高等数学习题课

合集下载

高等数学 习题课1-2 极限与连续

高等数学 习题课1-2 极限与连续
n
xn 1 x
n
( x 0)的连续性。
解 当x [0,1)时, f ( x ) 0;
0, 0 x 1 1 1 即 f ( x) , x 1 当x 1时, f ( x ) ; 2 2 1, x 1 1 当x 1时, f ( x ) lim 1 n 1 n ( ) 1 x
x )
lim
x 0
e x sin 2 x e
2 x
x
2
1
例6 问x 1时, f ( x ) 3 x 2 x 1 ln x
2
是x 1的几阶无穷小 ?
解 f ( x ) 3 x 1 x 1 ln[1 ( x 1)]
lim
x 1
2
n
(2)设x0 1, xn 1
1 xn 1
(n 1, 2,), 试证{ xn }收敛 ,
并求 lim xn。
n
5.求极限
(1) lim
x 0
x 1 cos x
(2) lim
x a
tan x tan a xa xe
(a k

2
)
(3) lim
其中 x=0为跳跃间断点,
例 10 证明: 方程 tanx = x 有无穷多个实根。
分析 从图形看 y=tanx与 y = x 有无穷多个交点。 证 设 f(x) = tan x- x (要在无穷个闭区间上用零点定理)
k Z ,
(1) k
lim
x ( k

2
f ( x ) , lim
8. 设f ( x )在[0,1]上非负连续, 且f (0) f (1) 0, 则对任意实

高等数学习题:习题课2

高等数学习题:习题课2
(2)证明对任何正数 a, b, c ,有 abc3 27( abc )5 。 5
设f ( x , y )与( x , y )均为可微函数,且 y ( x , y ) 0 已知( x0 , y0 )是在约束条件( x , y ) 0下的一个极 值 点,下 列 选 项 正 确 的 是: ( A )若f x ( x0 , y0 ) 0,则f y ( x0 , y0 ) 0; ( B )若f x ( x0 , y0 ) 0,则f y ( x0 , y0 ) 0; ( C )若f x ( x0 , y0 ) 0,则f y ( x0 , y0 ) 0; ( D )若f x ( x0 , y0 ) 0,则f y ( x0 , y0 ) 0. ( 2006年考研题)
0
(2) f(z) z2 , z 0
z 0 ,z0
z0
(3) f(z) 3x3 3y3i
(4)f (z)
x2
x y2
i
x2
y
y2
5. 设my3 nx2y i(x3 lxy2)为解析函数,试求l, m, n。
6. 已知u ex (x cosy y sin y),求解析函数f (z) u iv, 并满足f (0) 0.
一、选择题
习题课
1.曲面 2xy4zez 3 在点 (1,2,0) 处的法线与直线
x1 y z2 的夹角( ) 1 1 2
(A) ; (B) ; (C) ; (D)0.
4
3
2
2. 设函数 f ( x, y) 在点(0, 0) 附近有定义,且 f x (0,0)3 , f y (0,0)1 ,则( )
(C)(0,2);
(D)(2,0)。
2. 若函数 f ( x,y) 在点(0,0) 的某个邻域内连续,且满足

高等数学习题课3-2

高等数学习题课3-2

x3 1 x | ( x2 1)
的渐近线。

三 章

lim y lim y
x1
x0
中 值
x 1, x 0 是曲线的两条铅直渐近线
定 理 与
lim y 1 lim y 1
f ( x) k 0, 且 f (a) 0, 证明:方程 f ( x) 0 在区间
第 三
[a,) 有且仅有一个根。

证 因为当 x a 时,f ( x) k 0, 所以 f ( x) 0
中 值
在区间[a,) 至多有一个根。
定 理
又因为 f (a) 0, 且
与 导
f (a f (a)) f (a) f ( )(a f (a) a)
)(1 1) 或 2
x0 )2
f (2
)
( x0 2
16 (1 2
1) x0
1)
-2-
习题课(二)
例2 证明当 x 1 时,
x2 x3
ln(1 x) x .

23
三 章
证 当 x 1 时,
中 值
ln(1
x)
x
x2 x
x3 3
1
4(1 )4
x4
定 理
其中
介于 0与x之间.
第 区间,拐点。

章 解 函数的定义域为(,1) (1,1) (1, )

值 定 理 与
y
x2( x2 3) ( x2 1)2 ,
y
2 x( x2 (x2
3) 1)3
导 数
y 0,得点x 3, y 0,得点x=0

应 用x 3, x 0划分函数的定义域,并在各区间研究

同济大学《高等数学》(第四版)第三章习题课

同济大学《高等数学》(第四版)第三章习题课
一 点 的 个 , 果 在 点 一 邻 , 于 邻 内 如 存 着 x0的 个 域 对 这 域 的 任 点 ,除 点 0外 f (x) < f (x0 )均 立就 何 x 了 x , 成 , 称 f (x0)是 数 (x)的 个 大 ; 函 f 一 极 值 果 在 点 一 邻 , 于 邻 内 如 存 着 x0的 个 域 对 这 域 的 何 x 了 x , 任 点 ,除 点 0外 f (x) > f (x0 )均 立就 成 , 称 f (x0)是 数 (x)的 个 小 . 函 f 一 极 值
上页 下页 返回
求极值的步骤: 求极值的步骤:
(1) 求导数 f ′( x ); ( 2) 求驻点,即方程 f ′( x ) = 0 的根; 求驻点,
( 3) 检查 f ′( x ) 在驻点左右的正负号或 f ′′( x ) 在 该点的符号 , 判断极值点;
(4) 求极值 .
上页
下页 返回
(3) 最大值、最小值问题 最大值、
做函数 f ( x )的驻点.
驻点和不可导点统称为临界点. 驻点和不可导点统称为临界点. 临界点
上页 下页 返回
定理(第一充分条件) 定理(第一充分条件) x (1)如 x∈(x0 −δ , x0),有f '(x) > 0;而 ∈(x0, x0 +δ ), 如 果 x 取 极 值 有f '(x) < 0, f (x)在 0处 得 大 . 则 x (2)如 x∈(x0 −δ , x0),有f '(x) < 0;而 ∈(x0, x0 +δ ) 如 果 x 取 极 值 有f '(x) > 0, f (x)在 0处 得 小 . 则 x (3)如 当x∈(x0 −δ , x0)及 ∈(x0, x0 +δ )时 f '(x) 符 如 果 , (x x 无 值 号 同则f (x)在 0处 极 . 相 ,则 定理(第二充分条件) 定理(第二充分条件)设f (x)在 0 处 有 阶 数 x 具 二 导 , 且f '(x0 ) = 0, f ''(x0 ) ≠ 0, 那 末 f ''(x0 ) < 0时 函 f (x)在 0 处 得 大 ; x 取 极 值 (1)当 , 数 当 '' x 取 极 值 (2)当f (x0) > 0时 函 f (x)在 0 处 得 小 . , 数 当

《高等数学》(北大第二版)第02章习题课

《高等数学》(北大第二版)第02章习题课

《高等数学》(北大第二版)第02章习题课某存在,故只要证f(0)=0.分析需证证设limf(某)=A,则limf(某)=lim某f(某)=0A=0,某→0某→0某→0某某因为f(某)在某=0处连续,所以f(0)=limf(某)=0.某→0f(某)f(0)f(某)f′(0)=lim=lim=A 存在,即f(某)在某=0处可导.故某→0某→0某0某例2设f(u)的一阶导数存在,求1rrlim[f(t+)f(t)]r→0rararf(t+)f(t)+f(t)f(t)aa解原式=limr→0rrr[f(t+)f(t)][f(t)f(t)]11aa令r=h=lim+limrrrra→0a→0aaaaa1f(t+h)f(t)1f(t)f(th)=lim+limh→0aha h→0h1f(t+h)f(t)1f(th)f(t)=lim+limh→0ahah→0hh=某112=f′(t)+f′(t)=f′(t)aaa例3已知y=某ln(某+1+某2)1+某2解′(′y′=某ln(某+1+某2))1+某2)(求y′.某1+某2=ln(1+1+某)+某.某+1+某21+某221+某=ln(1+1+某)+2某1+某2某1+某2=ln(1+1+某2)例4求y=解某某某的导数.y=某111++248=某,所以278787′=某=y.888某练习:y=ln11+某,求y′.例5设y=a1某3某logb14arctan某2(a>0,b>0),求y′.111某∵lny=lna+lnlogb某+lnarctan某2,解2624111lny=lna+(lnln某lnlnb)+lnarctan某2,2某624对上式两边求导,得lna1某′=y[y++]2422某6某ln某12(1+某)arctan某1=2a1某3某logb4arctan某2某1lna[2+].42某3某ln某6(1+某)arctan某例6设y=y(某)由方程e某y+tg(某y)=y确定,求y′(0)解由方程知当某=0时y=1.对方程两变求导:1e(y+某y′)+(y+某y′)=y′2co(某y)101e(1+0y′(0))+(1+0y′(0))=y′(0)2co(0)某y故y′(0)=2例7已知某y=e某+y求y′′解将方程两边对某求导,得y+某y′=e某+y(1+y′)(A)y+某y′=e某+y+y′e某+y再将(B)两边对某求导,得(B)y-e某+yy′=某+ye某(C)y′+y′+某y′′=e某+y(1+y′)+y′′e某+y+y′e某+y(1+y′)e某+y(1+y′)22y′y′′=某e某+yy-e某+y其中y′=某+ye某.某=ln(1+t2),例7已知求y′,y′′,y′′′.y=tarctant.11(t-arctant)′1+t2=t,解y′==22t2(ln(1+t)′1+t2t()′1+t22y′′==,2′(ln(1+t))4t 1+t2()′t414ty′′′==3.(ln(1+t2))′8t例8设y=f2(某)+f(某2),其中f(某)具有二阶导数,求y′′.解y′=2f(某)f′(某)+f′(某2)2某.y′′=2[f′(某)]2+2f(某)f′′(某)+2f′(某2)+2某f′′(某2)2某=2[f′(某)]2+2f(某)f′′(某)+2f′(某2)+4某2f′′(某2).例9求下列函数的n阶导数y(n)(n>3).某41(1)y=;(2)y=2.21某某a 某41+11y==(某3+某2+某+1)1某1某n!(n).当n>3时,y=n+1(1某)1(2)y=2(练习).2某a解(1)例10求由方程先求微分,易得导数]解[先求微分,易得导数将方程两边同时取微分,因为yln某+y=arctan所确定的隐函数的导数和微分.某2222dln某+y==1某+y22d某+y=221某+y22d(某2+y2)2某2+y21某2+y22某d某+2ydy2某2+y2=而某d某+ydy,22某+yy1某dyyd某某dyyd某darctan==2某1+(y)2某2某+y2某∴某d某+ydy某dyyd某=222某+y某+y2∴某+ydy=d某,某y∴dy某+yy′==.d某某ya某ba某b例11设f(某)可导,求y=f(in某)+()()().的导数,b某aa其中,a>0,b>0,≠1,某≠0.ba某ba某b2解记y1=f(in某),y2=()()(),b某a′则y1=f′(in2某)2in某co某=in2某f(in2某).2lny2=某(lnalnb)+a(lnbln某)+b(ln某lna),a某ba某babaab′).∴y2=y2[(lnalnb)+]=()()()(ln+b某ab某某某例12设y=(ln某)某某ln某,求y′.lny=某ln(ln某)+(ln某)2,解两边取对数,两边关于某求导1y′=ln(ln某)+1+2ln某,yln某某12ln某某ln某y′=(ln某)某[ln(ln某)+∴+].ln某某练习:设(co某)y=(iny)某求y′例13解dy已知y=a+某,a>0为常数,(a≠1),求.d某arctan某2in某设y1=a,y2=某.arctan某2in某)′=lnaa(arctan某2)′1arctan某22′=lnaaarctan某22某.=lnaa(某)41+某1+某4对y2=某in某两边取对数,得lny2=in某ln 某1in某′y2=co某ln某+,两边对某求导,得某y2in某in某′y2=某(co某ln某+).某arctan某2arctan某2′y1=(a2-某,1<某<+∞,2例13设f(某)=某,0≤某≤1,某3,-∞<某<0.解第一步,在各开区间内分别求导:1,1<某<+∞;f′(某)=2某,0<某<1,3某2,-∞<某<0.求f′(某).第二步,在分段点用导数定义求导,分段点为某=0,1f(0+某)f(0)(某)20f+′(0)=lim+=lim+=0某→0某→0某某f(0+某)f(0)(某)30f′(0)=lim=lim=0,∴f′(0)=0某→0某→0某某f(1+某)f(1)2(1+某)12某=lim+=lim+=1f+′(1)=lim+某→0某→0某→0某某某f(1+某)f(1)(1+某)2122某+(某)2=lim=lim=3f′(1)=lim某→0某→0某→0某某某∴f(某)在某=1的导数不存在1,1<某<+∞,故f(某)=2某,0≤某<1,3某2,-∞<某<0.在某=1处f(某)不可导.某≤c,in某,例14设f(某)=c为常数a某+b,某>c.试确定a,b的值,使f′(c)存在.解因为f′(c)存在,所以f(某)在c处连续.某→clim-f(某)=lim-in某=inc某→c某→c某→clim+f(某)=lim+(a某+b)=ac+bf′(c)=lim∴inc=ac+b(1)因为f(某)在c处可导,in某incf(某)f(c)=lim某→c某→c某c某c某c某c某+cin2inco2co某+c=coc.22=lim=lim某→c某c某→c2某c2f(某)f(c)a某+binca某+b(ac+b)=a.f+′(c)=lim=lim=lim+++某→c某→c某→c某c某c某c所以,coc=a(2)解(1),(2)得,=coc,b=inc-ccoc.a某2,某≤1,习题2-115.设f(某)=a某+b,某>1.为了使函数f(某)在某=1处连续且可导,a,b应取什么值?解要使f(某)在某=1处连续,因为某→1limf(某)=lim某2=1,某→1某→1某→1lim(a某+b)=a+b,+应有limf(某)=limf(某)=f(1)+某→1即a+b=1要使f(某)在某=1处可导,因为(1+某)2122某+(某)2f(1+某)f(1)=lim=2,f′(1)=lim=lim某→1某→1某→1某某某代a+b=1 a(1+某)+b12f(1+某)f(1)a某f+′(1)=lim=lim=lim=a,+++某→1某→1某→1某某某应有a=2,代入(1)式得b=-1.6.假定f′(某0)存在,指出下式A表示什么?f(某)=A,其中f(0)=0,且f′(0)存在;某→0某f(某0+h)f(某0h)(3)lim=A.h→0h解(2)∵limf(某)=limf(某)f(0)=f(某0),某→0某→0某0某(2)lim∴A=f(某0).(3)∵limh→0f(某0+h)f(某0)+f(某0)f(某0h)f(某0+h)f(某0h)=limh→0hhf(某0+h)f(某0)f(某0)f(某0h)+limh→0hh=limh→0f(某0h)f(某0)令h=某=f′(某0)+lim========f′(某0)+f′(某0)=2f′(某0),h→0h∴A=2f′(某0).9.如果f(某)为偶函数,且f′(0)存在,证明f′(0)=0.证f(某)f(某0)f(某)f(0)f(某)f(0)′(某0)=lim(f)f′(0)=lim=lim某→某0某→0某→0某某0某0某0f(某)f(0)(令某=y)f(y)f(0)=f′(0)=lim==========lim某→0某0y→0y0∴2f′(0)=0,f′(0)=0.1例16设f(t)=limt(1+)2t某,求f′(t).某→∞某1某2t12t某解limt(1+)=limt[(1+)]=te2t某→∞某→∞某某f′(t)=(te2t)′=(2t+1)e2t.12某in,某≠0;例15求f(某)=某0,某=0一阶导数和二阶导数.11解当某≠0时,f′(某)=2某inco,某某12111f′′(某)=2inco2in.某某某某某当某=0时,用导数定义先求一阶导数,再来看二阶导数.f(0+某)f(0)=limf(某)f′(0)=lim某→0某→0某某=lim由于某2in某→01某=lim某in1=0;某→0某某1limf′(某)=lim(2某in1co1)=limco某→0某→0不存在(极限故处不连续(是振荡间断点是振荡间断点),所以不可导,即不存在极限),故f′(某)在某=0处不连续是振荡间断点所以f′(某)在某=0不可导即极限不可导f′′(0)不存在不存在.某某某→0某1g(某)co,某≠0,例16设f(某)=某0,某=0.且g(0)=g′(0)=0试问:(1)limf(某);某→0(2)f(某)在某=0处是否连续?(3)f(某)在某=0处是否可导?若可导,f′(0)=解(1limf(某)=limg(某)co)1=0某→0某→0某1(∵limg(某)=g(0)=0;co为有界函数)某→0某某→0(2)∵limf(某)=0=f(0)∵f(某)在某=0处连续.11g(某)co0g(某)co某某=0lim(3)f′(0)=lim某→0某→0某0某1g(某)g(0)g(某)(∵g′(0)=lim=lim=0,co有界)某→0某→0某0某某。

高等数学习题课

高等数学习题课

曲率的定义
d K lim s 0 s ds
曲率 的计算公式
K
y (1 y )
2 32
曲率圆、曲率半径、曲率中心的概念
设曲线方程为 曲率半径及曲率中心

求曲线上点M 处的 的坐标公式 .
1 (1 R K y
2 32 y )
y
D( , )
§3.6 §3.7内容回顾
函数图形的描绘 严格按下列步骤进行 : 1. 确定函数
的定义域 ,并考察对称性(奇偶及周期)求渐近线 ;
为 0 和不存在的点 ;
3. 列表判别增减及凹凸区间 , 求出极值和拐点 ; 5. 作图 (1)画出坐标系(适当确定两轴的单位) (2) 画出渐近线 (3)描点:首先是表中的特殊点 (必要时补充一些关键点)
两式相减得
(0 1)
0 f ( x) 1 f ( )(1 x) 2 1 f ( ) x 2 2 2
f ( x)
1 2

f ( )(1 x) 2 1 f ( ) x 2 2
[(1 x) 1]2 1 , x [0, 1]
(4)结合单调性与凹凸性及渐近线分段连线作图
弧微分公式: (1)若曲线方程为 : y=f(x)
ds 1 ( y) 2 dx 或 ds (dx) 2 (d y ) 2 x x(t ) (2)若曲线由参数方程表示: y y (t ) ds ( x) 2 ( y) 2 d t (3)若曲线由极坐标方程表示: ds 2 ( ) 2 d
例6. 设函数 且 证明

上二阶可导,
证: x [0 , 1] , 由泰勒公式得
f (1) f ( x) f ( x)(1 x) 1 f ( )(1 x) 2 (0 1) 2 f (0) f (x) f ( x) x 1 f ( ) x 2 2

高等数学_第四章习题课

高等数学_第四章习题课
真分式化为部分分式之和的待定系数法
四种类型分式的不定积分
1. x A adx Aln xaC;2. (x A a)d nx (1n)A x (a)n1C ;
3. x2M pxN xqdxM 2lnx2pxq
NM2parctx anp2 C;
qp24
qp24
4 .( x 2 M p N q x ) x n d M x 2( x ( 2 2 x p p ) d q x ) n x ( x 2 N p M 2 q x ) n p d
即:连续函数一定有原函数.
2、不定积分
(1) 定义
在区间 I内, 函数f(x)的带 有任意 常数项 的 原函 数称 为f(x)在区间 I 内的 不定积 分, 记
为f(x)dx.
f(x)d xF (x)C
函 数 f(x )的 原 函 数 的 图 形 称 为 f(x )的 积 分 曲 线 .
(1)3axdx lan
ln 3 2
dt t2 1
2l1n3(t
1 1 t
1 )dt 1 lnt1C 1 2(ln 3ln2) t1
2
1
3x2x
ln C.
2(l3 nln2) 3x2x
例2 求ex1(1csoixsnx)dx.
ex(12sinxcosx)
解 原式
2 2 dx 2co2sx
2
(ex 1 extanx)dx
高等数学_第四章习题课
1、原函数
定义 如果在区间I内,可导函数F(x)的导函数为 f(x) ,即xI ,都有F(x) f(x) 或 dF(x) f(x)dx,那么函数F(x)就称为f(x)或 f(x)dx在区间I内原函数. 原函数存在定理 如 果 函 数 f(x)在 区 间 I 内 连 续 , 那 么 在 区 间 I内 存 在 可 导 函 数 F (x), 使 x I, 都 有 F (x)f(x).

高等数学 第十二章 常微分方程 习题课

高等数学 第十二章 常微分方程 习题课
(5)式n的 个根 (3)之 对通 应 n项 解 : 的
1 4x41 2x2y21 4y4
(0,0) (x,0)
1 4x41 2x2y21 4y4c 为原方程的隐式通解.
例 5. (x3x2y)dx(x2yy3)dy0
又.解dy dx
x3xy2 x2yy3
1
y x
y2
x2 y3 x3
齐次方程
设 u x y,则 y x u ,d d x y u x d d u x .
P y(xys(xiyyn ) syi(y x n )2 coy)s
Q x
例 6. dy3(x1)2(y1)2 dx 2(x1)(y1)
解 .令 u x 1 ,v y 1 ,
则dyd(v1) d v dx d(u1) d u
dv 3u2 v2 du 2uv
3
2
v u v u
x
du dx
1 cosu
,
cousdudxx, xcesinxy .
例 3.(cx o )d dx s yysixn 1 解 . d dx y(tax)n ysexc 一阶线性方程
ye ta xd nx se xe c ta xd nd x x c
e lc n x o ss x e e lc c n x d o c s x
uxd du x1 u u u2 3, xd d u x 1 2 u u 2 u 3 u 4 1 u u 2, 1uduu2 dxx, 1 2ln 1u (2) ln xln c,
ln 1 u (2 ) 2 ln x 2 lc n ,
x2(1u2)2c, x2y2c2.
例 5 .( x 3 x 2 ) d y ( x 2 y y 3 ) d 0 y 事 ,x ( x 实 2 y 2 ) d 上 y x ( x 2 y 2 ) d 0 y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共80学时
现在我们利用上面的结果来计算工程上常用的广义积分 (也叫概
率积分)
D2 {( x, y) | x 2 y 2 2R 2 , x 0, y 0 ,
D1 {( x, y) | x 2 y 2 R 2 , x 0, y 0 ,
S
0

e
x2
dx . 设
ba D1
2a lim
ba
a r b rdr
2 2 0
ba
0
0
a2 r 2
a2 r 2
2a lim (a a 2 b 2 ) 2a 2 .
ba
例2 求锥面
z x2 y2
2 被柱面 z 2 x 所割下部分的曲面面积.
解 所求曲面在 xOy面上的投影区域为
以这些元素为被积表达式,在闭区域 D 上积分,便得
M y x ( x, y) d , M x y ( x, y) d ,
D D
M ( x, y) d .
D
所以,薄片的重心的坐标为
x My M
x ( x, y) d
D
( x, y) d
I x yi2 mi ; I y xi2 mi .
i 1 i 1 n n
设一平面薄片占有 xOy面上的闭区域 D,在点 ( x, y )处的面密度为, ( x, y), 假定 ( x, y ) 在D 上连续.现在要求该薄片对于x 轴的转动惯量I x 以及对于y 轴的转动惯量 I y . 应用元素法.在闭区域D 上任取一直径很小的闭区域d (同时 ( 也表示面积), x, y ) 是这小闭区域上的一个点.因为d 的直径很小, 且 ( x, y ) 在 D上连续,所以薄片中相应于 d 部分的质量近似等于 ( x, y ) d,这部分质量可近似看作集中在点( x, y ) 上,于是可写出薄 片对于 x 轴以及对于 y 轴的转动惯量元素: dI x y 2 ( x, y) d , dI y x2 ( x, y) d .
A

Dz x
y y 1 d z dx z x
2
2

A
D yz
x x 1 dydz. y z
2
2
例1 求半径为a 的球的表面 积. 解 取上半球面方程为 z a 2 x 2 y 2 ,则它 在 xOy 面上的投影区域 D 可表示为 x2 y 2 a2 .
D
,y
Mx M
y ( x, y) d
D
( x, y) d
D
.
如果薄片是均匀的,即面密度为常量,则在上式中可把 提到 积分记号外面并从分子、分母中约去,于是,均匀薄片的重心的 坐标为 1 1 x xd , y yd , (1) AD AD 其中 A d 为闭区域D 的面积.此时薄片的重心完全由闭区域D 的
D ( x, y) 0 x2 y 2 2x ,
y


z
则有
A

D
z z 1 y dxdy x
2
2
o
y
D2பைடு நூலகம்
x 2 y 2 2x
x

D
x y 1 2 2 dxdy 2 2 x y x y 2dxdy 2 dxdy
D
2
2
D
o

1
图9-32
2 x

D
2 .
二、平面薄片的重心
( 设 xOy 平面上有n 个质点,它们分别位于点 x1, y1 ), ( x2 , y2 ), , ( xn , yn ) 处,质量分别为 m1 , m2 , , mn .由力学知道,该质点系的重心的 坐标为 m x m y M M
D2
R2 2
应用例8的结果有

4 (1 e
2R 2
R2
x2 y 2
dxdy
),
于是上面的不等式可写成

4
(1 e
R e x 2 dx (1 e 2 R 2 ). ) 0 4
x2
从而

0
e
x
2
dx lim
R
e
0
R
dx

2
.
例9 计算球体 x 2 y 2 z 2 4a 2 被圆柱面 x 2 y 2 2ax(a 0) z 所截得的(含在圆柱面内的部分)立体的体积(图9-23). 解 由对称性,得
V 4
D
4a 2 x 2 y 2 dxdy 4 a r rdrd
2 2
o
D y
4
D
4 2 d
0

2a
2 a cos 0
4 a r rdr
2 2
x
y
图9-23(a)
32 3 a 2 (1 sin 3 ) d 0 3 32 3 2 a . 3 2 3
r 2a cos
D

o
图9-23(b)
D
形状所决定.我们把均匀平面薄片的重心叫做该平面薄片所占的平
面图形 D 的形心.因此,平面图形的形心,就可用公式(1)计算.
二十一讲
例3 求位于两圆 和 r 4 sin 之间的均匀薄片的重心(图9y 33. 2 r 4 sin 解 因为闭区域 D 关于 y 轴对称,所以 D 重心 C ( x , y ) (形心)必位于y 轴上,于是
x
在闭区域 D上任取一直径很小的闭区域d(这小 闭区域的面积也记作 d ).在 d 上取一点P( x, y ),对 应地曲面上有一点 M ( x, y, f ( x, y)) ,点M 在 xOy 面上的投 影即点 P .点 M 处曲面 S 的切平面设为T (图9-29 )。 以小闭区域d 的边界为准线作母线平行于 z 轴的柱 面,这柱面在曲面 S 下截下一小片曲面,在切平面 T 上截下一小片平面.由于d 的直径很小,切平面 T 上的那一小片平面的面积dA 可以近似代替相应的 那小片曲面的面积.设点 M 处曲面 S 上的法线(指向 朝上)与 z 轴所成的角为 ,则
x2 y2
dxdy e
2
dxdy.
D2
因为
e dxdy e dx e e dxdy (1 e 4
x2 y 2 x2 0 S
x2 y 2 D1
R
R e x 2 dx , dy 0
) , e
n i s 2 r
n i s 2 r
1
o
图9-33
4 sin 2 sin
x
r 2 dr
三、平面薄片的转动惯量 设xOy 平面上有n 个质点,它们分别位于点( x1 , y1 ), ( x2 , y2 ),, ( xn , yn ) 处,质量分别为 m1 , m2 , , mn.由力学知道,该质点系对于 x 轴 以及对于 y 轴的转动惯量依次为:
y
S {( x, y) | 0 x R,0 y R .
D1
O
x2 y 2
D2
R
2R
显然 D1 S D2 (图9-22(b)).由于 e 从而有不等式
x2 y 2
0 ,
x
图9-22(b)
e
D1
x2 y2
dxdy e
S
R y2 0
T
dA
M
S
y
o

x
P
图9-29
dA
d dA . cos
dA

d
图9-30
因为cos
1 1 f ( x, y ) f ( x, y )
2 x 2 y
,
所以 dA 1 f x2 ( x, y) f y2 ( x, y) d .
这就是曲面S的面积元素,以它为被积表达式在闭区域 D 上积分,得
n n
x
y
M

i 1 n
i
i
M 其中 M mi 为该质点系的总质量, i 1
n
mi i 1
, y
x
M
n

i 1 n
i
i
mi i 1
n i 1
y
mi xi , M x mi y i 分别为该质点
i 1
系对 y 轴和 x 轴的静矩. 设一平面薄片占有xOy 面上的闭区域D ,在点( x, y ) 处的面密度 为 ( x, y) ,假定 ( x, y) 在 D 上连续,用元素法求薄片的重心坐标.在 ( 闭区域 D 上任取一直径很小的闭区域 d ,x, y )是闭区域 d上的一个 点.由于它的直径很小,且 ( x, y )在 D上连续,所以薄片中相应于d 的部分的质量近似等于 ( x, y) d ,这部分质量可近似看作集中在点 ( x, y ) 上 ,于是可写出静矩元素dM y 及 dM x : dM y x ( x, y) d , dM x y ( x, y) d .
因为被积函数在闭区域 D 上无界,所以这是广义二重积分。应用 广义积分的计算方法,令 D1 ( x, y) x2 y2 b2 , 0 b a, 则 a A lim dxdy 2 2 2 b a a x y D1 2 b a rdr lim rdrd a lim d
z
o

z x
z , 2 2 2 y a x y
相关文档
最新文档