ASTM参考燃油

合集下载

工业用重油标准

工业用重油标准

工业用重油标准工业用重油是指一种燃料油,主要用于工业领域的燃烧,如发电厂、钢铁厂等。

由于不同地区和国家的标准不同,下面将介绍一些常见的工业用重油标准。

1.中国标准:GB/T 17623-1998《工业用重油》该标准规定了工业用重油的物理和化学性质、燃烧性能、质量指标等方面的要求。

其中,物理和化学性质包括密度、粘度、闪点、凝点、蒸馏范围等指标;燃烧性能包括硫含量、灰分含量、水分含量、热值等指标;质量指标包括硫酸盐、铜片腐蚀、锈蚀等指标。

2.美国标准:ASTM D396-18a《Standard Specification for Fuel Oils》该标准适用于工业用重油和轻油,规定了其物理和化学性质、燃烧性能、质量指标等方面的要求。

其中,物理和化学性质包括密度、粘度、闪点、凝点、蒸馏范围等指标;燃烧性能包括硫含量、灰分含量、水分含量、热值等指标;质量指标包括硫酸盐、铜片腐蚀、锈蚀等指标。

3.欧洲标准:EN 590:2013《Automotive fuels - Diesel - Requirements and test methods》该标准适用于柴油燃料,规定了其物理和化学性质、燃烧性能、质量指标等方面的要求。

其中,物理和化学性质包括密度、粘度、闪点、凝点、蒸馏范围等指标;燃烧性能包括硫含量、灰分含量、水分含量、热值等指标;质量指标包括硫酸盐、铜片腐蚀、锈蚀等指标。

4.日本标准:JIS K 2204-2006《工業用重油》该标准规定了工业用重油的物理和化学性质、燃烧性能、质量指标等方面的要求。

其中,物理和化学性质包括密度、粘度、闪点、凝点、蒸馏范围等指标;燃烧性能包括硫含量、灰分含量、水分含量、热值等指标;质量指标包括硫酸盐、铜片腐蚀、锈蚀等指标。

总体来说,各个国家和地区的工业用重油标准大同小异,都是从物理和化学性质、燃烧性能、质量指标等方面出发,对重油进行规范和要求。

在实际使用过程中,需要根据当地的标准进行选择和使用,以确保生产运营的安全和稳定。

ASTM D92-05a 测定石油产品闪点和燃点指导书

ASTM D92-05a 测定石油产品闪点和燃点指导书

ASTM D92-05a 测定石油产品闪点和燃点指导书1 范围1.1 本方法适用于用手动和自动克利夫兰开口杯仪器测定石油产品的闪点和燃点..1.2 本方法适用于测定除燃料油外开口闪点高于79℃而低于400的所有石油产品..1.3 本方法采用SI单位..2 方法概要2.1 把试样装人试验杯至规定的刻线..先迅速升高试样的温度;然后缓慢升温..当接近闪点时;恒速升温..在规定的温度间隔;以一个小的试验火焰横着越过试验杯;使试样表面上的蒸气闪火的最低温度;作为闪点..如果需要测定燃点;则要继续进行试验;直到用试验火焰使试样点燃并至少燃烧5秒钟的最低温度;作为燃点..3 意义3.1闪点是衡量样品在实验室的控制下与空气混合形成可燃性混合气体趋势的指标;是评估材料易燃危险的若干项目之一..3.2闪点用于运输和安全法规中界定易燃;可燃材料及其分级..3.3 闪点表征在相对非挥发性或非易燃性材料中混入挥发性和易燃材料的可能;例如发动机油试样闪点非正常偏低表明汽油的存在..3.4 本方法仅用于测量和描述在实验室控制的加热和点火条件下材料、产品或组件的特性;不能用来描述或评价材料、产品或组件在实际火灾条件下的着火或危害风险..然而;本方法的测试结果可作为最终用途的火灾危险评估的参考因素..3.5燃点衡量样品维持燃烧倾向的指标..4 仪器4.1克利夫兰开口闪点仪手动----由试杯、加热片、火焰点火杆、加热炉及其它支持附件组成..4.2克利夫兰开口闪点仪自动----自动完成本文第9章操作的自动闪点测定仪..4.3 温度测量单元----玻璃温度计或电子型如电阻或热偶温度测量仪;温度测量仪的温度显示值应与水银体温计相同..5 试剂和材料5.1 清洗溶剂---用于除去试验杯上的样品和干燥试样杯;常用溶剂是甲苯和丙酮..6 取样6.1 按GB T4756采样..6.2 每次试验需至少70ml样品..6.3 若果不注意导致挥发性材料损失;可能会导致闪点偏高;因此避免不必要打开容器除非样品温度低于闪点56℃以上;否则不要做样品转移;只要可能;样品应低温储存并尽早完成闪点测试..6.4 样品不能储存在气体能够渗透的容器中;避免挥发性材料透过容器壁扩散..泄露容器中的样品不能保证结果可靠..6.5 轻质烃类如丙烷、丁烷会以气态形式存在;在取样和给试杯冲填样品的过程中损失而不能检测到;溶剂萃取加工的重质渣油和沥青尤其典型..6.6 特别粘稠的样品在试验前可适度加热使之流动;但不能过度..试样温度与其预期闪点之差一旦小于56℃;绝不能加热;如果样品已己加热炒锅这一限值;在转移样品前;现将样品冷却到其预期闪点56℃以下的温度..注:加热过程中容器保持密封状态..6.7样品含溶解水或游离水时用氯化钙或经定量滤纸过滤脱水;也可插入吸收棉脱水..非常粘稠样品过滤前科适度加热至能流动;但加热时间不能过长;温度与预期闪点之差大于56度..注:怀疑含挥发性成分的样品不能按6.6和6.7处理..7 仪器准备7.1 仪器安装在桌面上..7.2 仪器房间无空气流动或放置在箱格内;试验在通风橱或其他可控通风的地方进行..7.3 用清洗溶剂洗净油迹及其它上次试验残留的微量胶质或残留物;若果有碳渣存在;可用精细的钢丝棉清除;确保试杯完全干净和干燥才能继续使用..必要时;可用水冲洗试验杯;并在明火或加热板上于燥几分钟除去痕迹的溶剂和水分..使用前应将试脸杯冷却到预期闪点前至少56..7.4 垂直安装温度测量装置;装置与杯内底相距6.40.1mm;处于杯中心和杯壁间的直径中点;和测试火焰扫过的弧或线相垂直的直径上;并在点火器臂的对边..7.5 根据仪器说明书校准、检查和操作仪器..8 校准和标准化8.1 采用自动仪器时;根据说明书调整闪点检测系统..8.2根据仪器生产商的说明书校准温度测量装置..8.3 用有证标准物质CRM每年验证仪器性能至少一次;即按本方法8.4 验证仪器性能后;测定闪点二级工作标样SWS;这一工作经常进行..8.5 如果闪点不在8.3和8.4所述范围;检查仪器及其操作;特别是温度测量器具的安装、点火方式和加热速率..调整后严格按第11章操作;测定新的样品..9 步骤9.1 手动仪器9.1.1 将试样装人试验杯中;使弯月面的顶部恰好到装试样刻线;试杯放置在加热盘中央..试杯和试样温度在预期闪点前至少56℃..如果注人试验杯中的试样过多;则用移液管或其他适当的工具取出多余的试样; 如果试样沾到仪器的外边;则倒出试样;洗净后再重装..用刀或其他合适的工具要除去试样表面卜的空气饱或泡沫..若果在试验的最终阶段仍有泡沫;则终止试验;数据作废..9.1.2 固体材料不能装入试杯..固体或枯稠的试样应在注人试样杯前先加热到能流动;但加热时的温度不应超过试样预期闪点前56℃..9.1.3 点燃试验火焰;并调节火焰直径到3.2~4.8mm左右..如仪器上安装着金属比较小球;则与金属比较小球直径相同..9.1.4 初始加热时;试样的升温速度为每分钟5~17`C ..当试样温度到达预期闪点前56℃时;减慢加热速度;控制升温速度;使在闪点前约最后28℃时;为每分钟5~6 *C..9.1.5 在预期闪点前28℃时;开始用试验火焰扫划;温度计上的温度每升高2C ;就扫划一次..试验火焰须在通过温度计直径的直角线上划过试验杯的中心..用平稳、连续的动作扫划;扫划时以直线或沿着半径至少为150mm的周围来进行..试验火焰的中心必须在试验杯上边缘面上2mm以内的平面上移动;先向一个方向扫划;下次再向相反的方向扫划..试验火焰每次越过试验杯所需时间约为1±0.1s..9.1.6 预期闪点前28℃;小心避免快速的走动或附近的空气流动干扰杯内的蒸气..9.1.7 预期闪点前28℃内;如果试样上面仍有泡沫;应中断操作;结果作废..9.1.8 特别注意试验点火的细节;控制火焰尺寸、升温速率和火焰划过试样的速度才能获得正确的结果..9.1.9 如果不能预测样品闪点;试样倒入试杯的温度不超过50℃;5~6 *C/min速率升温;每2*C点火一次;直至出现闪点..注:测定闪点后;在取新鲜样品按标准模式重新测定..记录观察到试杯内明显闪火时的温度作为闪点...1 当出现大的火焰并迅速扩散至整个试样液面即为闪点..不要把实际闪点出现前;点火时在试脸火焰周围产生的淡蓝色光环或焰球变大认作闪点..如果预备试验或第一次点火即出现闪点; 则中断操作;结果作废;用新鲜试验重新试验..第一点火温度必须在闪点前至少28℃..仪器温度冷却到安全温度低于60℃;按仪器说明书取杯和清洗试杯..要测定燃点;在出现闪点后;继续以5~6 *C/min速率升温;试样每升高2℃就扫划一次火焰;直到试样着火;并能连续燃烧不少于5秒钟;此时此次点火时的样品温度作为燃点..仪器温度冷却到安全温度低于60℃;按仪器说明书取杯和清洗试杯..9.2 自动仪器9.2.1 自动仪器能够完成9.1的操作步骤;包括加热速率控制、点火、闪点或燃点含二者检测和记录..9.2.2 将试样装人试验杯中;使弯月面的顶部恰好到装试样刻线;试杯放置在加热盘中央..试杯和试样温度在预期闪点前至少56℃..如果注人试验杯中的试样过多;则用移液管或其他适当的工具取出多余的试样.. 如果试样沾到仪器的外边;则倒出试样;洗净后再重装..用刀或其他合适的工具要除去试样表面卜的空气饱或泡沫..若果在试验的最终阶段仍有泡沫;则终止试验;数据作废..9.2.3 固体材料不能装入试杯..固体或枯稠的试样应在注人试样杯前先加热到能流动;但加热时的温度不应超过试样预期闪点前56℃..9.2.4 点燃试验火焰;并调节火焰直径到3.2~4.8mm左右..如仪器上安装着金属比较小球;则与金属比较小球直径相同..9.2.510 计算10.1 观察和记录试验时环境大气压;大气压力偏离101.3kPa时;按下式修正闪点或/和燃点:修正值=C+0.25101.3-K (1)式中:C---观测闪点;℃..K---环境大气压;kPa..10.2 将修正后的闪点或/和燃点圆整至1℃并记录..11 报告11.1 报告修正后的闪点或/和燃点;方法号ASTM D9212 精密度和偏差12.1 重复性---同一操作者;用同一台仪器重复测定两个试验结果之差;95%概率下不应超过下列数值:闪点8℃燃点8℃12.2 再现性---由两个实验室提出的两个独立结果之差;95%概率下不应超过下列数值:闪点 1 8C燃点14℃12.3 偏差---闪点和燃点由本法定义;因此无偏差..。

astm d6279标准 -回复

astm d6279标准 -回复

astm d6279标准-回复ASTM D6279标准是关于测定柴油燃料中硫含量的方法的国际标准。

它提供了一种准确、可重复的测试方法,用于确定柴油燃料中硫的浓度。

本文将一步一步回答关于ASTM D6279标准的相关问题。

一、ASTM D6279标准是什么?ASTM D6279标准是由美国材料和试验协会(ASTM International)制定的测试柴油燃料中硫含量的方法。

该标准的全名是"Determination of Benzene Soluble Particulate Matter in Diesel Fuels by Ultraviolet Visible Spectrophotometry",通常缩写为ASTM D6279。

它被广泛应用于石油和化工行业,用于确保柴油燃料符合硫含量的相关法规要求。

二、ASTM D6279标准的测试方法是什么?ASTM D6279标准的测试方法主要依赖于紫外可见光谱分析技术。

以下是基本的测试步骤:1. 样品制备:选择一定数量的柴油燃料样品,并按标准中的样品准备方法进行处理。

主要是通过过滤和稀释等操作将样品准备成适合测试的形式。

2. 仪器校准:使用标准溶液进行仪器的校准,以确保测试结果的准确性和可靠性。

3. 测定:将经过准备的样品注入紫外可见分析仪中,设置合适的波长范围进行测试,并记录吸收谱线。

4. 数据处理:使用相关的计算方法计算硫含量。

常用的计算方法包括比色法(Colorimetry)和光谱校正法(Spectral correction)等。

5. 结果确认:确认测定结果是否符合相关的法规要求或质量控制标准。

三、ASTM D6279标准的适用范围和局限性是什么?ASTM D6279标准适用于测定柴油燃料中的总硫含量,包括从低浓度到高浓度的样本。

它适用于不同种类的柴油燃料,包括柴油、生物柴油和柴油添加剂等。

然而,由于测试方法的特定性,ASTM D6279标准并不适用于测定柴油燃料中其他杂质的含量。

常用润滑油检测国标-ASTM对照

常用润滑油检测国标-ASTM对照
ASTM D6595
43
红外光谱分析
FTIR
ASTM E2412
以红外线照射试样时,如果分子中的某一键的振动频率和红外线的频率相同,这个键就吸收红外线而增加能量,通过连续改变红外线的频率,通过样品吸收池的红外线的部分能量被吸收,而使有些区域的光吸收较多,有些区域吸收的较少,就产生了红外光谱。红外光谱的定量分析是根据物质组成的吸收峰强度的大小来进行的。
ASTM D130
GB/T 5096
把一块已磨光好的铜片浸没在一定量的试样中,并按产品标准要求加热到指定的温度,保持一定的时间,待试验周期结束时,取出铜片,经洗涤后与腐蚀标准色板进行比较,确定腐蚀级别。
10
色度
Color
ASTM D1500
GB/T 6540
将试样注入容器中,用一个标准光源从0.5-8.0值排列的玻璃圆片进行比较,以相等色号作为该试样的色号。如落在两个标准颜色之间,则报告两个颜色中较高的一个。
31
烧结负荷
(四球法)
PD
ASTM D2783 GB/T 3142
在四球机中的四个钢球按等边四面体排列着。上球在1400/分-1500转/分下旋转。下面三个球用油盒固定在一起,通过杠杆或液压系统由下而上对钢球施加负荷。在试验过程中四个钢球的接触点都浸没在润滑剂中。每次试验时间为10秒,试验后测量油盒中任何一个钢球的磨痕直径,按规定的程序反复试验,直到求出代表润滑剂承载能力的评定指标。
ASTM D5293 GB/T 6538
一个电子马达驱动一个与定子紧密配合的转子,在转子和定子的空隙里充满试样,通过调节流过定子的冷却剂流量来维持试验温度,并在靠近定子内壁处测定这一温度,校正转子的转速使之作为粘度的函数,由校正的结果和转子的转速来确定试样的粘度。

ASTM D471橡胶性能的标准试验方法-液体影响(中文版)

ASTM D471橡胶性能的标准试验方法-液体影响(中文版)

橡胶性能的标准试验方法-液体影响1.范围1.1 本实验方法提出了评价橡胶或类橡胶物质抵抗液体作用的相对能力所需的程序。

试验计划:(1)从标准板材(见规范D3182)上裁取硫化橡胶试样,(2)从涂覆硫化橡胶的织物(见试验方法D751)上裁取试样,或(3)采用商业成品(见规范D3183)为试样。

除第11.2.2 所提者外,本试验方法不适用于多孔橡胶、泡沫橡胶和压制包装板材。

1.2 ASTM 油类No.2 和No.3 用作本标准的标准工作液体,目前尚未商业化,且在1993 年分别被IRM902 和IRM903 替代(详见附录XI)。

1.3 本试验方法包括以下试验内容:质量变化(浸泡后)第10 节体积变化(浸泡后)第11 节水不溶液体和混合液体尺寸变化第12 节液体仅在一表面的质量变化第13 节液体可溶提取物质量的测定第14 节抗张强度、伸长率和硬度的变化(浸泡后)第15 节断裂强度、破裂强度、撕裂强度和涂布织物附着力的变化第16 节计算(试验结果)第17 节2.引用文件2.1 ASTM 标准:D 92 用克利福兰得开杯法测定闪点和燃点的试验方法2D 97 石油产品倾点的试验方法2D 287 原油和石油产品API 比重的试验方法(液体比重计法) 2D 412 硫化橡胶、热塑橡胶和热塑合成橡胶张力3D 445 透明和不透明液体运动粘度的试验方法2D 611 石油产品和烃类溶剂苯胺点和混合苯胺点的试验方法2D 751 涂层布试验方法4D 975 柴油规格D1217 用宾汉比重瓶法测定液体密度和相对密度(比重)的试验方法2 D 1415 橡胶特性--国际硬度的试验方法3D 1500 石油产品ASTM 颜色的试验方法(ASTM 比色度) 2D 1747 石油产品ASTM 颜色的试验方法(ASTM 比色度) 2D 2008 石油产品紫外线吸收度和吸收系数的试验方法2D 2140 石油制绝缘油的碳类成份的测试方法5D 2240 用硬度计测定橡胶硬度的试验方法3D 2699 研究法测定发动机燃料抗震性的试验方法6D 3182 混炼标准化合物及制备标准硫化橡胶试片用橡胶材料、设备及工序规程3D 3183 用橡胶制品制备试验用橡胶试片的规程3D 4483 橡胶和炭黑制造业用试验方法标准精确性的评定规程7D 4485 发动机油功能规范3D 4678 橡胶参考材料的制备、测试、验收、制定文档和使用规程3D 5900 工业标准物质(IRM)的物理及化学性能规格8E 145 重力传送和强制通风炉规格82.2 SAE 标准:J 300 发动机油粘度分类3.试验方法的摘要3.1 本实验方法提供了把测试样品暴露在液体之下所受影响的程序, 经过一定条件的温度和时间。

100LL标准ASTM910_2011

100LL标准ASTM910_2011

Designation:D910–11An American National Standard Standard Specification forAviation Gasolines1This standard is issued under thefixed designation D910;the number immediately following the designation indicates the year oforiginal adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.Asuperscript epsilon(´)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1.Scope*1.1This specification covers formulating specifications for purchases of aviation gasoline under contract and is intended primarily for use by purchasing agencies.1.2This specification defines specific types of aviation gasolines for civil use.It does not include all gasolines satisfactory for reciprocating aviation engines.Certain equip-ment or conditions of use may permit a wider,or require a narrower,range of characteristics than is shown by this specification.1.3The values stated in SI units are to be regarded as standard.No other units of measurement are included in this standard.2.Referenced Documents2.1ASTM Standards:2D86Test Method for Distillation of Petroleum Products at Atmospheric PressureD93Test Methods for Flash Point by Pensky-Martens Closed Cup TesterD130Test Method for Corrosiveness to Copper from Pe-troleum Products by Copper Strip TestD323Test Method for Vapor Pressure of Petroleum Prod-ucts(Reid Method)D357Method of Test for Knock Characteristics of Motor Fuels Below100Octane Number by the Motor Method3 D381Test Method for Gum Content in Fuels by Jet Evapo-rationD614Method of Test for Knock Characteristics of Aviation Fuels by the Aviation Method3D873Test Method for Oxidation Stability of Aviation Fuels (Potential Residue Method)D909Test Method for Supercharge Rating of Spark-Ignition Aviation GasolineD1094Test Method for Water Reaction of Aviation Fuels D1266Test Method for Sulfur in Petroleum Products (Lamp Method)D1298Test Method for Density,Relative Density(Specific Gravity),or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer MethodD1948Method of Test for Knock Characteristics of Motor Fuels Above100Octane Number by the Motor Method3 D2386Test Method for Freezing Point of Aviation Fuels D2392Test Method for Color of Dyed Aviation Gasolines D2622Test Method for Sulfur in Petroleum Products by Wavelength Dispersive X-ray Fluorescence Spectrometry D2624Test Methods for Electrical Conductivity of Aviation and Distillate FuelsD2700Test Method for Motor Octane Number of Spark-Ignition Engine FuelD3338Test Method for Estimation of Net Heat of Combus-tion of Aviation FuelsD3341Test Method for Lead in Gasoline—Iodine Mono-chloride MethodD4052Test Method for Density,Relative Density,and API Gravity of Liquids by Digital Density MeterD4057Practice for Manual Sampling of Petroleum and Petroleum ProductsD4171Specification for Fuel System Icing InhibitorsD4177Practice for Automatic Sampling of Petroleum and Petroleum ProductsD4306Practice for Aviation Fuel Sample Containers for Tests Affected by Trace ContaminationD4529Test Method for Estimation of Net Heat of Combus-tion of Aviation FuelsD4809Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter(Precision Method)D4865Guide for Generation and Dissipation of Static Electricity in Petroleum Fuel SystemsD5006Test Method for Measurement of Fuel System Icing Inhibitors(Ether Type)in Aviation Fuels1This specification is under the jurisdiction of ASTM Committee D02onPetroleum Products and Lubricants and is the direct responsibility of SubcommitteeD02.J0.02on Aviation Gasoline.Current edition approved May1,2011.Published May2011.Originallyapproved in1947(replacing former D615).Last previous edition approved in2007as D910–07a.DOI:10.1520/D0910-11.2For referenced ASTM standards,visit the ASTM website,,orcontact ASTM Customer Service at service@.For Annual Book of ASTMStandards volume information,refer to the standard’s Document Summary page onthe ASTM website.3Withdrawn.The last approved version of this historical standard is referencedon .*A Summary of Changes section appears at the end of this standard. Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.D5059Test Methods for Lead in Gasoline by X-Ray Spec-troscopyD5190Test Method for Vapor Pressure of Petroleum Prod-ucts(Automatic Method)D5191Test Method for Vapor Pressure of Petroleum Prod-ucts(Mini Method)D6469Guide for Microbial Contamination in Fuels and Fuel SystemsE29Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications3.Terminology3.1Definitions:3.1.1aviation gasoline,n—gasoline possessing specific properties suitable for fueling aircraft powered by reciprocat-ing spark ignition engines.3.1.1.1Discussion—Principal properties include volatility limits,stability,detonation-free performance in the engine for which it is intended,and suitability for low temperature performance.3.2Abbreviations:3.2.1LL—low lead3.2.2VLL—very low lead4.General4.1This specification,unless otherwise provided,prescribes the required properties of aviation gasoline at the time and place of delivery.5.Classification5.1Five grades of leaded aviation gasoline are provided, known as:Grade80Grade91Grade100Grade100LLGrade100VLLN OTE1—The above grade names are based on their octane/ performance numbers as measured by the now obsolete Test Method D614 (Discontinued1970).A table for converting octane/performance numbers obtained by Test Method D2700motor method into aviation ratings was last published in Specification D910–94in the1995Annual Book of ASTM Standards,V ol05.01.5.2Grades100,100LL,and100VLL represent aviation gasolines identical in minimum antiknock quality but differing in maximum lead content and color.The color identifies the difference for engines that have a low tolerance to lead.N OTE2—Listing of,and requirements for,Avgas Grades91/98,108/ 135and115/145appeared in the1967version of this specification.U.S. Military Specification MIL-G-5572F,dated January24,1978(withdrawn March22,1988),also covers grade115/145aviation gasoline,and is available as a research report.45.3Although the grade designations show only a single octane rating for each grade,they shall meet a minimum lean mixture motor rating and a minimum rich mixture supercharge rating(see X1.2.2).6.Materials and Manufacture6.1Aviation gasoline,except as otherwise specified in this specification,shall consist of blends of refined hydrocarbons derived from crude petroleum,natural gasoline,or blends, thereof,with synthetic hydrocarbons or aromatic hydrocar-bons,or both.6.2Additives—Mandatory,shall be added to each grade of aviation gasoline in the amount and of the composition specified in the following list of approved materials.6.2.1Tetraethyl Lead,shall be added in the form of an antiknock mixture containing not less than61mass%of tetraethyl lead and sufficient ethylene dibromide to provide two bromine atoms per atom of lead.The balance shall contain no added ingredients other than kerosine,an approved oxidation inhibitor,and blue dye,as specified herein.The maximum concentration limit for each grade of gasoline is specified in Table1.6.2.1.1If mutually agreed upon by the fuel producer and additive vendor,tetraethyl lead antiknock mixture may be diluted with20mass%of a mixed aromatic solvent having a minimumflash point of60°C according to Test Methods D93 when the product is to be handled in cold climates.The TEL content of the dilute product is reduced to49mass%,so that the amount of antiknock additive must be adjusted to achieve the necessary lead level.The dilute product still delivers two bromine atoms per atom of lead.6.2.2Dyes—The maximum concentration limits in each grade of gasoline are specified in Table1.6.2.2.1The only blue dye that shall be present in the finished gasoline shall be essentially1,4-dialkylaminoanthraquinone.6.2.2.2The only yellow dyes that shall be present in the finished gasoline shall be essentially p-diethylaminoazobenzene(Color Index No.11021)or1,3-benzenediol2,4-bis[(alkylphenyl)azo-].6.2.2.3The only red dye that shall be present in thefinished gasoline shall be essentially alkyl derivatives of azobenzene-4-azo-2-naphthol.6.2.2.4The only orange dye that shall be present in the finished gasoline shall be essentially benzene-azo-2-napthol (Color Index No.12055).6.3Additives—These may be added to each grade of avia-tion gasoline in the amount and of the composition specified in the following list of approved materials.5The quantities and types shall be declared by the manufacturer.Additives added after the point of manufacture shall also be declared.6.3.1Antioxidants—The following oxidation inhibitors may be added to the gasoline separately,or in combination,in total concentration not to exceed12mg of inhibitor(not including weight of solvent)per litre of fuel.6.3.1.12,6-ditertiary butyl-4-methylphenol.6.3.1.22,4-dimethyl-6-tertiary butylphenol.6.3.1.32,6-ditertiary butylphenol.4Supporting data have beenfiled at ASTM International Headquarters and may be obtained by requesting Research Report RR:D02-1255.5Supporting data(guidelines for the approval or disapproval of additives)have beenfiled at ASTM International Headquarters and may be obtained by requesting Research ReportRR:D02-1125.TABLE 1Detailed Requirements for Aviation Gasolines AGrade 80Grade 91Grade 100VLLGrade 100LLGrade 100ASTM Test Method BOctane RatingsKnock value,lean mixture CMotor Octane Number min 80.790.899.699.699.6D2700Aviation Lean Rating min 80.091.0100.0100.0100.0D2700Knock value,rich mixture Octane numbermin 8798D909Performance number D ,E min 130.0130.0130.0D909Tetraethyl lead,mL D3341or D5059TEL/L max 0.130.530.430.53 1.06gPb/L max0.140.560.450.56 1.12Colorred brown blue blue green D2392Dye content FBlue dye,mg/L max 0.2 3.1 2.7 2.7 2.7Yellow dye,mg/L max none none none none 2.8Red dye,mg/L max 2.3 2.7none none none Orange dye,mg/Lmaxnone6.0nonenonenoneRequirements for All GradesDensity at 15°C,kg/m 3Report D1298or D4052DistillationD86Initial boiling point,°C ReportFuel Evaporated10volume %at °C max 7540volume %at °C min 7550volume %at °C max 10590volume %at °C max 135Final boiling point,°Cmax 170Sum of 10%+50%evaporatedtemperatures,°C min 135Recovery volume %min 97Residue volume %max 1.5Loss volume %max 1.5Vapor pressure,38°C,kPamin max 38.049.0D323or D5190or D5191G Freezing point,°C max −58H D2386Sulfur,mass %max 0.05D1266or D2622Net heat of combustion,MJ/kg Imin 43.5D4529or D3338Corrosion,copper strip,2h at 100°C max No.1D130Oxidation stability (5h aging)J ,KD873Potential gum,mg/100mL max 6Lead precipitate,mg/100mL max 3Water reactionD1094Volume change,mLmax 62Electrical conductivity,pS/mmax450LD2624A For compliance of test results against the requirements of Table 1,see 7.2.BThe test methods indicated in this table are referred to in Section 11.CBoth Motor Octane Number (MON)and Aviation Lean Mixture values shall be reported.DA performance number of 130.0is equivalent to a knock value determined using iso -octane plus 0.34mL TEL/L.EKnock ratings shall be reported to the nearest 0.1octane/performance number.FThe maximum dye concentrations shown do not include solvent in dyes supplied in liquid form.GTest Method D5191shall be the referee vapor pressure method.HIf no crystals have appeared on cooling to −58°C,the freezing point may be reported as less than −58°C.IFor all grades use either Eq 1or Table 1in Test Method D4529or Eq 2in Test Method D3338.Test Method D4809may be used as an alternative.In case of dispute,Test Method D4809shall be used.JIf mutually agreed upon between the purchaser and the supplier,a 16h aging gum requirement may be specified instead of the 5h aging gum test;in such case the gum content shall not exceed 10mg/100mL and the visible lead precipitate shall not exceed 4mg/100mL.In such fuel the permissible antioxidant shall not exceed 24mg/L.KTest Method D381existent gum test can provide a means of detecting quality deterioration or contamination,or both,with heavier products following distribution from refinery to airport.Refer to X1.7.1.LApplies only when an electrical conductivity additive is used;when a customer specifies fuel containing conductivity additive,the following conductivity limits shall apply under the condition at point of use:Minimum 50pS/m Maximum 450pS/m.The supplier shall report the amount of additive added.6.3.1.475%minimum2,6-ditertiary butylphenol plus25% maximum mixed tertiary and tritertiary butylphenols.6.3.1.575%minimum di-and tri-isopropyl phenols plus 25%maximum di-and tri-tertiary butylphenols.6.3.1.672%minimum2,4-dimethyl-6-tertiary butylphenol plus28%maximum monomethyl and dimethyl tertiary butyl-phenols.6.3.1.7N,N8-di-isopropyl-para-phenylenediamine.6.3.1.8N,N8-di-secondary-butyl-para-phenylenediamine. 6.3.2Fuel System Icing Inhibitor(FSII)—One of the fol-lowing may be used.6.3.2.1Isopropyl Alcohol(IP A,propan-2-ol),in accordance with the requirements of Specification D4171(Type II).May be used in concentrations recommended by the aircraft manu-facturer when required by the aircraft owner/operator.N OTE3—Addition of isopropyl alcohol(IPA)may reduce knock ratings below minimum specification values(see X1.2.4).66.3.2.2Di-Ethylene Glycol Monomethyl Ether(Di-EGME), conforming to the requirements of Specification D4171(Type III).May be used in concentrations of0.10to0.15volume% when required by the aircraft owner/operator.6.3.2.3Test Method D5006can be used to determine the concentration of Di-EGME in aviation fuels.6.3.3Electrical Conductivity Additive—Stadis4507in con-centrations up to3mg/L is permitted.When loss of fuel conductivity necessitates retreatment with electrical conductiv-ity additive,further addition is permissible up to a maximum cumulative level of5mg/L of Stadis450.6.3.4Corrosion Inhibitor Additive—The following corro-sion inhibitors may be added to the gasoline in concentrations not to exceed the maximum allowable concentration(MAC) listed for each additive.DCI-4A MAC=22.5g/m3DCI-6A MAC=9.0g/m3HITEC580MAC=22.5g/m3NALCO5403MAC=22.5g/m3NALCO5405MAC=11.0g/m3PRI-19MAC=22.5g/m3UNICOR J MAC=22.5g/m3SPEC-AID8Q22MAC=24.0g/m3TOLAD351MAC=24.0g/m3TOLAD4410MAC=22.5g/m37.Detailed Requirements7.1The aviation gasoline shall conform to the requirements prescribed in Table1.7.2Test results shall not exceed the maximum or be less than the minimum values specified in Table1.No allowance shall be made for the precision of the test methods.To determine the conformance to the specification requirement,a test result may be rounded to the same number of significant figures as in Table1using Practice E29.Where multiple determinations are made,the average result,rounded according to Practice E29,shall be used.8.Workmanship,Finish and Appearance8.1The aviation gasoline specified in this specification shall be free from undissolved water,sediment,and suspended matter.The odor of the fuel shall not be nauseating or irritating. No substances of known dangerous toxicity under usual conditions of handling and use shall be present except as permitted in this specification.9.Sampling9.1Because of the importance of proper sampling proce-dures in establishing fuel quality,use the appropriate proce-dures in Practice D4057or Practice D4177.9.1.1Although automatic sampling following Practice D4177may be useful in certain situations,initial refinery specification compliance testing shall be performed on a sample taken following procedures in Practice D4057.9.2A number of aviation gasoline properties,including copper corrosion,electrical conductivity,and others are very sensitive to trace contamination which can originate from sample containers.For recommended sample containers,refer to Practice D4306.10.Reports10.1The type and number of reports to ensure conformance with the requirements of this specification shall be mutually agreed to by the purchaser and the supplier of the aviation gasoline.11.Test Methods11.1The requirements enumerated in this specification shall be determined in accordance with the following ASTM test methods:11.1.1Knock Value(Lean Rating)—Test Method D2700.11.1.2Knock Value(Rich Rating)—Test Method D909. 11.1.3Tetraethyllead—Test Methods D3341or D5059. 11.1.4Color—Test Method D2392.11.1.5Density—Test Methods D1298or D4052.11.1.6Distillation—Test Method D86.11.1.7Vapor Pressure—Test Methods D323,D5190,or D5191.11.1.8Freezing Point—Test Method D2386.11.1.9Sulfur—Test Methods D1266or D2622.11.1.10Net Heat of Combustion—Test Methods D4529or D3338.11.1.11Corrosion(Copper Strip)—Test Method D130,2h test at100°C in bomb.11.1.12Potential Gum and Visible Lead Precipitate—Test Method D873except that wherever the letter X occurs(refer-ring to oxidation time)insert the number5,designating the number of hours prescribed in this specification.11.1.13Water Reaction—Test Method D1094.11.1.14Electrical Conductivity—Test Methods D2624.12.Keywords12.1Avgas;aviation gasoline;gasoline6Supporting data have beenfiled at ASTM International Headquarters and may be obtained by requesting Research Report RR:D02-1526.7Stadis is a registered trademark marketed by Octel America,Inc.,Newark,DE19702.APPENDIX(Nonmandatory Information)X1.PERFORMANCE CHARACTERISTICS OF A VIATION GASOLINESX1.1IntroductionX1.1.1Aviation gasoline is a complex mixture of relatively volatile hydrocarbons that vary widely in their physical and chemical properties.The engines and aircraft impose a variety of mechanical,physical,and chemical environments.The properties of aviation gasoline (Table X1.1)must be properly balanced to give satisfactory engine performance over an extremely wide range of conditions.X1.1.2The ASTM requirements summarized in Table 1are quality limits established on the basis of the broad experience and close cooperation of producers of aviation gasoline,manufacturers of aircraft engines,and users of both commodi-ties.The values given are intended to define aviation gasoline suitable for most types of spark-ignition aviation engines;however,certain equipment or conditions of use may require fuels having other characteristics.X1.1.3Specifications covering antiknock quality define the grades of aviation gasoline.The other requirements either prescribe the proper balance of properties to ensure satisfactory engine performance or limit components of undesirable nature to concentrations so low that they will not have an adverse effect on engine performance.X1.2Combustion Characteristics (Antiknock Quality andAntiknock Compound Identification)X1.2.1The fuel-air mixture in the cylinder of a spark-ignition engine will,under certain conditions,ignite spontane-ously in localized areas instead of progressing from the spark.This may cause a detonation or knock,usually inaudible in aircraft engines.This knock,if permitted to continue for more than brief periods,may result in serious loss of power and damage to,or destruction of,the aircraft engine.When aviation gasoline is used in other types of aviation engines,for example,in certain turbine engines where specifically permitted by the engine manufacturers,knock or detonation characteristics may not be critical requirements.X1.2.2Aviation gasoline grades are also identified by two numbers separated by a slant line (/).The first number is called the lean mixture rating and the second number is called the rich mixture rating.This specification describes five grades of aviation gasoline as follows:80/87,91/98,100/130,100/130LL,and 100/130VLL.Numbers below 100are octane numbers,while numbers above 100are performance numbers.At 100,octane number and performance number are equal.The suffix LL describes a grade containing lower tetraethyllead than a second grade of identical lean and rich mixture ratings.The suffix VLL designates a grade containing lower tetraethyllead than grade 100/130LL of identical lean and rich mixture ratings.X1.2.3Both the lean mixture rating and the rich mixture rating are determined in standardized laboratory knock test engines that are operated under prescribed conditions.Results are expressed as octane numbers up to 100and above this point as quantities of tetraethyllead added to iso octane (2,2,4-trimethylpentane).Octane number is defined arbitrarily as the percentage of iso octane in that blend of iso octane and n -heptane that the gasoline matches in knock characteristics when compared by the procedure specified.The quantities of tetraethyllead added to iso octane that the gasoline matches in knock characteristics when compared by the procedure speci-fied may be converted to performance numbers by a chart.The performance number is an indication of the relative power obtainable from an engine as compared with operation of the same engine with leaded iso octane,operating at equal knock-ing intensity.The lean mixture rating together with the rich mixture rating can be used as a guide to the amount of knock-limited power that may be obtained in a full-scale engine under cruise (lean)and take-off (rich)conditions.X1.2.4It has been observed that when isopropyl alcohol (IPA)is added to a Grade 100,Grade 100LL,or Grade 100VLL aviation gasoline as a fuel system icing inhibitor,the antiknock rating of the fuel can be reduced.Since isopropyl alcohol is normally added in the field at the point of use,the operator is cautioned that performance numbers on the alcohol-fuel blend may not meet specification minimums.Typical performance number reductions with addition of one volume %IPA has been 0.5motor octane number on the lean rating and 3.0to 3.5performance number on the rich rating.Thus a Grade 100,100LL,or 100VLL aviation gasoline rated in the knock test engines at the point of manufacture to be 99.5/130octane/performance number might,with the addition of one volume %alcohol,be about 99/127octane/performance num-ber.At three volume %,the reductions are about 1.5octane number and 7.5performance number for lean and rich ratings,respectively.It should be noted that a survey conducted by the General Aviation Manufacturers Association failed to find field evidence or experience to suggest that these reductions have caused engine distress,that is,knocking or power loss at theirTABLE X1.1Performance Characteristics of Aviation GasolinePerformance Characteristics Test MethodsSections Combustion characteristicsknock value (lean mixture)X1.2.4Antiknock quality and antiknock knock value (rich mixture)X1.2.5compound identificationisopropyl alcohol X1.2.6tetraethyllead X1.2.7dyes X1.2.8Fuel metering and aircraft range densityX1.3.1net heat of combustion X1.3.2Carburetion and fuel vaporization vapor pressure X1.4.1distillationX1.4.2Corrosion of fuel system and engine copper strip corrosion X1.5.1partssulfur content X1.5.2Fluidity at low temperaturesfreezing point X1.6Fuel cleanliness,handling,and storage existent gum X1.7.1stabilitypotential gumX1.7.2visible lead precipitate X1.7.3water reactionX1.7.5recommended1%maximum level.On Grade80aviation gasoline,addition of the IPA additive can increase the octane rating.X1.2.5Knock Value,Lean Mixture Rating(Test Method D2700)—The specification parameter knock value,lean value mixture lists both“Motor Octane Number”(MON)and“Avia-tion Lean,”as determined by Test Method D2700.Historically, aviation lean ratings were determined(from1941through 1970)by Test Method D614.An extensive comparison of National Exchange Group data from1947through1964 established that motor octane numbers as determined by Test Methods D357and D1948could be converted to equivalent Test Method D614ratings.A table to convert MON to the corresponding aviation lean rating was included in Test Method D2700,which wasfirst issued in1968as a revision, consolidation and intended eventual replacement of Test Meth-ods D357(Withdrawn1969),D614(Withdrawn1970),and D1948(Withdrawn1968).Currently“Aviation Lean”ratings are only determinable from the MON conversion table in Test Method D2700.However,the equivalent“Aviation Lean”rating is maintained as a specified parameter in Table1to ensure aircraft compliance with historical type certification data sheets.X1.2.6Rich Mixture Rating(Supercharge Test Method D909)—This test method uses a laboratory engine that is capable of being operated at varying air-fuel mixtures and through a range of supercharge manifold pressures.The rating of a fuel is determined by comparing its knock-limited power with those for bracketing blends of reference fuels under standard operating conditions.The rating is made at the rich peak of the mixture response curve(about0.11fuel-air ratio)of the lower bracketing reference fuel.X1.2.7Tetraethyllead—Tetraethyllead offers the most eco-nomical means of providing high antiknock value for aviation gasoline.It is added to aviation gasoline in the form of afluid which,in addition to tetraethyllead,contains an organic halide scavenging agent and an identifying blue dye.The scavenging agent is needed to keep the tetraethyllead combustion products volatile so that they will theoretically be completely discharged from the cylinder.Actually,lead compounds are deposited in the combustion chamber and somefind their way into the lubricating oil.The products of combustion of tetraethyllead fluid are also known to be corrosive.Since deposition and corrosive tendencies are undesirable,the quantity of tetraeth-yllead in aviation gasoline is limited by specification commen-surate with economic considerations.X1.2.8Dyes—The law provides that all fuels containing tetraethyllead must be dyed to denote the presence of the poisonous component.Colors are also used in aviation fuels to differentiate between grades.Service experience has indicated that only certain dyes and only certain amounts of dye can be tolerated without manifestation of induction system deposition. The names of the approved dyes are specified as well as the maximum quantity of each permissible in each grade.X1.3Fuel Metering and Aircraft RangeX1.3.1Density—Density is a property of afluid and is of significance in meteringflow and in mass-volume relationships for most commercial transactions.It is particularly useful in empirical assessments of heating value when used with other parameters such as aniline point or distillation.X1.3.2Net Heat of Combustion—The net heat of combus-tion provides a knowledge of the amount of energy obtainable from a given fuel for the performance of useful work,in this instance,power.Aircraft design and operation are dependent upon the availability of a certain predetermined minimum amount of energy as heat.Consequently,a reduction in heat energy below this minimum is accompanied by an increase in fuel consumption with corresponding loss of range.Therefore, a minimum net heat of combustion requirement is incorporated in the specification.The determination of net heat of combus-tion is time consuming and difficult to conduct accurately.This led to the development and use of the aniline point and density relationship to estimate the heat of combustion of the fuel.This relationship is used along with the sulfur content of the fuel to obtain the net heat of combustion for the purposes of this specification.An alternative calculation,Test Method D3338, is based on correlations of aromatics content,density,volatil-ity,and sulfur content.This test method may be preferred at refineries where all these values are normally obtained and the necessity to obtain the aniline point is avoided.The direct measurement method is normally used only as a referee method in cases of dispute.X1.3.3No great variation in density or heat of combustion occurs in modern aviation gasolines,since they depend on hydrocarbon composition that is already closely controlled by other specification properties.X1.4Carburetion and Fuel VaporizationX1.4.1In many spark-ignition aviation engines,the gaso-line is metered in liquid form through the carburetor where it is mixed with air and vaporized before entering the super-charger from which the fuel-air mixture enters the cylinder of the engine.In other types of engines,the fuel may be metered directly into the supercharger,the cylinder,or the combustor. The volatility,the tendency to evaporate or change from a liquid to a gaseous state,is an extremely important character-istic of aviation fuel.X1.4.2Gasolines that vaporize too readily may boil in fuel lines or carburetors,particularly as altitude increases,and cause vapor lock with resultant stoppage of fuelflow to the engine.Conversely,fuels that do not completely vaporize may cause engine malfunctioning of other sorts.Therefore,a proper balance of the volatility of the various hydrocarbon compo-nents is essential to satisfactory performance of thefinished fuel.X1.4.3Vapor Pressure—The vapor pressure of an aviation gasoline is the measure of the tendency of the more volatile components to evaporate.Experience has shown that fuels having a Reid vapor pressure no higher than49kPa will be free of vapor-locking tendencies under most conditions of aircraft usage.A research report is available.8X1.4.4Distillation—The relative proportions of all the hydrocarbon components of a gasoline are measured in terms 8Supporting data have beenfiled at ASTM International Headquarters and may be obtained by requesting Research ReportRR:D02-1146.。

ASTM D471橡胶性能的标准试验方法-液体影响(中文版)

ASTM D471橡胶性能的标准试验方法-液体影响(中文版)

橡胶性能的标准试验方法-液体影响1.范围1.1 本实验方法提出了评价橡胶或类橡胶物质抵抗液体作用的相对能力所需的程序。

试验计划:(1)从标准板材(见规范D3182)上裁取硫化橡胶试样,(2)从涂覆硫化橡胶的织物(见试验方法D751)上裁取试样,或(3)采用商业成品(见规范D3183)为试样。

除第11.2.2 所提者外,本试验方法不适用于多孔橡胶、泡沫橡胶和压制包装板材。

1.2 ASTM 油类No.2 和No.3 用作本标准的标准工作液体,目前尚未商业化,且在1993 年分别被IRM902 和IRM903 替代(详见附录XI)。

1.3 本试验方法包括以下试验内容:质量变化(浸泡后)第10 节体积变化(浸泡后)第11 节水不溶液体和混合液体尺寸变化第12 节液体仅在一表面的质量变化第13 节液体可溶提取物质量的测定第14 节抗张强度、伸长率和硬度的变化(浸泡后)第15 节断裂强度、破裂强度、撕裂强度和涂布织物附着力的变化第16 节计算(试验结果)第17 节2.引用文件2.1 ASTM 标准:D 92 用克利福兰得开杯法测定闪点和燃点的试验方法2D 97 石油产品倾点的试验方法2D 287 原油和石油产品API 比重的试验方法(液体比重计法) 2D 412 硫化橡胶、热塑橡胶和热塑合成橡胶张力3D 445 透明和不透明液体运动粘度的试验方法2D 611 石油产品和烃类溶剂苯胺点和混合苯胺点的试验方法2D 751 涂层布试验方法4D 975 柴油规格D1217 用宾汉比重瓶法测定液体密度和相对密度(比重)的试验方法2 D 1415 橡胶特性--国际硬度的试验方法3D 1500 石油产品ASTM 颜色的试验方法(ASTM 比色度) 2D 1747 石油产品ASTM 颜色的试验方法(ASTM 比色度) 2D 2008 石油产品紫外线吸收度和吸收系数的试验方法2D 2140 石油制绝缘油的碳类成份的测试方法5D 2240 用硬度计测定橡胶硬度的试验方法3D 2699 研究法测定发动机燃料抗震性的试验方法6D 3182 混炼标准化合物及制备标准硫化橡胶试片用橡胶材料、设备及工序规程3D 3183 用橡胶制品制备试验用橡胶试片的规程3D 4483 橡胶和炭黑制造业用试验方法标准精确性的评定规程7D 4485 发动机油功能规范3D 4678 橡胶参考材料的制备、测试、验收、制定文档和使用规程3D 5900 工业标准物质(IRM)的物理及化学性能规格8E 145 重力传送和强制通风炉规格82.2 SAE 标准:J 300 发动机油粘度分类3.试验方法的摘要3.1 本实验方法提供了把测试样品暴露在液体之下所受影响的程序, 经过一定条件的温度和时间。

燃料油质量标准

燃料油质量标准

目前我国还没有关于燃料油的强制性国家质量标准。

为了与国际接轨,中国石油化工总公司于1996年参照国际上使用最广泛的燃料油标准:美国材料试验协会(ASTM)标准ASTND396-92燃料油标准,制定了我国的行业标准SH/T0356-1996。

表1 ?燃料油系列标准
注:180CST燃料油:指50℃时的粘度在80CST与180CST之间的油品380CST燃料油:指50℃时的粘度在180CST与380CST之间的油品
船用燃料油规格国际标准的现状:
1987年制定的船用燃料油规格国际标准(初版)经过修订又于1996年颁布了第2版,即ISO8217:1996标准。

ISO 8217:1996(E)船用180燃料油标准
新加坡普氏(PLATTS)对燃料油的质量要求:
俄罗斯M-40 M-100燃料油质量指标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档