七年级数学合并同类项与移项用合并同类项的方法解一元一次方程习题课件新人教版本
合集下载
人教版七年级数学上册一元一次方程《解一元一次方程(一)——合并同类项与移项(第1课时)》示范教学课件

x=20.
解方程的第一步:将方程同侧的含有未知数的项和常数项分别合并,使方程化为 mx=n(m≠0)的形式.
解方程的第二步:运用等式的性质 2 ,等号两边同时除以未知数项的系数,使方程变形为 x=a(常数)的形式.
答:前年这个学校购买了 20 台计算机.
上面解方程中“合并同类项”起了什么作用?
今年购买计算机 4x 台.
根据前年购买量+去年购买量+今年0.
则去年购买计算机 2x 台,
如何解方程:x+2x+4x=140.
问题
解:合并同类项,得
7x=140.
系数化为 1,得
解:(2)合并同类项,得
系数化为 1,得
x=-13.
6x=-78.
利用合并同类项解方程时要注意:
归纳
(1)只有同类项才能合并,非同类项不能合并. (2)合并同类项的法则:同类项的系数相加减,字母及字母的指数不变. (3)在系数化为 1时,特别注意系数是负数时,符号不要出错.
请你尝试用分析(2)中②③的设未知数的方法解决本题.
解方程
解一元一次方程(一)——合并同类项
合并同类项
系数化为 1
列方程
审题
设未知数
列方程
解一元一次方程(一)——
合并同类项与移项
(第1课时)
人教版七年级数学上册
1.等式的性质
等式的性质 1:如果 a=b,那么 a±c=b±c.
2.利用等式的性质解下列方程.
(1)x-5=6; (2) .
解:(1)两边加 5,得 x-5+5=6+5.于是,x=11.
问题
问题中涉及了哪些量?
前年购买量+去年购买量+今年购买量=三年总量
在列方程时,“总量=各部分量的和”是一个基本的相等关系.
解方程的第一步:将方程同侧的含有未知数的项和常数项分别合并,使方程化为 mx=n(m≠0)的形式.
解方程的第二步:运用等式的性质 2 ,等号两边同时除以未知数项的系数,使方程变形为 x=a(常数)的形式.
答:前年这个学校购买了 20 台计算机.
上面解方程中“合并同类项”起了什么作用?
今年购买计算机 4x 台.
根据前年购买量+去年购买量+今年0.
则去年购买计算机 2x 台,
如何解方程:x+2x+4x=140.
问题
解:合并同类项,得
7x=140.
系数化为 1,得
解:(2)合并同类项,得
系数化为 1,得
x=-13.
6x=-78.
利用合并同类项解方程时要注意:
归纳
(1)只有同类项才能合并,非同类项不能合并. (2)合并同类项的法则:同类项的系数相加减,字母及字母的指数不变. (3)在系数化为 1时,特别注意系数是负数时,符号不要出错.
请你尝试用分析(2)中②③的设未知数的方法解决本题.
解方程
解一元一次方程(一)——合并同类项
合并同类项
系数化为 1
列方程
审题
设未知数
列方程
解一元一次方程(一)——
合并同类项与移项
(第1课时)
人教版七年级数学上册
1.等式的性质
等式的性质 1:如果 a=b,那么 a±c=b±c.
2.利用等式的性质解下列方程.
(1)x-5=6; (2) .
解:(1)两边加 5,得 x-5+5=6+5.于是,x=11.
问题
问题中涉及了哪些量?
前年购买量+去年购买量+今年购买量=三年总量
在列方程时,“总量=各部分量的和”是一个基本的相等关系.
人教版数学七年级上册解一元一次方程(一)——合并同类项与移项课件

例2 在国庆节来临之际,七年级(1)班课外活动小组计划 做一批中国结.如果每人做6个,那么比计划多做7个;如 果每人做5个,那么比计划少做13个.该小组计划做多少 个中国结?
解:设该小组共有 x 名成员. 根据题意列方程,得 6x-7=5x+13. 移项,得 6x-5x=13+7.合并同类项,得 x=20. 所以 6x-7=113. 答:该小组计划做113个中国结.
3.2 解一元一次方程(一)
——合并同类项与移项
第4课时
初中数学 七年级上册 RJ
知识回顾
列一元一次方程解决实际问题的一般步骤:
审题 找等量关系
设未知数
列方程
写出答案
检验
解方程
注意:1. 列一元一次方程解决实际问题的关键是审题,
寻找等量关系.
2. 求出方程的解后要进行检验(检验的过程在草稿纸上
进行),既要检验所求出的解是不是方程的解,又要检
“盈不足”问题 “盈”是分配中的多余情况,“不足”是分配中的缺 少情况,有的题目不会出现“盈”或“不足”的字样. “盈不足”问题中,一般会给出两个条件:什么情况 下会“盈”,“盈”多少;什么情况下会“不足”, “不足”多少.
利用“表示同一个量的两个不同的式子相等”解应用 题的步骤: (1) 找出题中不变的量; (2)用两个不同的式子表示出这个量; (3)由表示同一个量的两个不同的式子相等列出方程; (4)解方程,并作答.
2.《九章算术》中有一道阐述“盈不足术”的问题,原 文如下:今有人共买物,人出八,盈三;人出七,不足 四.问人数、物价各几何?译文为:现有一些人共同买 一个物品,每人出8元,还盈余3元;每人出7元,则还 差4元.问共有多少人?这个物品的价格是多少?请解答 上述问题. 解:设共有 x 人. 根据题意,得 8x-3=7x+4. 移项,得 8x-7x=4+3.
解一元一次方程(一)-合并同类项与移项PPT课件__数学七年级上册PPT完美版(人教版)

解:(1) 列方程,得3x+2=2x-1. 移项,得3x- 2x=-1-2. 合并同类项,得x=-3.
3.利用方程解答下列问题: (1) x的3倍与2的和等于x的2倍与1的差,求x的值; (2) y与-3的积等于y与1的和,求y的值; (3) 已知整式-3x+2 与2x-1的值互为相反数,求x的值.
设这个班有x名学生. 每人分3本,共分出3x本,加上剩余的20本,这批书共 (3x+20)本. 每人分4本,共需要4x本,减去缺少的25本,这批书共 (4x-25) 本. 这批书的总数是一个定值,表示它的两个式子应相等, 根据这一相等关系列得方程3x+20=4x- 25. 这与前边方
程有何不同?
方程3x+20=4x-25的两边都有含x的项(3x与4x)和不含 字母的常数项(20与-25),怎样才能把它转化为x=a(a 为常数)的形式呢?
对于方程 x+2m=3,移项,得 x=3-2m. 知由识上点 可知解,一这元个一班次有方4程5名—学—生移. 项
合甲并赶同 羊类群项逐,草得茂,-x乙=-拽1. 一羊随其后, 如为果了每 使人方分程4的本右,边则没还有缺含25x本的. 项,等号两边同时减4x;
因为两个方程的解相同,所以 -m-9=3- 2m. 每知人识分 点3本解,一共元分一出次方3x程本—,—加移上项剩余的20本,这批书共(3x+20)本.
移项的依据 移项的依据是等式的性质1,移项的目的是将含有未知 数的项移到方程的一边,将常数项移到方程的另一边, 使方程更接近 x=a 的形式.
注意:1. 移项必须是由等号的一边移到另一边,而不 是在等号的同一边交换位置. 2. 方程中的各项均包括它们前面的符号,如x-2=1中, 方程左边的项有x,-2,移项时所移动的项一定要变号. 3.移项时,一般都习惯把含未知数的项移到等号左边, 把常数项移到等号右边.
3.利用方程解答下列问题: (1) x的3倍与2的和等于x的2倍与1的差,求x的值; (2) y与-3的积等于y与1的和,求y的值; (3) 已知整式-3x+2 与2x-1的值互为相反数,求x的值.
设这个班有x名学生. 每人分3本,共分出3x本,加上剩余的20本,这批书共 (3x+20)本. 每人分4本,共需要4x本,减去缺少的25本,这批书共 (4x-25) 本. 这批书的总数是一个定值,表示它的两个式子应相等, 根据这一相等关系列得方程3x+20=4x- 25. 这与前边方
程有何不同?
方程3x+20=4x-25的两边都有含x的项(3x与4x)和不含 字母的常数项(20与-25),怎样才能把它转化为x=a(a 为常数)的形式呢?
对于方程 x+2m=3,移项,得 x=3-2m. 知由识上点 可知解,一这元个一班次有方4程5名—学—生移. 项
合甲并赶同 羊类群项逐,草得茂,-x乙=-拽1. 一羊随其后, 如为果了每 使人方分程4的本右,边则没还有缺含25x本的. 项,等号两边同时减4x;
因为两个方程的解相同,所以 -m-9=3- 2m. 每知人识分 点3本解,一共元分一出次方3x程本—,—加移上项剩余的20本,这批书共(3x+20)本.
移项的依据 移项的依据是等式的性质1,移项的目的是将含有未知 数的项移到方程的一边,将常数项移到方程的另一边, 使方程更接近 x=a 的形式.
注意:1. 移项必须是由等号的一边移到另一边,而不 是在等号的同一边交换位置. 2. 方程中的各项均包括它们前面的符号,如x-2=1中, 方程左边的项有x,-2,移项时所移动的项一定要变号. 3.移项时,一般都习惯把含未知数的项移到等号左边, 把常数项移到等号右边.
七年级数学上册(新人教版) 3.2解一元一次方程一合并同类项与移项第2课时用移项的方法解一元一次方

课本90页练习第2题 91页习题3.2
这节课我们学习了什么?
1. :一般地,把方程 中的某些项改变符号后,从 方程的一边移到另一边,这 种变形叫做移项。
2.解一元一次方程需要移项 时我们把含未知数的项移到 方程的一边(通常移到左 边),常数项移到方程的另 一边(通常移到右边).
3.移项要改变符号.
Байду номын сангаас
解:若设新工艺的废水排量为2x t,则旧工艺的废水排量为5x t.由 题意得
5x-200=2x+100, 移项,得5x-2x=100+200, 合并同类项,得3x=300,
系数化为1,得x=100, 所以2x=200,5x=500. 答:新工艺的废水排量为 200 t,旧工艺的废水排量为 500 t.
例2 某制药厂制造一批药品,如果用旧工艺,则废水排量要比环 保限制的最大量还多200 t;如果用新工艺,则废水排量要比环保 限制的最大量少100 t.新旧工艺的废水排量之比为2:5,两种工艺的 废水排量各是多少?
思考:①如何设未知数? ②你能找到等量关系吗?
旧工艺废水排量-200吨=新工艺排水量+100吨
4. 列方程解应用题的步骤: 一.设未知数; 二.分析题意找出等量关系; 三.根据等量关系列方程;
筑商宝
人教版七年级上册解一元一次方程——合并同类项与移项(第1课时)课件x

2
2 7 − 2.5 + 3 − 1.5 = −15 × 4 − 6 × 3
1
2
解:(1)合并同类项,得− = −2,系数化为1,得 = 4
(2)合并同类项,得6 = -78.系数化为1,得 = -13
教学新知
例2 有一列数,按一定规律排列成1,-3,9,-27,81,-243……
课堂练习
解:设原两位数十位上数为
则原两位数为10 + 2 = 12,新两位数为10 × 2 + = 21.
根据题意知21 − 12=36.合并同类项,得9 = 36.
系数化为1,得 = 4.12 × 4 = 48.
答:原两位数为48.
3.一条环形跑道长400米,甲练习骑自行车平均每分钟550米,乙练习
3.2 一元一次方程
3.2 解一元一次方程(一)
——合并同类项与移项(1)
2 4 = 140
课题引入
问题1:约公元820年,中亚细亚数学家阿尔一花拉子米
写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本
取名为《对消与还原》.“对消”与“还原”是什么意思呢?
通过下面几节课的学习讨论,相信同学们一定能回答这个问题.
10
180吨
量为1800吨,那么1月份的产量为_________________.
6.某超市的收银员在记帐时发现现金少了153.9元,查帐后得知是一
笔支出款的小数点被看错了一位,则她查出这笔看错了的支出款实际
17.1
是_______元.
知识拓展
如图,将一列数按如图的方式排列成一个方阵,用一个长方形框
白皮块数目比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色
2 7 − 2.5 + 3 − 1.5 = −15 × 4 − 6 × 3
1
2
解:(1)合并同类项,得− = −2,系数化为1,得 = 4
(2)合并同类项,得6 = -78.系数化为1,得 = -13
教学新知
例2 有一列数,按一定规律排列成1,-3,9,-27,81,-243……
课堂练习
解:设原两位数十位上数为
则原两位数为10 + 2 = 12,新两位数为10 × 2 + = 21.
根据题意知21 − 12=36.合并同类项,得9 = 36.
系数化为1,得 = 4.12 × 4 = 48.
答:原两位数为48.
3.一条环形跑道长400米,甲练习骑自行车平均每分钟550米,乙练习
3.2 一元一次方程
3.2 解一元一次方程(一)
——合并同类项与移项(1)
2 4 = 140
课题引入
问题1:约公元820年,中亚细亚数学家阿尔一花拉子米
写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本
取名为《对消与还原》.“对消”与“还原”是什么意思呢?
通过下面几节课的学习讨论,相信同学们一定能回答这个问题.
10
180吨
量为1800吨,那么1月份的产量为_________________.
6.某超市的收银员在记帐时发现现金少了153.9元,查帐后得知是一
笔支出款的小数点被看错了一位,则她查出这笔看错了的支出款实际
17.1
是_______元.
知识拓展
如图,将一列数按如图的方式排列成一个方阵,用一个长方形框
白皮块数目比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色
人教版七年级数学上册《解一元一次方程 合并同类项与移项》PPT课件

根据问题中的相等关系 (总量等于各部分量的和) 即:
前年购买量+去年购买量+今年购买量=140台
列得方程 x + 2x +4x = 140.
探究新知
温故知新
1.含有相同的_字__母__,并且相同字母的__指__数_也 相同的项,叫做同类项; 2.合并同类项时,把各同类项的_系__数__相加减, 字母和字母的指数_不__变__.
还有其他设未 知数的方法吗?
化系数为1,得 x=9.
x-1=8, x+1=10. 答:这三个数分别是8,9,10.
检验
探究新知
例3 足球表面是由若干个黑色五边形和白色六边形皮 块围成的,黑、白皮块数目的比为3:5,一个足球表面 一共有32个皮块,黑色皮块和白色皮块 各有多少个?
提示 本题中已知黑、白皮块数目比为3:5,可设黑色皮块有3x 个,则白色皮块有5x个,然后利用相等关系“黑色皮块数+白 色皮块数=32”列方程.
探究新知
解:设所求的三个数分别是 x, 3x,9x. 由三个数的和是-1701,得 x 3x 9x 1701. 合并同类项,得 7x 1701.
系数化为1,得 x 243.
所以
3x 729.
9x 2187.
答:这三个数是 -243,729,-2187.
探究新知
归纳总结 用方程解决实际问题的过程
x=60
(2) x 2 x 1 x 4 2 32. 32
解:合并同类项,得 1 x 1. 6
去绝对值,得 1 x 1. 6
系数化为1,得 x 6.
巩固练习 解下列方程: (1) 5x-2x = 9;
解:合并同类项,得 3x=9,
系数化为1,得 x=3.
(2)1 x 3 x 7.
前年购买量+去年购买量+今年购买量=140台
列得方程 x + 2x +4x = 140.
探究新知
温故知新
1.含有相同的_字__母__,并且相同字母的__指__数_也 相同的项,叫做同类项; 2.合并同类项时,把各同类项的_系__数__相加减, 字母和字母的指数_不__变__.
还有其他设未 知数的方法吗?
化系数为1,得 x=9.
x-1=8, x+1=10. 答:这三个数分别是8,9,10.
检验
探究新知
例3 足球表面是由若干个黑色五边形和白色六边形皮 块围成的,黑、白皮块数目的比为3:5,一个足球表面 一共有32个皮块,黑色皮块和白色皮块 各有多少个?
提示 本题中已知黑、白皮块数目比为3:5,可设黑色皮块有3x 个,则白色皮块有5x个,然后利用相等关系“黑色皮块数+白 色皮块数=32”列方程.
探究新知
解:设所求的三个数分别是 x, 3x,9x. 由三个数的和是-1701,得 x 3x 9x 1701. 合并同类项,得 7x 1701.
系数化为1,得 x 243.
所以
3x 729.
9x 2187.
答:这三个数是 -243,729,-2187.
探究新知
归纳总结 用方程解决实际问题的过程
x=60
(2) x 2 x 1 x 4 2 32. 32
解:合并同类项,得 1 x 1. 6
去绝对值,得 1 x 1. 6
系数化为1,得 x 6.
巩固练习 解下列方程: (1) 5x-2x = 9;
解:合并同类项,得 3x=9,
系数化为1,得 x=3.
(2)1 x 3 x 7.
人教版七年级数学上册3解一元一次方程(一)——合并同类项与移项课件

2
将解得的未知数的值代入原方程可以检验它是否是原方程的
解.
例题讲解
例1
解下列方程:
5
两边同× −2
1 2 − = 6 − 8.
2
1
− = −2.
解:合并同类项,得
2
1
= −2 ÷ − 2
系数化为 1,得
= −2 × −2
= 4.
例题讲解
例1
解下列方程:
2 7 − 2.5 + 3 − 1.5 = −15 × 4 − 6 × 3.
合并同类项要注意每项系数的符号,合并时要将各
项的系数进行相加.
例题讲解
小结2
系数化为 1 时,需要注意什么?
5
1 2 − = 6 − 8.
2
1
− = −2.
2
系数化为 1 时,特别注意是在方程两边同时除以未
知数的系数(或者乘以未知数系数的倒数).
例题讲解
例2
有一列数,按一定规律排列成 1,−3,9,−27,81, − 243, ⋯.
机?
分析
设今年这个学校购买 台计算机,
则去年购买 台,前年购买 台.
2
4
+ + = 140.
4 2
三年总量=前年+去年+今年
学习新知
问题
某校三年共购买计算机 140 台,去年购买数量是前年的 2 倍,今
年购买数量是去年的 2 倍,前年这个学校购买了多少台计算机?
分析
1.设前年这个学校购买了 台计算机;
其中某三个相邻数的和是−1701,这三个数各是多少?
分析
观察这列数,你发现什么规律?
七年级数学上册 3.2 解一元一次方程(一)—合并同类项与移项(1)课件 (新版)新人教版.pptx

化简,得
2x=4 根据等式性质2,两边除以2,得
化简,得
x=2 2x 4 22
4
探究1
总量=各部分量的和
某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买的数 量又是去年的2倍.前年这个学校购买了多少台计算机?
前年购买量+去年购买量+今年购买量=140台
x
2x
4x
解: 设前年这个学校购买了计算机x台, 根据题意 可列方程
8
练习1
2.解下列方程
(1)5x-2x=9
x=3
(2)x +3x =7 x=7
22
2
(3)-3x+0.5x=10 x= 4
(4)7x-4.5x=2.5 3-5 x=1
9
探究2
这一组数有什么特点 呢?
例2 有一列数,按一定规律排列成 1,-3,9,-27,81,-243,···,
其中某三个相邻数的和是-1 701,这三个数各是多少?
后面的数总是前面一个数乘-3得到的
第1个数+第2个数+第3个数=-1701
x
-3x
9x
解: 设所求三个数分别为x,-3x,9x ,根据题意 可列方程
x-3x+9x=-1701
10
探究2 例2 有一列数,按一定规律排列成 1,-3,9,-27,81,-243,···,
其中某三个相邻数的和是-1 701,这三个数各是多少?
【义务教育教科书人教版七年级上册】
3.2解一元一次方程(一)
——合并同类项与移项(1)
学校:________ 教师:________
1
知识回顾 1.什么是等式的性质?
等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.
2x=4 根据等式性质2,两边除以2,得
化简,得
x=2 2x 4 22
4
探究1
总量=各部分量的和
某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买的数 量又是去年的2倍.前年这个学校购买了多少台计算机?
前年购买量+去年购买量+今年购买量=140台
x
2x
4x
解: 设前年这个学校购买了计算机x台, 根据题意 可列方程
8
练习1
2.解下列方程
(1)5x-2x=9
x=3
(2)x +3x =7 x=7
22
2
(3)-3x+0.5x=10 x= 4
(4)7x-4.5x=2.5 3-5 x=1
9
探究2
这一组数有什么特点 呢?
例2 有一列数,按一定规律排列成 1,-3,9,-27,81,-243,···,
其中某三个相邻数的和是-1 701,这三个数各是多少?
后面的数总是前面一个数乘-3得到的
第1个数+第2个数+第3个数=-1701
x
-3x
9x
解: 设所求三个数分别为x,-3x,9x ,根据题意 可列方程
x-3x+9x=-1701
10
探究2 例2 有一列数,按一定规律排列成 1,-3,9,-27,81,-243,···,
其中某三个相邻数的和是-1 701,这三个数各是多少?
【义务教育教科书人教版七年级上册】
3.2解一元一次方程(一)
——合并同类项与移项(1)
学校:________ 教师:________
1
知识回顾 1.什么是等式的性质?
等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.