养鹿中学八年级数学《全等三角形》练习试题
八年级数学:全等三角形测试题(含答案)

八年级数学:全等三角形测试题(含答案)一、选择题1.下列说法正确的是()A.两个等边三角形一定全等B.腰对应相等的两个等腰三角形全等C.形状相同的两个三角形全等D.全等三角形的面积一定相等【答案】D.【解析】解:两个等边三角形边长不一定相等,所以不一定全等,A错误;腰对应相等的两个等腰三角形对应角不一定相等,所以不一定全等,B错误;形状相同的两个三角形对应边不一定相等,所以不一定全等,C错误;全等三角形的面积一定相等,所以D正确,故选D.2.如图,△ABC≌△DEF,∠A=50°,∠C=30°,则∠E的度数为()A.30° B.50° C.60° D.100°【答案】D.【解析】∵△ABC≌△DEF,∠A=50°,∠C=30°,∴∠F=∠C=30°,∠D=∠A=50°,∴∠D=180°﹣∠D﹣∠F=180°﹣50°﹣30°=100°,故选D.3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【答案】D.【解析】∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.4.已知图中的两个三角形全等,则∠1等于()A.72° B.60° C.50° D.58°【答案】D.【解析】如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选D.5.下列说法不正确的是()A.如果两个图形全等,那么它们的形状和大小一定相同B.图形全等,只与形状、大小有关,而与它们的位置无关C.全等图形的面积相等,面积相等的两个图形是全等图形D.全等三角形的对应边相等,对应角相等【答案】C.【解析】A.如果两个图形全等,那么它们的形状和大小一定相同,正确,不合题意;B.图形全等,只与形状、大小有关,而与它们的位置无关,正确,不合题意;C.全等图形的面积相等,但是面积相等的两个图形不一定是全等图形,故此选项错误,符合题意;D.全等三角形的对应边相等,对应角相等,正确,不合题意;故选C.6.如图,△ABC≌△DCB,若∠A=80°,∠ACB=40°,则∠BCD等于()A.80° B.60° C.40° D.20°【答案】B.【解析】∵△ABC≌△DCB,∴∠ACB=∠DBC,∠ABC=∠DCB,△ABC中,∠A=80°,∠ACB=40°,∴∠ABC=180°﹣80°﹣40°=60°,∴∠BCD=∠ABC=60°,故选B.7.如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是()A.15° B.20° C.25° D.30°【答案】B.【解析】∵△ABC≌△ADE,∴∠B=∠D,∠BAC=∠DAE,又∠BAD=∠BAC﹣∠CAD,∠CAE=∠DAE﹣∠CAD,∴∠BAD=∠CAE,∵∠DAC=60°,∠BAE=100°,∴∠BAD=12(∠BAE﹣∠DAC)=12(100°﹣60°)=20°,在△ABG和△FDG中,∵∠B=∠D,∠AGB=∠FGD,∴∠DFB=∠BAD=20°.故选B.二、填空题8.如图,△AEB≌△ACD,AB=10cm,∠A=60°,∠ADC=90°,则AD= .【答案】5cm.【解析】∵∠A=60°,∠ADC=90°,∴∠C=30°,∵△AEB≌△ACD,∴AC=AB=10cm,∴AD=12AC=5cm.9.已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=70°,AB=15cm,则∠C′=度,A′B′=cm.【答案】70;15.【解析】∵△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∴∠C′与∠C是对应角,A′B′与边AB是对应边,故填∠C′=70°,A′B′=15cm.10.已知△ABC≌△DEF,若∠B=40°,∠D=30°,则∠F=°.【答案】110.【解析】∵△ABC≌△DEF,∴∠E=∠B=40°,∴∠F=180°﹣∠E﹣∠D=180°﹣40°﹣30°=110°.11.如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE=.【答案】30°.【解析】∵△ABC≌△ADE,∴∠BAC=∠DAE=60°,∵D是∠BAC的平分线上一点,∴∠BAD=∠DAC=12∠BAC=30°,∴∠CAE=∠DAE﹣∠DAC=60°﹣30°=30°.12.如图,△ABC≌△D CB,A、B的对应顶点分别为点D、C,如果AB=7cm,BC=12cm,AC=9cm,DO=2cm,那么OC的长是 cm.【答案】7.【解析】由题意得:AB=DC,∠A=∠D,∠AOB=∠DOC,∴△AOB≌△DOC,∴OC=BO=BD﹣DO=AC﹣OD=7.13.已知△ABD≌△CDB,AD=BD,BE⊥AD于E,∠EBD=20°,则∠CDE的度数为【答案】125°或15°.【解析】∵BE⊥AD于E,∠EBD=20°,∴∠BDA=90°﹣20°=70°,∵AD=BD,∴∠A=∠ABD=55°,∵△ABD≌△CDB,∴∠CBD=∠BDA=70°,BC=BD,∠BDC=∠C=55°,分两种情况:①如图1所示:∠CDE=70°+55°=125°;②如图2所示:∠CDE=70°﹣55°=15°;综上所述:∠CDE的度数为125°或15°.三、解答题14.,如图,在图中的两个三角形是全等三角形,其中A和D、B和E是对应点.(1)用符号“≌“表示这两个三角形全等(要求对应顶点写在对应位置上);(2)写出图中相等的线段和相等的角;(3)写出图中互相平行的线段,并说明理由.【答案】(1)△ABC≌△DEF;(2)AB=DE,BC=EF,AC=DF;∠A=∠D,∠B=∠E,∠ACB=∠DFE;(3)BC∥EF,AB∥DE,【解析】(1)△ABC≌△DEF;(2)AB=DE,BC=EF,AC=DF;∠A=∠D,∠B=∠E,∠ACB=∠DFE;(3)BC∥EF,AB∥DE,理由是:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠DFE,∴AB∥DE,BC∥EF.15.如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上,∠A=50°,∠F=40°.(1)求△DBE各内角的度数;(2)若AD=16,BC=10,求AB的长.【答案】(1)∠D=50°,∠E=40°,∠EBD=90°;(2)3. 【解析】(1)∵△ACF≌△DBE,∠A=50°,∠F=40°,∴∠D=∠A=50°,∠E=∠F=40°,∴∠EBD=180°﹣∠D﹣∠E=90°;(2)∵△ACF≌△DBE,∴AC=BD,∴AC﹣BC=DB﹣BC,∴AB=CD,∵AD=16,BC=10,∴AB=CD=12(AD﹣BC)=3.16.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.【答案】(1)EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM, ∴FH=GM,∠EGM=∠NHF;(2)2.1cm.2.2cm.【解析】(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF;(2)∵EF=NM,EF=2.1cm,∴MN=2.1cm;∵FG=MH,FH+HG=FG,FH=1.1cm,HM=3.3cm,∴HG=FG﹣FH=HM﹣FH=3.3﹣1.1=2.2cm.。
八年级数学:全等三角形练习(含答案)

八年级数学:全等三角形练习(含答案)一、选择题1.已知图中的两个三角形全等,则∠α度数是( )A.72°B.60°C.58°D.50°2.如图,Rt ABC △沿直角边BC 所在的直线向右平移得到DEF △,下列结论中错误的是( ) A.ABC DEF △≌△B.90DEF ∠= C.AC DF = D.EC CF =3. 如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,A 点落在A '位置,若B A AC ''⊥,则BAC ∠的度数是…( )A .50°B .60°C .70°D .80°4.边长都为整数的△ABC ≌△DEF ,AB 与DE 是对应边, AB=2 ,BC=4 ,若△DEF 的周长为偶数,则 DF 的取值为 ( )(A ). 3 (B). 4 (C). 5 (D). 3或4或5二、填空题1.全等三角形的______相等,______相等。
2.若△ABC 与△DEF 全等,则相等的边有:____________________________,相等的角有_______________________。
A DB C E F3.如图,若111ABC A B C △≌△,且11040A B ∠=∠=°,°,则1C ∠= .4.已知△ABD ≌△CDB ,AB 与CD 是对应边,那么AD=____ ,∠A=______________;三、解答题1.如图,已知△ABE ≌△ACD ,∠ADE =∠AED ,∠B =∠C ,•指出其他的对应边和对应角.2.如图, △ABD ≌△ACE , AB=AC,写出图中的对应边和对应角。
参考答案:一、选择题 1.D , 2.D , 3.C , 4.B二、填空题 1.对应边 对应角 2.AB=DE,AC=DF,BC=EF 3.30° 4.CB ∠C三、解答题 1. 对应边:AB 与AC,AD 与AE,BE 与CD.对应角:BAE ∠与CAD ∠ ,AEB ∠与ADC ∠AB CC 1 A 1 B 1 AD EBC _D _C_A _B _E2.对应边:AB 与AC,AD 与AE,BD 与CE. 对应角:A ∠与A ∠,B ∠与C ∠,ADB ∠与AEC ∠.。
初二数学全等三角形练习题(含答案)

初二数学全等三角形练习题(含答案)学习是一个边学新知识边巩固的过程,对学过的知识一定要多加练习,这样才能进步。
因此,精品小编精心为大家整理了这篇初二数学全等三角形练习题(含答案),供大家参考。
◆夯实基础一、耐心选一选,你会开心:(每题6分,共30分)1.下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为( ) A.①②③④ B.①③④ C.①②④D.②③④2.如果是中边上一点,并且,则是( )A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形3.一个正方形的侧面展开图有( ) 个全等的正方形.A.2 个B.3个C.4个D.6个4.对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.其中能获得这两个图形全等的结论共有( )A.1个B.2个C.3个D.4个5.下列说法正确的是( )A.若,且的两条直角边分别是水平和竖直状态,那么的两条直角边也一定分别是水平和竖直状态B.如果,,那么C.有一条公共边,而且公共边在每个三角形中都是腰的两个等腰三角形一定全等D.有一条相等的边,而且相等的边在每个三角形中都是底边的两个等腰三角形全等二、精心填一填,你会轻松(每题6分,共30分)6.如图所示,沿直线对折,△ABC与△ADC重合,则△ABC≌,AB的对应边是,BC的对应边是,∠BCA的对应角是.第6题第7题7.如图所示,△ACB≌△DEF,其中A与D,C与E是对应顶点,则CB的对应边是,∠ABC的对应角是.8.如图,AB、DC相交于点O,△AOB≌△DOC,A、D为对应顶点,则这两个三角形中,相等的边是____________________,相等的角是____________________.9.已知,,,则,,和的度数分别为,, .10.请在下图中把正方形分成2个、4个、8个全等的图形:三、细心做一做,你会成功(共40分)11.找出下列图中的全等图形.12.找出下列图形中的全等图形.(1)(2) (3)(4)(5)(6)(7)(8)(9)(10)(11) (12)13.如图,AB=DC,AC=DB,求证AB∥CD.◆综合创新14.如图,点在一条直线上,△ △ 你能得出哪些结论?(请写出三个以上的结论)[来源:ZXXK]15.把一张方格纸贴在纸板上.按图1所示画上正方形,然后沿图示的直线切成5小块.当你照图2的样子把这些拼成正方形的时候中间居然出现了一个洞!我们发现,图1的正方形是由49个小正方形组成的.图2中拼成的正方形却只有48个小正方形.哪一个小正方形没有了?它到哪去了?中考链接16.如图,,则的度数为( )A. B.C. D.17.如图,若,且,则 .18.右图是用七巧板拼成的一艘帆船,其中全等的三角形共有对.参考答案夯实基础1.A2.D3.C4.A.5.B6.△ADC,AD,AC,∠DCA7.EF,∠DFE8.AB=DC、AO=DO、OB=OC,∠AOB=∠DOC、∠A=∠D、∠B=∠C.9. ; ,,10.分法可分别如下所示:11.根据全等形的定义得全等形有天鹅、荷花.12.(1)和(10),(2)和(12),(4)和(8),(5)和(9)是全等图形13.分析:要证AB∥CD,只需∠ABC=∠DCB,要证∠ABC=∠DCB,只需△ABC≌△DCB.证明:∵在△ABC和△DCB中,,∴△ABC≌△DCB(SSS).∴∠ABC=∠DCB.∴AB∥CD.综合创新14.由△ △ 可得到△ △ 等.15.5小块图形中最大的两块对换了位置之后,被那条对角线切开的每个小正方形都变得高比宽大一点点.这意味着这个大正方形不再是严格的正方形.它的高增加了,从而使得面积增加,所增加的面积恰好等于那个方洞的面积.中考链接16.C17.18.2小编再次提醒大家,一定要多练习哦!希望这篇初二数学全等三角形练习题(含答案),能够帮助你巩固学过的相关知识。
重庆市养鹿中学八年级数学《全等三角形》练习试题 人

A CE D B B C EDAA B养鹿中学八年级数学《全等三角形》练习试题(时间120分钟 满分150分)姓名____________班级____________ 得分____________ 一、精心选一选(每小题3分,共42分) 1、不能推出两个三角形全等的条件是( )A 、有两边和夹角对应相等B 、有两角和夹边对应相等C 、有两角和一边对应相等D 、有两边和一角对应相等 2.如图所示,△ABD ≌△CDB ,下面四个结论中,不正确的是( ) A.△ABD 和△CDB 的面积相等 B.△ABD 和△CDB 的周长相等 C.∠A +∠ABD =∠C +∠CBD D.AD ∥BC ,且AD =BC第2题图3、下列命题是假命题的是( ) A 、全等三角形的对应高、对应中线、对应角平分线相等B 、有两个角和其中一个角的平分线对应相等的两个三角形全等C 、有两条边和其中一条边上的中线对应相等的两个三角形全等D 、有两条边和其中一条边上的高对应相等的两个三角形全等4.如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°,∠ADB =30°,则∠BCF = ( ) A.150° B.40° C.80° D.90° 第4题图5、方格纸中,每个小格顶点叫做一个格点,以格点连线为边的三角形叫做格点三角形.如图,在4×4的方格纸中,有两个格点三角形△ABC 、△DEF ,下列说法中成立的是( ) A 、∠BCA=∠EDF B 、∠BCA=∠EFDC 、∠BAC=∠EFD D 、这两个三角形中,没有相等的角第5题图 第6题图 第7题图6、如图所示,已知在△ABC 中,∠C=90°,AD=AC ,DE ⊥AB 交BC 于点E ,若∠B=28°,则∠AEC=( )A 、28°B 、59°C 、60°D 、62°7、如图,要测量河岸相对两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD=BC ,再作出BF 的垂线DE ,使A 、C 、E 在同一直线上,可以证明△EDC ≌△ABC 得ED=AB ,因此测得DE 的长就是AB 的长,判断△EDC ≌△ABC 的理由是( )A 、角边角B 、边角边C 、边边边D 、斜边、直角边8、在△ABC 与△DEF 中,如果∠A=∠D ,∠B=∠E,要使这两个三角形全等,还需要的条件可F E F CD AD AC B以是()A、AB=EFB、BC=EFC、AB=ACD、∠C=∠D9、△ABC和△A′B′C′中,条件①AB=A′B′,②BC=B′C′,③AC=A′C′,④∠A=∠A,⑤∠B=∠B′,⑥∠C=∠C′,则下列各组条件中不能保证△ABC≌△A′B′C′的一组是()A、①②③B、①②⑤C、①③⑤D、②⑤⑥10、.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A. SSSB. SASC. AASD. ASA第10题图11、下列图形中,△A׳B׳C׳与△ABC关于直线MN成轴对称的是()12. 某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去 B.带②去C.带③去 D.①②③都带去13.如图, ∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线OC,做法用得到三角形全等的判定定方法是( )A.SASB.SSSC.ASAD.HL14.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,如图,则下列说法正确的有几个(),大家一起热烈地讨论交流,小英第一个得出正确答案,是______.(1)AE平分∠DAB(2)△EBA≌△DCE(3)AB+CD=AD(4)AE⊥DE(5)AB//CDA.1个B.2个C.3个 D.4个A′B′C′CNABMACNABMBA′B′C′B′NCMABCA′C′B′A′C′NCMABDBFA OD CBE B ADCFA FD E O BC 3 4 1 2B A DCDB C A二、细心填一填(每小题4分,共32分)15、如图,△ABC 沿BC 折叠后与△DBC 能够完全重合,则△ABC 与△DBC 是_____________三角形, 若∠ABC 与∠DBC 是对应角,则其它的 对应角是___________________________,对应边是___________________________. 第11题图16、已知△ABC ≌△A ′B ′C ′,∠A=∠A,∠B=∠B ′,∠C=70°,AB=15cm ,则∠C ′=_____, A ′B ′=________.17、在△ABC 中,∠A:∠C:∠B=4:3:2,且△ABC ≌△DEF ,则∠E=_______.18、如图,线段AC 、BD 相交于点O,且AO=OC ,请添加一个条件使△ABO ≌△CDO,应添加的条件为_________________________.(添加一个条件即可)第14题图 第15题图 第17题图19、如图,AB//CF,E 为DF 的中点,AB=10,CF=6,则BD=_______.20、△ABC ≌△DEF ,且△ABC 的周长为12,若AB =3,EF =4,AC = . 21、如图,O 是△ABC 内一点,且O 到△ABC 三边AB 、BC 、CA 的距离OF=OD=OE ,若∠BAC=70°,则∠BOC=________. 22、如图,∠1=∠2.(1)当BC=BD 时,△ABC ≌△ABD的依据是_________________(2)当∠3=∠4时,△ABC ≌△ABD 的依据是_________________ 第18题图三、用心做一做(共76分)23.(5分)如图,已知△ABC 中,AB =AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由.证明: ∵AD 平分∠BAC∴∠________=∠_________( 角平分线的定义 )在△ABD 和△ACD 中_________( ____________) _________( ____________)⎪⎪⎩⎪⎪⎨⎧BECAD_________( ____________)∴△ABD≌△ACD()24、(5分)如图,C为BE上一点,点A、D分别在B、E两侧,AB//BE,AB=CE,BC=ED,求证:AC=CD.25.(10分)(1)已知:如图,在直线MN上求作一点P,使点P到∠A OB两边的距离相等(要求保留作图痕迹,写出结论)(2)如图,AC、AB是两条笔直的交叉公路,M、N是两个实习点,现欲建一个茶水供应站,使得此茶水供应站到公路两边的距离相等,且离M、N两个实习点的距离也相等,此茶水站应建在何处?26、(4分)如图,在网格纸上,分别画出所给图形关于直线l对称的图形.′ONMBA27.(8分)已知: BE⊥CD,BE=DE,BC=DA,求证:△BEC≌△DAE28.(8分)已知:如图,A、C、F、D在同一直线上,AF=D C,AB=DE,BC=EF,求证:△ABC≌△DEF.29.(8分)已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.BCDEFAC E30.(8分)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC cm,AB=20cm,AC=8cm,求DE的长.面积是282 Array31.在△ABC中,∠ACB=90o,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E. (10分)(1)当直线MN绕点C旋转到图1的位置时,求证: DE=AD+BE(2)当直线MN绕点C旋转到图2的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.32、如图,△ABC中,D是BC的中点,过D点的直线GF交AC于点F,交AC的平行线BG于点G,DE⊥GF交AB于点E,连接EG。
初二全等三角形经典练习题及答案

初二全等三角形经典练习题及答案一、选择题1. 设ABC和DEF是两个全等三角形,已知∠A=∠D=63°,∠B=∠E=75°,则∠C=_____。
A. 63°B. 75°C. 105°D. 123°2. 若△ABC≌△PQR,已知AB=7.5cm,BC=9cm,PR=6cm,令P是B的重点,则AP的长度是_____。
A. 6.75cmB. 5.25cmC. 3.75cmD. 3cm3. 在△ABC和△PQR中,已知∠A=80°,∠C=60°,∠Q=80°。
如果BC=PQ=4cm,则BQ的长度是_____。
A. 4cmB. 5cmC. 6cmD. 8cm4. 设ABC和DEF是两个全等三角形,已知AB=DE=12cm,BC=EF=16cm,AC=DF=20cm,则△ABC和△DEF的周长之比是_____。
A. 3:4B. 4:3C. 5:6D. 6:5二、填空题1. 在△ABC中,已知AB=AC,∠B=30°,BD为边AB的中线,DE⊥AC交BC于点E,则∠DEB=_____。
2. 在△ABC与△DEF中,AB=DE,AC=DF,∠A=∠D,若AD平行于BF,则BC平行于_____。
3. 在△ABC和△DEF中,BC=EF,AB=2DE,∠B=∠E=90°,∠C=∠F=60°,则BC的长度是_____。
4. 在△ABC中,AB=AC,∠A=40°,点D是边BC的中点,则∠ACD的度数是_____。
三、综合题1. 在△ABC中,AB=AC,∠B=40°。
点D和点E分别在线段AB和AC上,且AD=CE。
若∠CDE=80°,求∠DBE的度数。
解答:已知∠B=40°,AB=AC,AD=CE,且∠CDE=80°。
利用全等三角形的性质,我们可以得到以下等式:∠BAC = ∠CAB (等腰三角形的性质)∠ADE = 180° - ∠D = 180° - 80° = 100°∠AED = 180° - ∠A - ∠ADE = 180° - 40° - 100° = 40°由∠ADE = ∠AED,得到△ADE是一个等腰三角形。
(完整版)八年级数学全等三角形练习题含答案.docx

全等三角形复习练习题一、选择题1.如图,给出下列四组条件:① AB DE ,BC EF ,AC DF ;② ABDE , BE , BC③ BE , BC EF , C F ;④ AB DE ,AC DF , B其中,能使 △ ABC ≌△ DEF 的条件共有()A . 1 组B .2 组C .3 组D .4 组2. 如图, D ,E 分别为 △ ABC 的 AC , BC 边的中点,将此三角形沿 DE 折叠,使点 C 落在 AB 边上的点 P 处.若 CDE48°,则 APD 等于()A . 42° B. 48° C. 52° D . 58°3. 如图(四),点 P 是 AB 上任意一点, ABCABD ,还应补充一个条件,才能推出 △ APC ≌△ APD .从下列条件中补充一个条件,不一定能 推出 △ APC ≌△ APD 的是( )....A . BC BDB. AC ADC. ACB ADBD. CAB DAB4. 如图,在△ ABC 与△ DEF 中,已有条件 AB=DE ,还需添加两个条件才能使△ ABC ≌△ DEF ,不能添加的一组条件是 ( )(A) ∠B=∠ E,BC=EF (B )BC=EF , AC=DF(C) ∠A=∠ D ,∠ B=∠E (D )∠ A=∠D ,BC=EF5.如图,△ ABC 中,∠ C = 90 °, AC= BC ,AD 是∠ BAC 的平分线,DE ⊥AB 于 E ,若 AC= 10cm ,则△ DBE 的周长约等于 ( )A .14cmB .10cmC .6cmD . 9cm6. 如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有(A. 1 处 B. 2 处 C. 3 处D. 4 处EF ;E .CBPD图(四)CDAE②)③①AB④7.某同学把一块三角形的玻璃打碎了 3 块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去 B .带②去C.带③去D.带①②③去8.如图,在Rt△ABC中,B90, ED 是AC的垂直平分线,交AC于点D,交BC于点E.已知BAE10 ,则C的度数为()AD A.30B. 40C.50D.609.如图,△ ACB≌△ A C B , BCB =30°,则ACA 的度数为(B E )A.20°B.30°C.35°D.40°A A CBA BB C D10.如图, AC= AD,BC=BD,则有()A. AB垂直平分CD B.CD垂直平分 ABC. AB与 CD互相垂直平分D. CD平分∠ ACB11.如图 , ∠ C=90°,AD 平分∠ BAC交 BC于 D,若 BC=5cm,BD=3cm,则点 D 到 AB的距离为()A. 5cmB. 3cmC. 2cmD.不能确定AAPC BO BD12.如图, OP平分AOB , PA OA , PB OB ,垂足分别为 A,B.下列结论中不一定成立的是()A. PA PB B. PO 平分APBD C. OA OB D . AB 垂直平分 OP13. 如图,已知 AB AD,那么添加下列一个条件后,仍无法判定()A. CB CD B .∠BAC ∠DACA C.∠ BCA∠DCA D.∠B∠D 90C CB14. 观察下列图形,则第n 个图形中三角形的个数是()⋯⋯第 1 个第2个第3个A. 2n 2B. 4n 4C. 4n 4D. 4n二、填空题1. 如图,已知 AB AD , BAE DAC ,要使△ ABC ≌ △ ADE ,可补充的条件是(写出一个即可).ABEE C DA DCB2.如图 , 在△ ABC中, ∠C=90°,AC=BC,AD平分∠ BAC交 BC 于 D,DE⊥AB 于 E,且AB=5cm,则△ DEB的周长为 ________3. 如图,BAC ABD ,请你添加一个条件:,使OC OD (只添一个即可).CDOA B4.如图,在 ABC中,∠ C=90°∠ ABC的平分线 BD交 AC于点 D, 若 BD=10厘米,BC=8厘米, DC=6厘米,则点 D 到直线 AB的距离是 __________厘米。
八年级数学《全等三角形》试卷(含答案)

八年级数学《全等三角形》试卷(含答案)考试时间100分钟满分100分一、选择题(每题3分共30分)1、如图1;已知∠A=∠D;∠1=∠2;那么要得到△ABC≌△DEF;还应给出的条件是()A、∠E=∠BB、ED=BCC、AB=EFD、AF=CD2、如图2在△ABC中;D、E分别是边AC、BC上的点;若△ADB≌△EDB≌△EDC;则∠C的度数为()A、15°B、20°C、25°D、30°3、如图3所示;在△ABC中;∠B=∠C;AD为△ABC的中线;那么下列结论错误的是()A、△ABD≌△ACDB、AB=AC、AD是△ACD的高D、△ABC是等边三角形图1 图2 图34、如图4;已知△ABC的六个元素;则下面甲、乙、丙三个三角形中和△ABC 全等的图形是()A、甲和乙B、乙和丙C、只有乙D、只有丙图45、如图5;AO=BO;CO=DO;AD与BC交于E;则图中全等三角形的对数为()A、2对B、3对C、4对D、5对6、如图6;已知∠1=∠2;欲证△ABD≌△ACD;还必须从下列选项中补选一个;则错误的选项是()A、∠ADB=∠ADCB、∠B=∠CC、BD=CDD、AB=AC图5 图67、下列说法正确的有()①角平分线上任意一点到角两边的距离相等②到一个角两边的距离相等的点在这个角的平分线上③三角形三个角平分线的交点到三个顶点的距离相等④三角形三条角平分线的交点到三边的距离相等A、1个B、2个C、3个D、4个8、如果△ABC≌△DEF;△DEF的周长为13;DE=3;EF=4;则AC的长()A、13B、3C、4D、69、已知如图7;AC⊥BC;DE⊥AB;AD平分∠BAC;下面结论错误的是()A、BD+ED=BCB、DE平分∠ADBC、AD平分∠EDCD、ED+AC>AD10、如图8;某同学把一块三角形的玻璃打碎成了三块;现在要到玻璃店去配一块完全一样的玻璃;那么最省事的办法是()A、带①去B、带②去C、带③去D、带①②③去图7 图8二、填空(每题3分;共15分)11、如图9已知△OA`B`是△AOB 绕点O 旋转60°得到的;那么△OA`B`与△OAB 的 关系是 ;如果∠AOB=40°;∠B=50°;则∠A`OB`= ∠AOB`= 。
八年级数学全等三角形专项练习题(含答案)

八年级数学全等三角形专项练习题一、单选题1.如图,△ABC ≌△DEF ,点A 与D ,B 与E 分别是对应顶点,且测得BC=5cm ,BF=7cm ,则EC 长为( )A .1cmB .2cmC .3cmD .4cm 2.已知图中的两个三角形全等,则α∠的度数是( )A .72°B .60°C .58°D .50° 3.在下列各组条件中,不能说明ABC DEF ∆∆≌的是( )A .AB=DE ,∠B=∠E ,∠C=∠FB .AB=DE ,∠A=∠D ,∠B=∠EC .AC=DF ,BC=EF ,∠A=∠D D .AB=DE ,BC=EF ,AC=ED 4.如图,在四边形ABCD 中,AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对5.如图,已知12,AC AD ∠=∠=,增加下列条件,不能肯定ABC AED ≌的是( )A .C D ∠=∠B .B E ∠=∠C . AB AE =D .BC ED = 6.“经过已知角一边上的一点,作一个角等于已知角”的尺规作图过程如下:已知:如图,AOB ∠和OA 上一点C .求作:一个角等于AOB ∠,使它的顶点为C ,一边为CA .作法:如图.(1)在OA 上取一点()D OD OC <,以点O 为圆心,OD 长为半径画弧,交OB 于点E ; (2)以点C 为圆心,OD 长为半径画弧,交CA 于点F ,以点F 为圆心,DE 长为半径画弧,两弧交于点G ;(3)作射线CG .则GCA ∠就是所求作的角.此作图的依据中不含有( )A .三边分别相等的两个三角形全等B .全等三角形的对应角相等C .两直线平行同位角相等D .两点确定一条直线7.如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( )A .线段CD 的中点B .OA 与OB 的中垂线的交点C .OA 与CD 的中垂线的交点 D .CD 与∠AOB 的平分线的交点 8.如图所示,在ABC ∆中,AD 平分BAC ∠,DE AB ⊥于E ,15ABC S ∆=,3DE =,6AB =,则AC 长是( )A .4B .5C .6D .79.如图,在Rt △ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线,AD=20,则BC 的长是( )A .20B .C .30D .10 10.如图,在△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,PE ,PF 分别交AB ,AC 于点E ,F ,给出下列四个结论:①△APE ≌△CPF ;②AE=CF ;③△EAF 是等腰直角三角形;④S △ABC =2S 四边形AEPF ,上述结论正确的有( )A .1个B .2个C .3个D .4个二、填空题 11.已知△ABC ≌△DEF ,△ABC 的周长为100cm ,DE =30cm ,DF =25cm ,那么BC =_______. 12.如图,要测量河两岸相对两点A 、B 间的距离,先在过点B 的AB 的垂线上取两点C 、D ,使CD=BC ,再在过点D 的垂线上取点E ,使A 、C 、E 三点在一条直线上,可证明△EDC ≌△ABC ,所以测得ED 的长就是A 、B 两点间的距离,这里判定△EDC ≌△ABC 的理由是__.13.如图,△ABC 的三边AB 、BC 、CA 的长分别为30、40、15,点P 是三条角平分线的交点,将△ABC 分成三个三角形,则APB S ∆︰BPC S ∆︰CPA S ∆等于____.14.如图,的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为_______平方单位.15.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________三、解答题16.如图,点E、F在AC上,DF=BE,AE=CF,∠AFD=∠CEB.求证:AD∥CB.17.已知:如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D ,E . (1)求证:△BEC ≌△CDA ;(2)当AD =3,BE =1时,求DE 的长.18.嘉淇同学要证AE BF =,她先用下列尺规作图步骤作图:①//,90AD BC BAD ∠=;②以点B 为圆心,BC 长为半径画弧,与射线AD 相交于点E ,连接BE ;③过点C 作CF BE ⊥,垂足为点F .并写出了如下不完整的已知和求证.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明过程.19.如图,点C为线段AB上一点,△ACM与△CBN都是等边三角形,AN与MB交于P.(1)求证:AN=BM;(2)连接CP,求证:CP平分∠APB.20.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DAE交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.答案1.C2.D3.C4.C5.D6.C7.D8.A9.D10.C11.45cm12.ASA13.6:8:314.6﹣15.135°16.∵A E=CF∴AE﹣EF=CF﹣EF,即AF=CE,又∵∠AFD=∠CEB,DF=BE,△ADF≌△CBE(SAS),∴∠A=∠C∴AD∥CB.17.(1)证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠E=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠∠CBE=90°,∴∠ACD=∠CBE,在△ADC和△CEB中,ADC E90 ACD CBE AC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△ADC≌△CEB(AAS),(2)解:∵△ADC≌△CEB,∴BE=CD=1,AD=EC=3,∴DE=CE﹣CD=3﹣1=2.18.(1)∵以点B为圆心,BC长为半径画弧∴BC=BE根据已知条件第一句话,得到AE=BF故答案为:BE;BF;(2)证明:∵CF⊥BE,∴∠BFC=90°,又∵AD∥BC,∴∠AEB=∠FBC.∵以点B为圆心,BC长为半径画弧,∴BE=BC,在△ABE与△FCB中,BAE CFB AEB FBC BE CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△FCB ,∴AE=BF19.(1)∵△ACM 与△CBN 都是等边三角形, ∴AC =CM ,CN =CB ,∠ACM =∠BCN =60°, ∴∠ACN =∠BCM =120°,且AC =CM ,CN =CB ,∴△ACN ≌△MCB (SAS ), ∴AN =BM ;(2)过点C 作CE ⊥AN 于点E ,作CF ⊥BM 于点F , ∵△ACN ≌△MCB ,∴S △ACN =S △MCB , ∴12×AN ×CE =12×BM ×CF ,且AN =BM , ∴CE =CF ,且CE ⊥AN ,CF ⊥BM , ∴CP 平分∠APB .20.(1)证明:如图,∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°, 又∵∠BAC=∠DAC+∠1=90°, ∴∠1=∠2,在△ABD 和△ACE 中 12AB AC AD AE ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△ACE . (2)结论:BD 2+FC 2=DF 2.理由如下: 连接FE ,∵∠BAC=90°,AB=AC , ∴∠B=∠3=45°由(1)知△ABD ≌△ACE ∴∠4=∠B=45°,BD=CE ∴∠ECF=∠3+∠4=90°, ∴CE 2+CF 2=EF 2, ∴BD 2+FC 2=EF 2, ∵AF 平分∠DAE , ∴∠DAF=∠EAF ,在△DAF 和△EAF 中 AF AF DAF EAF AD AE ⎧⎪∠∠⎨⎪⎩===, ∴△DAF ≌△EAF ∴DF=EF∴BD 2+FC 2=DF 2. (3)过点A 作AG ⊥BC 于G , 由(2)知DF 2=BD 2+FC 2=32+42=25 ∴DF=5,∴BC=BD+DF+FC=3+5+4=12, ∵AB=AC ,AG ⊥BC , ∴BG=AG=12BC=6, ∴DG=BG -BD=6-3=3,∴在Rt △ADG 中,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A C E D
B B
C E
D
A
A B
养鹿中学八年级数学《全等三角形》练习试题
(时间120分钟
满分150分)
姓名____________班级____________ 得分____________ 一、精心选一选(每小题3分,共42分)
1、不能推出两个三角形全等的条件是( )
A 、有两边和夹角对应相等
B 、有两角和夹边对应相等
C 、有两角和一边对应相等
D 、有两边和一角对应相等 2.如图所示,△ABD ≌△CDB ,下面四个结论中,不正确的是( ) A.△ABD 和△CDB 的面积相等 B.△ABD 和△CDB 的周长相等 C.∠A +∠ABD =∠C +∠CBD D.AD ∥BC ,且AD =BC
第2题图
3、下列命题是假命题的是( ) A 、全等三角形的对应高、对应中线、对应角平分线相等
B 、有两个角和其中一个角的平分线对应相等的两个三角形全等
C 、有两条边和其中一条边上的中线对应相等的两个三角形全等
D 、有两条边和其中一条边上的高对应相等的两个三角形全等
4.如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°,∠ADB =30°,则∠BCF = ( ) A.150° B.40° C.80° D.90° 第4题图
5、方格纸中,每个小格顶点叫做一个格点,以格点连线为边的三角形叫做格点三角形.如图,在4×4的方格纸中,有两个格点三角形△ABC 、△DEF ,下列说法中成立的是( )
A 、∠BCA=∠EDF
B 、∠BCA=∠EFD
C 、∠BAC=∠EF
D D 、这两个三角形中,没有相等的角
第5题图 第6题图 第7题图 6、如图所示,已知在△ABC 中,∠C=90°,AD=AC ,DE ⊥AB 交BC 于点E ,若∠B=28°,则∠AEC=( )
A 、28°
B 、59°
C 、60°
D 、62°
7、如图,要测量河岸相对两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD=BC ,再作出BF 的垂线DE ,使A 、C 、E 在同一直线上,可以证明△EDC
F E F C
D A
D A
C B
≌△ABC得ED=AB,因此测得DE的长就是AB的长,判断△EDC≌△ABC的理由是()
A、角边角
B、边角边
C、边边边
D、斜边、直角边
8、在△ABC与△DEF中,如果∠A=∠D,∠B=∠E,要使这两个三角形全等,还需
要的条件可以是()
A、AB=EF
B、BC=EF
C、AB=AC
D、∠C=∠D
9、△ABC和△A′B′C′中,条件①AB=A′B′,②BC=B′C′,③AC=A′C′,④∠A=∠A,⑤∠B=∠B′,⑥∠C=∠C′,则下列各组条件中不能保证△ABC≌△A′B′C′的一组是()
A、①②③
B、①②⑤
C、①③⑤
D、②⑤⑥
10、.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()
A. SSS
B. SAS
C. AAS
D. ASA
第10题图
11. 某同学把一块三角形的玻璃打碎成了3块,现在要到玻
璃店去配一块完全一样的玻璃,那么最省事方法是()
A.带①去 B.带②去
C.带③去 D.①②③都带去
12.如图, ∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线OC,做法用得到三角形全等的判定定方法是( )
A.SAS
B.SSS
C.ASA
D.HL
13.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,如图,则下列说法正确的有几个(),大家一起热烈地讨论交流,小英第一个得出正确答案,是______.
(1)AE平分∠DAB(2)△EBA≌△DCE(3)AB+CD=AD
(4)AE⊥DE(5)AB//CD
A.1个
B.2个
C.3个
D.4个
B
E
A O
D C
B
E
B
A
D
C F A F
D
E O B
C 3 4 1 2 B A D
C
C
A
D
B
二、细心填一填(每小题4分,共32分)
14、如图,△ABC 沿BC 折叠后与△DBC 能够完全重合,
则△ABC 与△DBC 是_____________三角形, 若∠ABC 与∠DBC 是对应角,则其它的 对应角是___________________________,
对应边是___________________________. 第11题图 15、已知△ABC ≌△A ′B ′C ′,∠A=∠A,∠B=∠B ′,∠C=70°,AB=15cm ,则∠C ′=_____, A ′B ′=________.
16、在△ABC 中,∠A:∠C:∠B=4:3:2,且△ABC ≌△DEF ,则∠E=_______.
17、如图,线段AC 、BD 相交于点O,且AO=OC ,请添加一个条件使△ABO ≌△CDO,应添加的条件为_________________________.(添加一个条件即可)
第14题图 第15题图 第17题图
18、如图,AB//CF,E 为DF 的中点,AB=10,CF=6,则BD=_______.
29、△ABC ≌△DEF ,且△ABC 的周长为12,若AB =3,EF =4,AC = . 20、如图,O 是△ABC 内一点,且O 到△ABC 三边AB 、BC 、CA 的距离OF=OD=OE ,若∠BAC=70°,则∠BOC=________. 21、如图,∠1=∠2.
(1)当BC=BD 时,△ABC ≌△ABD
的依据是_________________
(2)当∠3=∠4时,△ABC ≌△ABD 的依据是_________________ 第18题图
三、用心做一做(共76分)
22.(5分)如图,已知△ABC 中,AB =AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. 证明: ∵AD 平分∠BAC
∴∠________=∠_________( 角平分线的定义 )
在△ABD 和△ACD 中
_________( ____________) _________( ____________) _________( ____________)
∴△ABD ≌△ACD ( )
⎪⎪
⎩⎪⎪⎨
⎧
B
E C
A
D 23、(5分)如图,C 为B
E 上一点,点A 、D 分别在B 、E 两侧,AB//BE,AB=CE,BC=ED,求证:AC=CD.
24.(10分)(1)已知:如图,在直线MN 上求作一点P ,使点P 到 ∠AOB 两边的距离相等(要求保留作图痕迹,写出结论)
(2)如图,AC 、AB 是两条笔直的交叉公路,M 、N 是两个实习点,现欲建一个茶水供应站,使得此茶水供应站到公路两边的距离相等,且离M 、N 两个实习点的距离也相等,此茶水站应建在何处?
O
N M B A
25.(8分)已知:BE⊥CD,BE=DE,BC=DA,
求证:△BEC≌△DAE
26.(8分)已知:如图,A、C、F、D在同一直线上,AF=D C,AB=DE,BC =EF,
求证:△ABC≌△DEF.
B
C
D E
F A
C E
27.(8分)已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△
28.(8分)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是282
cm,AB=20cm,AC=8cm,求DE的长.
29.在△ABC中,∠ACB=90o,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E. (10分)
(1)当直线MN绕点C旋转到图1的位置时,求证: DE=AD+BE
(2)当直线MN绕点C旋转到图2的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.
30、如图,△ABC中,D是BC的中点,过D点的直线GF交AC于点F,交AC的平行线BG于点G,DE⊥GF交AB于点E,连接EG。
(10分)
(1)求证:BG=CF;
(2)请你判断BE+CF与EF的大小关系,并证明。
祝你成功,做完后再仔细检查一下,别留下什么遗憾哦!A
F
C D
B
E。