时,T n =T n -1+b n =n -1-(2n +1)=-n -2,当n =1时,T 1=-3适合上式,综上得T n =⎩⎪⎨⎪⎧n ,n 为偶数,-n -2,n 为奇数 (或T n =(n +1)(-1)n -1,n ∈N *).方法二 (错位相减法)由(1)可知,a 2n +1=22n +1,所以b n =(-1)n ·log 2a 2n +1=(-1)n ·log 222n +1=(-1)n ·(2n +1), T n =(-1)1×3+(-1)2×5+(-1)3×7+…+(-1)n ·(2n +1), 所以-T n =(-1)2×3+(-1)3×5+(-1)4×7+…+(-1)n +1(2n +1), 所以2T n =-3+2[(-1)2+(-1)3+…+(-1)n ]-(-1)n +1(2n +1)=-3+2×1-(-1)n -12+(-1)n (2n +1) =-3+1-(-1)n -1+(-1)n (2n +1)=-2+(2n +2)(-1)n ,所以T n =(n +1)(-1)n -1,n ∈N *.5.(2022·重庆调研)在等差数列{a n }中,已知a 6=12,a 18=36.(1)求数列{a n }的通项公式a n ;(2)若________,求数列{b n }的前n 项和S n ,在①b n =4a n a n +1,②b n =(-1)n ·a n ,③b n =2n a n a ⋅这三个条件中任选一个补充在第(2)问中,并对其求解.解 (1)由题意知⎩⎪⎨⎪⎧a 1+5d =12,a 1+17d =36, 解得d =2,a 1=2.∴a n =2+(n -1)×2=2n .(2)选条件①.b n =42n ·2(n +1)=1n (n +1), 则S n =11×2+12×3+…+1n (n +1)=⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=n n +1. 选条件②.∵a n =2n ,b n =(-1)n a n =(-1)n ·2n , ∴S n =-2+4-6+8-…+(-1)n ·2n , 当n 为偶数时,S n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ] =n 2×2=n ; 当n 为奇数时,n -1为偶数, S n =n -1-2n =-n -1. ∴S n =⎩⎪⎨⎪⎧ n ,n 为偶数,-n -1,n 为奇数. 选条件③.∵a n =2n ,b n =2n a n a ⋅,∴b n =22n ·2n =2n ·4n , ∴S n =2×41+4×42+6×43+…+2n ·4n ,① 4S n =2×42+4×43+6×44+…+2(n -1)·4n +2n ·4n +1,② ①-②得 -3S n =2×41+2×42+2×43+…+2×4n -2n ·4n +1=4(1-4n )1-4×2-2n ·4n +1 =8(1-4n )-3-2n ·4n +1, ∴S n =89(1-4n )+2n 3·4n +1.。
高三数学一轮复习数列求和的方法总结课件 (共19张PPT)

2 23
3 24
n2n1
n 2n1
由-得
1 2
Sn
1 2
1 22
1 23
1 2n
n 2n1
5
1 2 Sn
1 [1 ( 1 ) n ]
2
2
1 1
n 2 n1
2
得:
Sn
2
2n 2n
6
例、求1, 数 3, 5列 , 7, , 2n1 2 4 816 2n
的前 n项.和 解 S n : 1 2 2 3 2 2 5 3 2 7 4 2 n 2 n 1
1 (1 1 1 1 1 1 )
4 223
n n1
1 (1 1 ) n 4 n 1 4(n 1)
14
五、分组求和法 如果一个数列的通项公式可写成 cn=an+bn的形式,而数列{an},{bn}是 等差数列或等比数列或可转化为能 够求和的数列,可采用分组求和法.
15
例、已知等比数{列 an}的前n项和为Sn, a4 2a3, S2 6. (1)求数列{an}的通项公式. (2)数列{bn}满足:bn an log2 an,求数列 {bn}的前n项和Tn. 解:设数 {an列 }的首项 a1,公 为比q(q为 0) 则 a1q32a1q2
.
.
.
.
.②
①
-②
:1 2
Sn
1 2
2 22
+
2 23
+
2 24
+
+
2 2n
2n 1 2 n1
11+ 1 + 1 + 2 2 22 23
+
1 2 n1
2021高三数学(理)人教版一轮复习专练32 数列求和

专练32 数列求和命题范围:数列求和常用的方法[基础强化]一、选择题1.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为( )A .2n +n 2-1B .2n +1+n 2-1C .2n +1+n 2-2D .2n +n -2 2.[2020·山东临沂高三测试]等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( )A .n (n +1)B .n (n -1) C.n (n +1)2 D.n (n -1)23.[2020·河南平顶山高三测试]数列1,11+2,11+2+3,…,11+2+3+…+n,…的前n 项和为( )A.n n +1B.2n n +1C.4n n +1D.n 2(n +1)4.数列⎩⎨⎧⎭⎬⎫1n +1+n 的前2 018项的和为( ) A. 2 018+1 B. 2 018-1 C. 2 019+1 D. 2 019-1 5.已知数列{a n }满足a n +1+(-1)n +1a n =2,则其前100项和为( ) A .250 B .200 C .150 D .1006.已知数列{a n }满足:a n +1=a n -a n -1(n ≥2,n ∈N *),a 1=1,a 2=2,S n 为数列{a n }的前n 项和,则S 2018=( )A .3B .2C .1D .07.若数列{a n }的通项公式为a n =2n +1,令b n =1a 1+a 2+…+a n,则数列{b n }的前n 项和T n 为( )A.n +12(n +2)B.34-2n +32(n +1)(n +2)C.n -1n +2D.34-2n +3(n +1)(n +2)8.[2020·资阳一中高三测试]已知数列{a n }中,a 1=a 2=1,a n +2=⎩⎪⎨⎪⎧a n +2,n 是奇数,2a n ,n 是偶数,则数列{a n }的前20项和为( ) A .1 121 B .1 122C .1 123D .1 1249.设函数f (x )=12+log 2x1-x ,定义S n =f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫2n +…+f ⎝⎛⎭⎪⎫n -1n ,其中,n ∈N *,n ≥2,则S n 等于( )A.n (n -1)2B.n -12-log 2(n -1) C.n -12 D.n -12+log 2(n -1) 二、填空题10.设S n 为等差数列{a n }的前n 项和,已知a 1+a 3+a 11=6,则S 9=________.11.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 的前10项的和为________.12.[2020·河南郑州一中高三测试]在等差数列{a n }中,已知a 1+a 3=0,a 2+a 4=-2,则数列⎩⎨⎧⎭⎬⎫a n 2n -1的前10项和是________.[能力提升]13.已知数列{a n }满足2a n =a n +1+a n -1(n ≥2,n ∈N ),且a 1=1,a 5=9,b n =C n -199·a n ,则数列{b n }的前100项的和为( ) A .100×299 B .100×2100 C .50×299 D .50×210114.已知数列{a n }满足2a 1+22a 2+…+2n a n =n (n ∈N *),数列⎩⎨⎧⎭⎬⎫1log 2a n log 2a n +1的前n 项和为S n ,则S 1·S 2·S 3·…·S 10=( ) A.110 B.15 C.111 D.21115.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.16.[2020·湖南郴州高三测试]已知数列{a n }的前n 项和为S n ,且满足S n =2a n -1(n ∈N *),则数列{na n }的前n 项和T n 为________.专练32 数列求和1.C S n =(2+22+ (2))+(1+3+5+…+2n -1)=2(1-2n )1-2+(1+2n -1)n 2=2n +1-2+n 22.A ∵a 2,a 4,a 8成等比,∴a 24=a 2a 8, ∴(a 1+3d )2=(a 1+d )(a 1+7d ),得a 1=d =2,∴S n =na 1+n (n -1)2d =n (n +1).3.B ∵11+2+3+…+n =2(1+n )n =2⎝ ⎛⎭⎪⎫1n -1n +1, ∴S n =2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1 =2⎝ ⎛⎭⎪⎫1-1n +1=2n n +14.D ∵1n +1+n=n +1-n ,∴S 2 018=2-1+3-2+…+ 2 019- 2 018= 2 019-15.D 当n =2k -1时,a 2k +a 2k -1=2,∴{a n }的前100项和S 100=(a 1+a 2)+(a 3+a 4)+…+(a 99+a 100)=50×2=100,故选D.6.A ∵a n +1=a n -a n -1,a 1=1,a 2=2,∴a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1,a 8=2,…,故数列{a n }是周期为6的周期数列,且每连续6项的和为0,故S 2018=336×0+a 2017+a 2018=a 1+a 2=3.故选A.7.B 因为a 1+a 2+…+a n =n (3+2n +1)2=n (n +2),所以b n =1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2,故T n =12⎝⎛⎭⎪⎫1+12-1n +1-1n +2=34-2n +32(n +1)(n +2),故选B.8.C 由题意可知,数列{a 2n }是首项为1,公比为2的等比数列,数列{a 2n -1}是首项为1,公差为2的等差数列,故数列{a n }的前20项和为1×(1-210)1-2+10×1+10×92×2=1 123.选C.9.C ∵f (x )+f (1-x )=1+log 2x1-x+log 21-x x =1,又S n =f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫2n +…+f ⎝⎛⎭⎪⎫n -1n , ∴S n =f ⎝⎛⎭⎪⎫n -1n +f ⎝ ⎛⎭⎪⎫n -2n +…+f ⎝ ⎛⎭⎪⎫1n , ∴2S n =n -1,∴S n =n -12. 10.18解析:设等差数列{a n }的公差为d .∵a 1+a 3+a 11=6,∴3a 1+12d =6,即a 1+4d =2,∴a 5=2,∴S 9=(a 1+a 9)×92=2a 5×92=18.11.2011解析:∵a n +1-a n =n +1,∴当n ≥2时,a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,…,a n -a n -1=n ,∴a n -a 1=(2+n )(n -1)2,∴a n =1+(n +2)(n -1)2=n 2+n2(n ≥2) 又当n =1时a 1=1符合上式,∴a n =n 2+n 2∴1a n =2n 2+n =2⎝ ⎛⎭⎪⎫1n -1n +1,∴S 10=2⎝ ⎛⎭⎪⎫1-12+12-13+…+110-111=2⎝ ⎛⎭⎪⎫1-111=2011. 12.5256解析:∵{a n }为等差数列,∴a 1+a 3=2a 2=0, ∴a 2=0,a 2+a 4=2a 3=-2,∴a 3=-1,∴d =a 3-a 2=-1,∴a n =a 2+(n -2)d =2-n ,∴S n =120+021+…+2-n 2n -1,∴12S n =121+022+…+3-n 2n -1+2-n 2n ,∴12S n =120+⎝⎛⎭⎪⎫-121+-122+…+-12n -1-2-n 2n =n 2n ,∴S n =n 2n -1,S 10=1029=5256.13.A 由2a n =a n +1+a n -1知{a n }为等差数列,又a 1=1,a 5=a 1+4d ,∴d =2,`∴a n =1+(n -1)×2=2n -1,∴{b n }的前100项的和S 100满足:S 100=C 099a 1+C 199a 2+…+C 9999a 100,∴S 100=C 9999a 100+C 9899a 99+…+C 099a 1=C 099a 100+C 199a 99+…+C 9999a 1,∴2S 100=(a 1+a 100)(C 099+C 199+C 299+…+C 9999)=200×299, ∴S 100=100×299.14.C ∵2a 1+22a 2+…+2n a n =n (n ∈N *), ∴2a 1+22a 2+…+2n -1a n -1=n -1(n ≥2),∴2na n =1(n ≥2),当n =1时也满足,故a n =12n ,故1log 2a n log 2a n +1=1log 22-n log 22-(n +1)=1n (n +1)=1n -1n +1,S n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1,∴S 1·S 2·S 3·…·S 10=12×23×34×…×910×1011=111,选C.15.-1n解析:∵a n +1=S n S n +1=S n +1-S n ,∴1S n +1-1S n=-1,∴数列⎩⎨⎧⎭⎬⎫1S n 为等差数列,∴1S n =1S 1+(n -1)×(-1)=-n .∴S n =-1n .16.(n -1)2n +1解析:∵S n =2a n -1(n ∈N *),∴n =1时,a 1=2a 1-1,解得a 1=1;n ≥2时,a n =S n -S n -1=2a n-1-(2a n -1-1),∴a n =2a n -1,∴数列{a n }是首项为1,公比为2的等比数列, ∴a n =2n -1.∴na n =n ·2n -1.则数列{na n }的前n 项和T n =1+2×2+3×22+…+n ·2n -1. ∴2T n =2+2×22+…+(n -1)×2n -1+n ·2n ,∴-T n =1+2+22+…+2n -1-n ·2n =1-2n1-2-n ·2n =(1-n )·2n -1,∴T n =(n -1)2n +1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①×②并利用titn+3-i=t1· +2=102(1≤i≤n+2),得 tn T2 =(t1tn+2)· 2tn+1)· (tn+1t2)· n+2t1)=102(n+2), (t …· (t n ∴an=lgTn=n+2 n≥1. ⇨(4分) ⇨(6分)
返回
(2)由题意和(1)中计算结果,知 bn=tan(n+2)· tan(n+3),n≥1. 另一方面,利用 tank+1-tan k tan 1=tan[(k+1)-k]= , 1+tank+1· k tan ⇨(9分) ⇨(7分)
高考成功方案第一步
第 五 章
数 列
第 四 节 数 列 求 和
高考成功方案第二步
高考成功方案第三步
高考成功方案第四步
考纲点击 熟练掌握等差、等比数列的前n项和公式.
返回
返回
2 1.数列{an}的前n项和为Sn,若an= ,则S5等于( nn+1 A.1 1 C.3 5 B.3 1 D.15
=(100+99)+(98+97)+…+(2+1)=5 050.
返回
返回
[做一题] [例1] 已知函数f(x)=2x-3x-1,点(n,an)在f(x)的图象 上,an的前n项和为Sn. (1)求使an<0的n的最大值.
(2)求Sn.
返回
[自主解答] 像上,
(1)∵点(n,an)在函数f(x)=2x-3x-1的图
返回
[悟一法]
用错位相减法求和时,应注意
(1)要善于识别题目类型,特别是等比数列公比为负数的 情形; (2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错 项对齐”以便下一步准确写出“Sn-qSn”的表达式.
返回
[通一类] 2.已知等差数列{an}的公差d≠0,首项a1=1,且a1,
a3,a9成等比数列.
(1)求数列{an}的通项公式; (2)设bn=an· n(n∈N *),求数列{bn}的前n项和Tn. 2a
返回
解:(1)依题意得a2=a1a9,即(1+2d)2=1+8d, 3 ∴d2=d,又d≠0,∴d=1. ∴an=a1+(n-1)d=n(n∈N*).
返回
(2)∵bn=an· n(n∈N*),又an=n, 2a ∴bn=n·n. 2 ∴Tn=1×2+2×22+3×23+…+n·n, 2 ∴2Tn=1×22+2×23+3×24+…+n·n+1, 2 由①-②得,-Tn=2+22+23+…+2n-n·n 2 21-2n + + + = -n·n 1=2n 1-2-n·n 1, 2 2 1-2 ∴Tn=(n-1)·n 1+2.(n∈N*) 2
返回
(2)∵cn=(2n-1)·n-1, 2 ∴Tn=c1+c2+c3+…+cn
=1×20+3×21+5×22+…+(2n-1)×2n-1.
2Tn=1×21+3×22+…+(2n-3)×2n-1+(2n-1)×2n, 相减得-Tn=1+2(21+22+23+…+2n-1)-(2n-1)·n, 2 即-Tn=1+4(2n-1-1)-2n·n+2n=(3-2n)·n-3 2 2 ∴Tn=(2n-3)·n+3. 2
返回
tank+1-tan k 得tan(k+1)· k= tan -1. tan 1 所以Sn= bi= tan(k+1)· k⇨(12分) tan
i= 1 k= 3 n n+ 2
⇨(10分)
= [
k= 3
n+2 tank+1-tan
k
tan 1
①-②得-Sn=2+22+23+…+2n-n·n+1 2
返回
21-2n = -n·n+1 2 1-2 =2n+1-2-n·n+1 2 =(1-n)2n+1-2 ∴Sn=2n 1(n-1)+2.
+
答案:(n-1)·n+1+2 2
返回
数列求和的常用方法 1.公式法 直接利用等差数列、等比数列的前n项和公式求和 nn-1 na1+an na1+ 2 d (1)等差数列的前n项和公式:Sn= = ; 2 (2)等比数列的前n项和公式:
+ +1
① ②
返回
[做一题] [例3] (2011· 新课标全国卷)等比数列{an}的各项均为正 数,且2a1+3a2=1,a2=9a2a6. 3 (1)求数列{an}的通项公式; 1 (2)设bn=log3a1+log3a2+…+log3an,求数列{b }的前n项和. n
返回
[自主解答]
(1)设数列{an}的公比为q.由a2=9a2a6得a2 3 3 9 3
答案:C
返回
1 1 1 4.数列 1,4 ,7 ,10 ,…前 10 项的和为________. 2 4 8 1 1 1 1 解析:1+42+74+108+…+28512
1 1 1 1 =(1+4+7+…+28)+(2+4+8+…+512) 511 =145512.
511 答案:1和为Sn且an=n·n, 2 则Sn=________. 解析:∵an=n·n 2 ∴Sn=1·1+2·2+3·3+…+n·n 2 2 2 2 ∴2Sn=1·2+2·3+…+(n-1)·n+n·n+1 2 2 2 2 ① ②
返回
[通一类] 1.(2012· 西南大学附中模拟)已知函数f(x)=2x+1, g(x)=x,x∈R,数列{an}, {bn}满足条件: a1=1,an=f(bn)=g(bn+1),n∈N*. (1)求证:数列{bn+1}为等比数列; 2n 2 011 (2)令Cn= ,Tn是数列{Cn}的前n项和,求使Tn> 2 012 an·n+1 a 成立的最小的n值.
n· +1 2 3 9 25 85 解:Sn= + + + +…+ 2 4 8 16 2n
n
返回
1 1 1 1 1 =(1+2)+(2+4)+(3+8)+(4+16)+…+(n+2n) 1 1 1 1 1 =(1+2+3+…+n)+(2+4+8+16+…+2n) 1 1n nn+1 2[1-2 ] = 2 + 1 1-2 nn+1 1 n = 2 -(2) +1.
1 1 2 2 =9a4,所以q = .由条件可知q>0,故q= . 1 由2a1+3a2=1,得2a1+3a1q=1,得a1=3. 1 故数列{an}的通项公式为an=3n.
返回
(2)bn=log3a1+log3a2+…+log3an= nn+1 -(1+2+…+n)=- 2 . 1 故b =-
返回
解:(1)证明:由题意得2bn+1=bn+1,
∴bn+1+1=2bn+2=2(bn+1). 又∵a1=2b1+1=1 ∴b1=0,b1+1=1≠0. 故数列{bn+1}是以1为首项,2为公比的等比数列.
返回
(2)由(1)可知,bn+1=2n-1,∴an=2bn+1=2n-1. 2n 2n 1 1 故Cn= = = - an·n+1 2n-12n+1-1 2n-1 2n+1-1 a ∴Tn=C1+C2+…+Cn 1 1 1 1 1 =(1-3)+(3-7)+…+( n - n+1 ) 2 -1 2 -1 =1- 1 2n+1-1
返回
[做一题]
[例2] 已知数列{an}满足a1=1,a3+a7=18,且an-1+an+1 =2an(n≥2). (1)求数列{an}的通项公式; (2)若cn=2n-1·n,求数列{cn}的前n项和Tn. a
返回
[自主解答]
(1)由an-1+an+1=2an(n≥2)知,数列{an}
是等差数列,设其公差为d, 1 则a5=2(a3+a7)=9, a5-a1 ∴d= 4 =2, an=a1+(n-1)d=2n-1, 即数列{an}的通项公式为an=2n-1.
解析:令an≥0,得1≤n≤18.∵a18=0,a17>0,a19<0,
∴到第18项或17项和最大.
答案: C
返回
3.数列a1+2,…,ak+2k,…,a10+20共有十项,且
其和为240,则a1+…+ak+…+a10的值为
A.31 C.130 B.120 D.185
(
)
返回
10×2+20 解析:2+4+…+20= =110, 2 ∴a1+…+ak+…+a10=(a1+2+…+ak+2k+…+a10+20) -(2+4+…+20)=240-110=130.
返回
[考题印证]
(2011· 安徽高考) (13分)在数1和100之间插入n个实数,使 得这n+2个数构成递增的等比数列,将这n+2个数的乘 积记作Tn,再令an=lg Tn,n≥1. (1)求数列{an}的通项公式;
(2)设bn=tan an· an+1,求数列{bn}的前n项和Sn. tan
返回
[考题巧解]——————(一样的结果,更简洁的过程)
[巧思] 对(1),设出此等比数列,巧用等比数列性质,倒
序求积,求出Tn,进而求出an;(2)巧用tan 1= tan[(k+1)-k],求得tan(k+1)· k,再裂项求和. tan
返回
[妙解] (1)设t1,t2,…,tn+2构成等比数列, 其中t1=1,tn+2=100,则 Tn=t1· · tn+1· +2, t2 …· tn Tn=tn+2· +1· t2· , tn …· t1 ① ②⇨(2分)
返回
4.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项
可以相互抵消,从而求得其和.
5.分组求和法 一个数列的通项公式是由若干个等差数列或等比数列 或可求和的数列组成,则求和时可用分组求和法,分 别求和后再相加减.
返回
6.并项求和法 一个数列的前n项和,可两两结合求解,则称之为并项 求和.形如an=(-1)nf(n)类型,可采用两项合并求解. 例如,Sn=1002-992+982-972+…+22-12
n
2 1 1 =-2(n- ). nn+1 n+1
1 1 1 1 1 1 1 1 2n b1+b2+…+bn=-2[(1-2)+(2-3)+…+(n-n+1)]=-n+1. 1 2n 所以数列{b }的前n项和为- . n+1 n